MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmpt Structured version   Visualization version   GIF version

Theorem rexrnmpt 6633
Description: A restricted quantifier over an image set. (Contributed by Mario Carneiro, 20-Aug-2015.)
Hypotheses
Ref Expression
ralrnmpt.1 𝐹 = (𝑥𝐴𝐵)
ralrnmpt.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmpt (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmpt
StepHypRef Expression
1 ralrnmpt.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
2 ralrnmpt.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32notbid 310 . . . 4 (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒))
41, 3ralrnmpt 6632 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥𝐴 ¬ 𝜒))
54notbid 310 . 2 (∀𝑥𝐴 𝐵𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒))
6 dfrex2 3177 . 2 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓)
7 dfrex2 3177 . 2 (∃𝑥𝐴 𝜒 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒)
85, 6, 73bitr4g 306 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 198   = wceq 1601  wcel 2107  wral 3090  wrex 3091  cmpt 4965  ran crn 5356
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1839  ax-4 1853  ax-5 1953  ax-6 2021  ax-7 2055  ax-8 2109  ax-9 2116  ax-10 2135  ax-11 2150  ax-12 2163  ax-13 2334  ax-ext 2754  ax-sep 5017  ax-nul 5025  ax-pow 5077  ax-pr 5138
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 837  df-3an 1073  df-tru 1605  df-ex 1824  df-nf 1828  df-sb 2012  df-mo 2551  df-eu 2587  df-clab 2764  df-cleq 2770  df-clel 2774  df-nfc 2921  df-ral 3095  df-rex 3096  df-rab 3099  df-v 3400  df-sbc 3653  df-csb 3752  df-dif 3795  df-un 3797  df-in 3799  df-ss 3806  df-nul 4142  df-if 4308  df-sn 4399  df-pr 4401  df-op 4405  df-uni 4672  df-br 4887  df-opab 4949  df-mpt 4966  df-id 5261  df-xp 5361  df-rel 5362  df-cnv 5363  df-co 5364  df-dm 5365  df-rn 5366  df-res 5367  df-ima 5368  df-iota 6099  df-fun 6137  df-fn 6138  df-fv 6143
This theorem is referenced by:  onoviun  7723  onnseq  7724  ghmcyg  18683  pgpfac1lem2  18861  pgpfac1lem3  18863  pgpfac1lem4  18864  pptbas  21220  lly1stc  21708  txbas  21779  eltsms  22344  tsmsf1o  22356  psmetutop  22780  xrge0tsms  23045  fmcfil  23478  ellimc2  24078  limcflf  24082  xrge0tsmsd  30347  poimirlem23  34058  poimirlem24  34059  poimirlem30  34065  cntotbnd  34219
  Copyright terms: Public domain W3C validator