MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmptw Structured version   Visualization version   GIF version

Theorem rexrnmptw 6971
Description: A restricted quantifier over an image set. Version of rexrnmpt 6973 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.)
Hypotheses
Ref Expression
rexrnmptw.1 𝐹 = (𝑥𝐴𝐵)
rexrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmptw (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmptw
StepHypRef Expression
1 rexrnmptw.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
2 rexrnmptw.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32notbid 318 . . . 4 (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒))
41, 3ralrnmptw 6970 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥𝐴 ¬ 𝜒))
54notbid 318 . 2 (∀𝑥𝐴 𝐵𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒))
6 dfrex2 3170 . 2 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓)
7 dfrex2 3170 . 2 (∃𝑥𝐴 𝜒 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒)
85, 6, 73bitr4g 314 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205   = wceq 1539  wcel 2106  wral 3064  wrex 3065  cmpt 5157  ran crn 5590
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-fv 6441
This theorem is referenced by:  onoviun  8174  onnseq  8175  ghmcyg  19497  pgpfac1lem2  19678  pgpfac1lem3  19680  pgpfac1lem4  19681  pptbas  22158  lly1stc  22647  txbas  22718  eltsms  23284  tsmsf1o  23296  psmetutop  23723  xrge0tsms  23997  fmcfil  24436  ellimc2  25041  limcflf  25045  xrge0tsmsd  31317  rspectopn  31817  poimirlem23  35800  poimirlem24  35801  poimirlem30  35807  cntotbnd  35954  mnurndlem1  41899
  Copyright terms: Public domain W3C validator