Step | Hyp | Ref
| Expression |
1 | | 1rp 12734 |
. . . 4
⊢ 1 ∈
ℝ+ |
2 | 1 | ne0ii 4271 |
. . 3
⊢
ℝ+ ≠ ∅ |
3 | | caurcvg2.3 |
. . 3
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
4 | | r19.2z 4425 |
. . 3
⊢
((ℝ+ ≠ ∅ ∧ ∀𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) → ∃𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
5 | 2, 3, 4 | sylancr 587 |
. 2
⊢ (𝜑 → ∃𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥)) |
6 | | simpl 483 |
. . . . . 6
⊢ (((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → (𝐹‘𝑘) ∈ ℝ) |
7 | 6 | ralimi 3087 |
. . . . 5
⊢
(∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ) |
8 | | eqid 2738 |
. . . . . . . . 9
⊢
(ℤ≥‘𝑗) = (ℤ≥‘𝑗) |
9 | | simprr 770 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → ∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ) |
10 | | fveq2 6774 |
. . . . . . . . . . . . 13
⊢ (𝑘 = 𝑛 → (𝐹‘𝑘) = (𝐹‘𝑛)) |
11 | 10 | eleq1d 2823 |
. . . . . . . . . . . 12
⊢ (𝑘 = 𝑛 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑛) ∈ ℝ)) |
12 | 11 | rspccva 3560 |
. . . . . . . . . . 11
⊢
((∀𝑘 ∈
(ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ ℝ) |
13 | 9, 12 | sylan 580 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) ∧ 𝑛 ∈ (ℤ≥‘𝑗)) → (𝐹‘𝑛) ∈ ℝ) |
14 | 13 | fmpttd 6989 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)):(ℤ≥‘𝑗)⟶ℝ) |
15 | | fveq2 6774 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (ℤ≥‘𝑗) =
(ℤ≥‘𝑚)) |
16 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑗 = 𝑚 → (𝐹‘𝑗) = (𝐹‘𝑚)) |
17 | 16 | oveq2d 7291 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 = 𝑚 → ((𝐹‘𝑘) − (𝐹‘𝑗)) = ((𝐹‘𝑘) − (𝐹‘𝑚))) |
18 | 17 | fveq2d 6778 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑗 = 𝑚 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) = (abs‘((𝐹‘𝑘) − (𝐹‘𝑚)))) |
19 | 18 | breq1d 5084 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 = 𝑚 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥 ↔ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
20 | 19 | anbi2d 629 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 = 𝑚 → (((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
21 | 15, 20 | raleqbidv 3336 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 = 𝑚 → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∀𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥))) |
22 | 21 | cbvrexvw 3384 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) ↔ ∃𝑚 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑚)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥)) |
23 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → (𝐹‘𝑘) = (𝐹‘𝑖)) |
24 | 23 | eleq1d 2823 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((𝐹‘𝑘) ∈ ℝ ↔ (𝐹‘𝑖) ∈ ℝ)) |
25 | 23 | fvoveq1d 7297 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑘 = 𝑖 → (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) = (abs‘((𝐹‘𝑖) − (𝐹‘𝑚)))) |
26 | 25 | breq1d 5084 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑘 = 𝑖 → ((abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥 ↔ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
27 | 24, 26 | anbi12d 631 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑘 = 𝑖 → (((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) ↔ ((𝐹‘𝑖) ∈ ℝ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥))) |
28 | 27 | cbvralvw 3383 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) ↔ ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℝ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
29 | | recn 10961 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝐹‘𝑖) ∈ ℝ → (𝐹‘𝑖) ∈ ℂ) |
30 | 29 | anim1i 615 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝐹‘𝑖) ∈ ℝ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → ((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
31 | 30 | ralimi 3087 |
. . . . . . . . . . . . . . . . 17
⊢
(∀𝑖 ∈
(ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℝ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
32 | 28, 31 | sylbi 216 |
. . . . . . . . . . . . . . . 16
⊢
(∀𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
33 | 32 | reximi 3178 |
. . . . . . . . . . . . . . 15
⊢
(∃𝑚 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑚)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑚))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
34 | 22, 33 | sylbi 216 |
. . . . . . . . . . . . . 14
⊢
(∃𝑗 ∈
𝑍 ∀𝑘 ∈
(ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
35 | 34 | ralimi 3087 |
. . . . . . . . . . . . 13
⊢
(∀𝑥 ∈
ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
36 | 3, 35 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
37 | 36 | adantr 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
38 | | caucvg.1 |
. . . . . . . . . . . . 13
⊢ 𝑍 =
(ℤ≥‘𝑀) |
39 | 38, 8 | cau4 15068 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ 𝑍 → (∀𝑥 ∈ ℝ+ ∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥))) |
40 | 39 | ad2antrl 725 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → (∀𝑥 ∈ ℝ+
∃𝑚 ∈ 𝑍 ∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) ↔ ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥))) |
41 | 37, 40 | mpbid 231 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+
∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
42 | | simpr 485 |
. . . . . . . . . . . . . 14
⊢ (((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) |
43 | 8 | uztrn2 12601 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → 𝑖 ∈ (ℤ≥‘𝑗)) |
44 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑖 → (𝐹‘𝑛) = (𝐹‘𝑖)) |
45 | | eqid 2738 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) = (𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) |
46 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹‘𝑖) ∈ V |
47 | 44, 45, 46 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 ∈
(ℤ≥‘𝑗) → ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) = (𝐹‘𝑖)) |
48 | 43, 47 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) = (𝐹‘𝑖)) |
49 | | fveq2 6774 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑛 = 𝑚 → (𝐹‘𝑛) = (𝐹‘𝑚)) |
50 | | fvex 6787 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝐹‘𝑚) ∈ V |
51 | 49, 45, 50 | fvmpt 6875 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚) = (𝐹‘𝑚)) |
52 | 51 | adantr 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚) = (𝐹‘𝑚)) |
53 | 48, 52 | oveq12d 7293 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚)) = ((𝐹‘𝑖) − (𝐹‘𝑚))) |
54 | 53 | fveq2d 6778 |
. . . . . . . . . . . . . . 15
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) = (abs‘((𝐹‘𝑖) − (𝐹‘𝑚)))) |
55 | 54 | breq1d 5084 |
. . . . . . . . . . . . . 14
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → ((abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥 ↔ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥)) |
56 | 42, 55 | syl5ibr 245 |
. . . . . . . . . . . . 13
⊢ ((𝑚 ∈
(ℤ≥‘𝑗) ∧ 𝑖 ∈ (ℤ≥‘𝑚)) → (((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → (abs‘(((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥)) |
57 | 56 | ralimdva 3108 |
. . . . . . . . . . . 12
⊢ (𝑚 ∈
(ℤ≥‘𝑗) → (∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → ∀𝑖 ∈ (ℤ≥‘𝑚)(abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥)) |
58 | 57 | reximia 3176 |
. . . . . . . . . . 11
⊢
(∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)(abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥) |
59 | 58 | ralimi 3087 |
. . . . . . . . . 10
⊢
(∀𝑥 ∈
ℝ+ ∃𝑚 ∈ (ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)((𝐹‘𝑖) ∈ ℂ ∧ (abs‘((𝐹‘𝑖) − (𝐹‘𝑚))) < 𝑥) → ∀𝑥 ∈ ℝ+ ∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)(abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥) |
60 | 41, 59 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → ∀𝑥 ∈ ℝ+
∃𝑚 ∈
(ℤ≥‘𝑗)∀𝑖 ∈ (ℤ≥‘𝑚)(abs‘(((𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑖) − ((𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))‘𝑚))) < 𝑥) |
61 | 8, 14, 60 | caurcvg 15388 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → (𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)))) |
62 | | eluzelz 12592 |
. . . . . . . . . . 11
⊢ (𝑗 ∈
(ℤ≥‘𝑀) → 𝑗 ∈ ℤ) |
63 | 62, 38 | eleq2s 2857 |
. . . . . . . . . 10
⊢ (𝑗 ∈ 𝑍 → 𝑗 ∈ ℤ) |
64 | 63 | ad2antrl 725 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → 𝑗 ∈ ℤ) |
65 | | caurcvg2.2 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ 𝑉) |
66 | 65 | adantr 481 |
. . . . . . . . 9
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → 𝐹 ∈ 𝑉) |
67 | | fveq2 6774 |
. . . . . . . . . . 11
⊢ (𝑛 = 𝑘 → (𝐹‘𝑛) = (𝐹‘𝑘)) |
68 | 67 | cbvmptv 5187 |
. . . . . . . . . 10
⊢ (𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) = (𝑘 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑘)) |
69 | 8, 68 | climmpt 15280 |
. . . . . . . . 9
⊢ ((𝑗 ∈ ℤ ∧ 𝐹 ∈ 𝑉) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))) ↔ (𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))))) |
70 | 64, 66, 69 | syl2anc 584 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → (𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))) ↔ (𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)) ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛))))) |
71 | 61, 70 | mpbird 256 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → 𝐹 ⇝ (lim sup‘(𝑛 ∈ (ℤ≥‘𝑗) ↦ (𝐹‘𝑛)))) |
72 | | climrel 15201 |
. . . . . . . 8
⊢ Rel
⇝ |
73 | 72 | releldmi 5857 |
. . . . . . 7
⊢ (𝐹 ⇝ (lim sup‘(𝑛 ∈
(ℤ≥‘𝑗) ↦ (𝐹‘𝑛))) → 𝐹 ∈ dom ⇝ ) |
74 | 71, 73 | syl 17 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑗 ∈ 𝑍 ∧ ∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ)) → 𝐹 ∈ dom ⇝ ) |
75 | 74 | expr 457 |
. . . . 5
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)(𝐹‘𝑘) ∈ ℝ → 𝐹 ∈ dom ⇝ )) |
76 | 7, 75 | syl5 34 |
. . . 4
⊢ ((𝜑 ∧ 𝑗 ∈ 𝑍) → (∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ )) |
77 | 76 | rexlimdva 3213 |
. . 3
⊢ (𝜑 → (∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ )) |
78 | 77 | rexlimdvw 3219 |
. 2
⊢ (𝜑 → (∃𝑥 ∈ ℝ+ ∃𝑗 ∈ 𝑍 ∀𝑘 ∈ (ℤ≥‘𝑗)((𝐹‘𝑘) ∈ ℝ ∧ (abs‘((𝐹‘𝑘) − (𝐹‘𝑗))) < 𝑥) → 𝐹 ∈ dom ⇝ )) |
79 | 5, 78 | mpd 15 |
1
⊢ (𝜑 → 𝐹 ∈ dom ⇝ ) |