![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > rexrnmptw | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. Version of rexrnmpt 7048 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2371. (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
rexrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rexrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrnmptw.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | rexrnmptw.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 1, 3 | ralrnmptw 7045 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
6 | dfrex2 3073 | . 2 ⊢ (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓) | |
7 | dfrex2 3073 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1542 ∈ wcel 2107 ∀wral 3061 ∃wrex 3070 ↦ cmpt 5189 ran crn 5635 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5257 ax-nul 5264 ax-pr 5385 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3407 df-v 3446 df-sbc 3741 df-csb 3857 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4284 df-if 4488 df-sn 4588 df-pr 4590 df-op 4594 df-uni 4867 df-br 5107 df-opab 5169 df-mpt 5190 df-id 5532 df-xp 5640 df-rel 5641 df-cnv 5642 df-co 5643 df-dm 5644 df-rn 5645 df-res 5646 df-ima 5647 df-iota 6449 df-fun 6499 df-fn 6500 df-fv 6505 |
This theorem is referenced by: onoviun 8290 onnseq 8291 ghmcyg 19678 pgpfac1lem2 19859 pgpfac1lem3 19861 pgpfac1lem4 19862 pptbas 22374 lly1stc 22863 txbas 22934 eltsms 23500 tsmsf1o 23512 psmetutop 23939 xrge0tsms 24213 fmcfil 24652 ellimc2 25257 limcflf 25261 xrge0tsmsd 31948 rspectopn 32505 poimirlem23 36147 poimirlem24 36148 poimirlem30 36154 cntotbnd 36301 mnurndlem1 42649 |
Copyright terms: Public domain | W3C validator |