Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > rexrnmptw | Structured version Visualization version GIF version |
Description: A restricted quantifier over an image set. Version of rexrnmpt 6973 with a disjoint variable condition, which does not require ax-13 2372. (Contributed by Mario Carneiro, 20-Aug-2015.) (Revised by Gino Giotto, 26-Jan-2024.) |
Ref | Expression |
---|---|
rexrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
rexrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
Ref | Expression |
---|---|
rexrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rexrnmptw.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
2 | rexrnmptw.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒)) |
4 | 1, 3 | ralrnmptw 6970 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
6 | dfrex2 3170 | . 2 ⊢ (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓) | |
7 | dfrex2 3170 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒) | |
8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 205 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ↦ cmpt 5157 ran crn 5590 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-mpt 5158 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fn 6436 df-fv 6441 |
This theorem is referenced by: onoviun 8174 onnseq 8175 ghmcyg 19497 pgpfac1lem2 19678 pgpfac1lem3 19680 pgpfac1lem4 19681 pptbas 22158 lly1stc 22647 txbas 22718 eltsms 23284 tsmsf1o 23296 psmetutop 23723 xrge0tsms 23997 fmcfil 24436 ellimc2 25041 limcflf 25045 xrge0tsmsd 31317 rspectopn 31817 poimirlem23 35800 poimirlem24 35801 poimirlem30 35807 cntotbnd 35954 mnurndlem1 41899 |
Copyright terms: Public domain | W3C validator |