MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caurcvg2 Structured version   Visualization version   GIF version

Theorem caurcvg2 15562
Description: A Cauchy sequence of real numbers converges, existence version. (Contributed by NM, 4-Apr-2005.) (Revised by Mario Carneiro, 7-Sep-2014.)
Hypotheses
Ref Expression
caucvg.1 𝑍 = (ℤ𝑀)
caurcvg2.2 (𝜑𝐹𝑉)
caurcvg2.3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
Assertion
Ref Expression
caurcvg2 (𝜑𝐹 ∈ dom ⇝ )
Distinct variable groups:   𝑗,𝑘,𝑥,𝐹   𝑗,𝑀,𝑘,𝑥   𝜑,𝑗,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥
Allowed substitution hints:   𝑉(𝑥,𝑗,𝑘)

Proof of Theorem caurcvg2
Dummy variables 𝑖 𝑚 𝑛 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 1rp 12919 . . . 4 1 ∈ ℝ+
21ne0ii 4297 . . 3 + ≠ ∅
3 caurcvg2.3 . . 3 (𝜑 → ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
4 r19.2z 4452 . . 3 ((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
52, 3, 4sylancr 587 . 2 (𝜑 → ∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥))
6 simpl 483 . . . . . 6 (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → (𝐹𝑘) ∈ ℝ)
76ralimi 3086 . . . . 5 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
8 eqid 2736 . . . . . . . . 9 (ℤ𝑗) = (ℤ𝑗)
9 simprr 771 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)
10 fveq2 6842 . . . . . . . . . . . . 13 (𝑘 = 𝑛 → (𝐹𝑘) = (𝐹𝑛))
1110eleq1d 2822 . . . . . . . . . . . 12 (𝑘 = 𝑛 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑛) ∈ ℝ))
1211rspccva 3580 . . . . . . . . . . 11 ((∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
139, 12sylan 580 . . . . . . . . . 10 (((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ𝑗)) → (𝐹𝑛) ∈ ℝ)
1413fmpttd 7063 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)):(ℤ𝑗)⟶ℝ)
15 fveq2 6842 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (ℤ𝑗) = (ℤ𝑚))
16 fveq2 6842 . . . . . . . . . . . . . . . . . . . . 21 (𝑗 = 𝑚 → (𝐹𝑗) = (𝐹𝑚))
1716oveq2d 7373 . . . . . . . . . . . . . . . . . . . 20 (𝑗 = 𝑚 → ((𝐹𝑘) − (𝐹𝑗)) = ((𝐹𝑘) − (𝐹𝑚)))
1817fveq2d 6846 . . . . . . . . . . . . . . . . . . 19 (𝑗 = 𝑚 → (abs‘((𝐹𝑘) − (𝐹𝑗))) = (abs‘((𝐹𝑘) − (𝐹𝑚))))
1918breq1d 5115 . . . . . . . . . . . . . . . . . 18 (𝑗 = 𝑚 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
2019anbi2d 629 . . . . . . . . . . . . . . . . 17 (𝑗 = 𝑚 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2115, 20raleqbidv 3319 . . . . . . . . . . . . . . . 16 (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥)))
2221cbvrexvw 3226 . . . . . . . . . . . . . . 15 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥))
23 fveq2 6842 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (𝐹𝑘) = (𝐹𝑖))
2423eleq1d 2822 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((𝐹𝑘) ∈ ℝ ↔ (𝐹𝑖) ∈ ℝ))
2523fvoveq1d 7379 . . . . . . . . . . . . . . . . . . . 20 (𝑘 = 𝑖 → (abs‘((𝐹𝑘) − (𝐹𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
2625breq1d 5115 . . . . . . . . . . . . . . . . . . 19 (𝑘 = 𝑖 → ((abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
2724, 26anbi12d 631 . . . . . . . . . . . . . . . . . 18 (𝑘 = 𝑖 → (((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
2827cbvralvw 3225 . . . . . . . . . . . . . . . . 17 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
29 recn 11141 . . . . . . . . . . . . . . . . . . 19 ((𝐹𝑖) ∈ ℝ → (𝐹𝑖) ∈ ℂ)
3029anim1i 615 . . . . . . . . . . . . . . . . . 18 (((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3130ralimi 3086 . . . . . . . . . . . . . . . . 17 (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℝ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3228, 31sylbi 216 . . . . . . . . . . . . . . . 16 (∀𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3332reximi 3087 . . . . . . . . . . . . . . 15 (∃𝑚𝑍𝑘 ∈ (ℤ𝑚)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑚))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3422, 33sylbi 216 . . . . . . . . . . . . . 14 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3534ralimi 3086 . . . . . . . . . . . . 13 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
363, 35syl 17 . . . . . . . . . . . 12 (𝜑 → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
3736adantr 481 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
38 caucvg.1 . . . . . . . . . . . . 13 𝑍 = (ℤ𝑀)
3938, 8cau4 15241 . . . . . . . . . . . 12 (𝑗𝑍 → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4039ad2antrl 726 . . . . . . . . . . 11 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+𝑚𝑍𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)))
4137, 40mpbid 231 . . . . . . . . . 10 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
42 simpr 485 . . . . . . . . . . . . . 14 (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥)
438uztrn2 12782 . . . . . . . . . . . . . . . . . 18 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → 𝑖 ∈ (ℤ𝑗))
44 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑖 → (𝐹𝑛) = (𝐹𝑖))
45 eqid 2736 . . . . . . . . . . . . . . . . . . 19 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))
46 fvex 6855 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑖) ∈ V
4744, 45, 46fvmpt 6948 . . . . . . . . . . . . . . . . . 18 (𝑖 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
4843, 47syl 17 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) = (𝐹𝑖))
49 fveq2 6842 . . . . . . . . . . . . . . . . . . 19 (𝑛 = 𝑚 → (𝐹𝑛) = (𝐹𝑚))
50 fvex 6855 . . . . . . . . . . . . . . . . . . 19 (𝐹𝑚) ∈ V
5149, 45, 50fvmpt 6948 . . . . . . . . . . . . . . . . . 18 (𝑚 ∈ (ℤ𝑗) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5251adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚) = (𝐹𝑚))
5348, 52oveq12d 7375 . . . . . . . . . . . . . . . 16 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚)) = ((𝐹𝑖) − (𝐹𝑚)))
5453fveq2d 6846 . . . . . . . . . . . . . . 15 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) = (abs‘((𝐹𝑖) − (𝐹𝑚))))
5554breq1d 5115 . . . . . . . . . . . . . 14 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → ((abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥))
5642, 55syl5ibr 245 . . . . . . . . . . . . 13 ((𝑚 ∈ (ℤ𝑗) ∧ 𝑖 ∈ (ℤ𝑚)) → (((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5756ralimdva 3164 . . . . . . . . . . . 12 (𝑚 ∈ (ℤ𝑗) → (∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥))
5857reximia 3084 . . . . . . . . . . 11 (∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
5958ralimi 3086 . . . . . . . . . 10 (∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)((𝐹𝑖) ∈ ℂ ∧ (abs‘((𝐹𝑖) − (𝐹𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
6041, 59syl 17 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+𝑚 ∈ (ℤ𝑗)∀𝑖 ∈ (ℤ𝑚)(abs‘(((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑖) − ((𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))‘𝑚))) < 𝑥)
618, 14, 60caurcvg 15561 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
62 eluzelz 12773 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
6362, 38eleq2s 2856 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
6463ad2antrl 726 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ)
65 caurcvg2.2 . . . . . . . . . 10 (𝜑𝐹𝑉)
6665adantr 481 . . . . . . . . 9 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹𝑉)
67 fveq2 6842 . . . . . . . . . . 11 (𝑛 = 𝑘 → (𝐹𝑛) = (𝐹𝑘))
6867cbvmptv 5218 . . . . . . . . . 10 (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) = (𝑘 ∈ (ℤ𝑗) ↦ (𝐹𝑘))
698, 68climmpt 15453 . . . . . . . . 9 ((𝑗 ∈ ℤ ∧ 𝐹𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7064, 66, 69syl2anc 584 . . . . . . . 8 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) ↔ (𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛)))))
7161, 70mpbird 256 . . . . . . 7 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))))
72 climrel 15374 . . . . . . . 8 Rel ⇝
7372releldmi 5903 . . . . . . 7 (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ𝑗) ↦ (𝐹𝑛))) → 𝐹 ∈ dom ⇝ )
7471, 73syl 17 . . . . . 6 ((𝜑 ∧ (𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ )
7574expr 457 . . . . 5 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ ))
767, 75syl5 34 . . . 4 ((𝜑𝑗𝑍) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7776rexlimdva 3152 . . 3 (𝜑 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
7877rexlimdvw 3157 . 2 (𝜑 → (∃𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ ))
795, 78mpd 15 1 (𝜑𝐹 ∈ dom ⇝ )
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1541  wcel 2106  wne 2943  wral 3064  wrex 3073  c0 4282   class class class wbr 5105  cmpt 5188  dom cdm 5633  cfv 6496  (class class class)co 7357  cc 11049  cr 11050  1c1 11052   < clt 11189  cmin 11385  cz 12499  cuz 12763  +crp 12915  abscabs 15119  lim supclsp 15352  cli 15366
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-n0 12414  df-z 12500  df-uz 12764  df-rp 12916  df-ico 13270  df-fl 13697  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-limsup 15353  df-clim 15370  df-rlim 15371
This theorem is referenced by:  iseralt  15569  cvgcmp  15701
  Copyright terms: Public domain W3C validator