MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  caubnd2 Structured version   Visualization version   GIF version

Theorem caubnd2 14709
Description: A Cauchy sequence of complex numbers is eventually bounded. (Contributed by Mario Carneiro, 14-Feb-2014.)
Hypothesis
Ref Expression
cau3.1 𝑍 = (ℤ𝑀)
Assertion
Ref Expression
caubnd2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Distinct variable groups:   𝑗,𝑘,𝑥,𝑦,𝐹   𝑗,𝑀,𝑘,𝑥   𝑗,𝑍,𝑘,𝑥,𝑦
Allowed substitution hint:   𝑀(𝑦)

Proof of Theorem caubnd2
StepHypRef Expression
1 1rp 12381 . . 3 1 ∈ ℝ+
2 breq2 5034 . . . . . 6 (𝑥 = 1 → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥 ↔ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
32anbi2d 631 . . . . 5 (𝑥 = 1 → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
43rexralbidv 3260 . . . 4 (𝑥 = 1 → (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) ↔ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
54rspcv 3566 . . 3 (1 ∈ ℝ+ → (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)))
61, 5ax-mp 5 . 2 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1))
7 eluzelz 12241 . . . . . . . . . . 11 (𝑗 ∈ (ℤ𝑀) → 𝑗 ∈ ℤ)
8 cau3.1 . . . . . . . . . . 11 𝑍 = (ℤ𝑀)
97, 8eleq2s 2908 . . . . . . . . . 10 (𝑗𝑍𝑗 ∈ ℤ)
10 uzid 12246 . . . . . . . . . 10 (𝑗 ∈ ℤ → 𝑗 ∈ (ℤ𝑗))
119, 10syl 17 . . . . . . . . 9 (𝑗𝑍𝑗 ∈ (ℤ𝑗))
12 simpl 486 . . . . . . . . . 10 (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (𝐹𝑘) ∈ ℂ)
1312ralimi 3128 . . . . . . . . 9 (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ)
14 fveq2 6645 . . . . . . . . . . 11 (𝑘 = 𝑗 → (𝐹𝑘) = (𝐹𝑗))
1514eleq1d 2874 . . . . . . . . . 10 (𝑘 = 𝑗 → ((𝐹𝑘) ∈ ℂ ↔ (𝐹𝑗) ∈ ℂ))
1615rspcva 3569 . . . . . . . . 9 ((𝑗 ∈ (ℤ𝑗) ∧ ∀𝑘 ∈ (ℤ𝑗)(𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
1711, 13, 16syl2an 598 . . . . . . . 8 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (𝐹𝑗) ∈ ℂ)
18 abscl 14630 . . . . . . . 8 ((𝐹𝑗) ∈ ℂ → (abs‘(𝐹𝑗)) ∈ ℝ)
1917, 18syl 17 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → (abs‘(𝐹𝑗)) ∈ ℝ)
20 1re 10630 . . . . . . 7 1 ∈ ℝ
21 readdcl 10609 . . . . . . 7 (((abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
2219, 20, 21sylancl 589 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((abs‘(𝐹𝑗)) + 1) ∈ ℝ)
23 simpr 488 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑘) ∈ ℂ)
24 simplr 768 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (𝐹𝑗) ∈ ℂ)
25 abs2dif 14684 . . . . . . . . . . . . 13 (((𝐹𝑘) ∈ ℂ ∧ (𝐹𝑗) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
2623, 24, 25syl2anc 587 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))))
27 abscl 14630 . . . . . . . . . . . . . . 15 ((𝐹𝑘) ∈ ℂ → (abs‘(𝐹𝑘)) ∈ ℝ)
2823, 27syl 17 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑘)) ∈ ℝ)
2924, 18syl 17 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘(𝐹𝑗)) ∈ ℝ)
3028, 29resubcld 11057 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ)
3123, 24subcld 10986 . . . . . . . . . . . . . 14 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ)
32 abscl 14630 . . . . . . . . . . . . . 14 (((𝐹𝑘) − (𝐹𝑗)) ∈ ℂ → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
3331, 32syl 17 . . . . . . . . . . . . 13 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ)
34 lelttr 10720 . . . . . . . . . . . . . 14 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ ∧ 1 ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3520, 34mp3an3 1447 . . . . . . . . . . . . 13 ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ∈ ℝ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∈ ℝ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3630, 33, 35syl2anc 587 . . . . . . . . . . . 12 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) ≤ (abs‘((𝐹𝑘) − (𝐹𝑗))) ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
3726, 36mpand 694 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → ((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1))
38 ltsubadd2 11100 . . . . . . . . . . . . 13 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ ∧ 1 ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
3920, 38mp3an3 1447 . . . . . . . . . . . 12 (((abs‘(𝐹𝑘)) ∈ ℝ ∧ (abs‘(𝐹𝑗)) ∈ ℝ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4028, 29, 39syl2anc 587 . . . . . . . . . . 11 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → (((abs‘(𝐹𝑘)) − (abs‘(𝐹𝑗))) < 1 ↔ (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4137, 40sylibd 242 . . . . . . . . . 10 (((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) ∧ (𝐹𝑘) ∈ ℂ) → ((abs‘((𝐹𝑘) − (𝐹𝑗))) < 1 → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4241expimpd 457 . . . . . . . . 9 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → (abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4342ralimdv 3145 . . . . . . . 8 ((𝑗𝑍 ∧ (𝐹𝑗) ∈ ℂ) → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4443impancom 455 . . . . . . 7 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ((𝐹𝑗) ∈ ℂ → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)))
4517, 44mpd 15 . . . . . 6 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1))
46 brralrspcev 5090 . . . . . 6 ((((abs‘(𝐹𝑗)) + 1) ∈ ℝ ∧ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < ((abs‘(𝐹𝑗)) + 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4722, 45, 46syl2anc 587 . . . . 5 ((𝑗𝑍 ∧ ∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1)) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
4847ex 416 . . . 4 (𝑗𝑍 → (∀𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦))
4948reximia 3205 . . 3 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
50 rexcom 3308 . . 3 (∃𝑗𝑍𝑦 ∈ ℝ ∀𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦 ↔ ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
5149, 50sylib 221 . 2 (∃𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 1) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
526, 51syl 17 1 (∀𝑥 ∈ ℝ+𝑗𝑍𝑘 ∈ (ℤ𝑗)((𝐹𝑘) ∈ ℂ ∧ (abs‘((𝐹𝑘) − (𝐹𝑗))) < 𝑥) → ∃𝑦 ∈ ℝ ∃𝑗𝑍𝑘 ∈ (ℤ𝑗)(abs‘(𝐹𝑘)) < 𝑦)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  wrex 3107   class class class wbr 5030  cfv 6324  (class class class)co 7135  cc 10524  cr 10525  1c1 10527   + caddc 10529   < clt 10664  cle 10665  cmin 10859  cz 11969  cuz 12231  +crp 12377  abscabs 14585
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-1cn 10584  ax-icn 10585  ax-addcl 10586  ax-addrcl 10587  ax-mulcl 10588  ax-mulrcl 10589  ax-mulcom 10590  ax-addass 10591  ax-mulass 10592  ax-distr 10593  ax-i2m1 10594  ax-1ne0 10595  ax-1rid 10596  ax-rnegex 10597  ax-rrecex 10598  ax-cnre 10599  ax-pre-lttri 10600  ax-pre-lttrn 10601  ax-pre-ltadd 10602  ax-pre-mulgt0 10603  ax-pre-sup 10604
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-pss 3900  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-tp 4530  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-tr 5137  df-id 5425  df-eprel 5430  df-po 5438  df-so 5439  df-fr 5478  df-we 5480  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-pred 6116  df-ord 6162  df-on 6163  df-lim 6164  df-suc 6165  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-om 7561  df-2nd 7672  df-wrecs 7930  df-recs 7991  df-rdg 8029  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-sup 8890  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-sub 10861  df-neg 10862  df-div 11287  df-nn 11626  df-2 11688  df-3 11689  df-n0 11886  df-z 11970  df-uz 12232  df-rp 12378  df-seq 13365  df-exp 13426  df-cj 14450  df-re 14451  df-im 14452  df-sqrt 14586  df-abs 14587
This theorem is referenced by:  caubnd  14710
  Copyright terms: Public domain W3C validator