![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > qmulz | Structured version Visualization version GIF version |
Description: If 𝐴 is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008.) (Revised by Mario Carneiro, 22-Jul-2014.) |
Ref | Expression |
---|---|
qmulz | ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elq 12959 | . 2 ⊢ (𝐴 ∈ ℚ ↔ ∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥)) | |
2 | rexcom 3283 | . . 3 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) ↔ ∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥)) | |
3 | zcn 12588 | . . . . . . . . 9 ⊢ (𝑦 ∈ ℤ → 𝑦 ∈ ℂ) | |
4 | 3 | adantl 481 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℂ) |
5 | nncn 12245 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ∈ ℂ) | |
6 | 5 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ∈ ℂ) |
7 | nnne0 12271 | . . . . . . . . 9 ⊢ (𝑥 ∈ ℕ → 𝑥 ≠ 0) | |
8 | 7 | adantr 480 | . . . . . . . 8 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑥 ≠ 0) |
9 | 4, 6, 8 | divcan1d 12016 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) = 𝑦) |
10 | simpr 484 | . . . . . . 7 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → 𝑦 ∈ ℤ) | |
11 | 9, 10 | eqeltrd 2829 | . . . . . 6 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → ((𝑦 / 𝑥) · 𝑥) ∈ ℤ) |
12 | oveq1 7422 | . . . . . . 7 ⊢ (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) = ((𝑦 / 𝑥) · 𝑥)) | |
13 | 12 | eleq1d 2814 | . . . . . 6 ⊢ (𝐴 = (𝑦 / 𝑥) → ((𝐴 · 𝑥) ∈ ℤ ↔ ((𝑦 / 𝑥) · 𝑥) ∈ ℤ)) |
14 | 11, 13 | syl5ibrcom 246 | . . . . 5 ⊢ ((𝑥 ∈ ℕ ∧ 𝑦 ∈ ℤ) → (𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
15 | 14 | rexlimdva 3151 | . . . 4 ⊢ (𝑥 ∈ ℕ → (∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → (𝐴 · 𝑥) ∈ ℤ)) |
16 | 15 | reximia 3077 | . . 3 ⊢ (∃𝑥 ∈ ℕ ∃𝑦 ∈ ℤ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
17 | 2, 16 | sylbi 216 | . 2 ⊢ (∃𝑦 ∈ ℤ ∃𝑥 ∈ ℕ 𝐴 = (𝑦 / 𝑥) → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
18 | 1, 17 | sylbi 216 | 1 ⊢ (𝐴 ∈ ℚ → ∃𝑥 ∈ ℕ (𝐴 · 𝑥) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1534 ∈ wcel 2099 ≠ wne 2936 ∃wrex 3066 (class class class)co 7415 ℂcc 11131 0cc0 11133 · cmul 11138 / cdiv 11896 ℕcn 12237 ℤcz 12583 ℚcq 12957 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-er 8719 df-en 8959 df-dom 8960 df-sdom 8961 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-div 11897 df-nn 12238 df-z 12584 df-q 12958 |
This theorem is referenced by: elqaalem1 26248 elqaalem3 26250 |
Copyright terms: Public domain | W3C validator |