MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmptw Structured version   Visualization version   GIF version

Theorem rexrnmptw 7084
Description: A restricted quantifier over an image set. Version of rexrnmpt 7086 with a disjoint variable condition, which does not require ax-13 2376. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2376. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
rexrnmptw.1 𝐹 = (𝑥𝐴𝐵)
rexrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmptw (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmptw
StepHypRef Expression
1 rexrnmptw.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
2 rexrnmptw.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32notbid 318 . . . 4 (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒))
41, 3ralrnmptw 7083 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥𝐴 ¬ 𝜒))
54notbid 318 . 2 (∀𝑥𝐴 𝐵𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒))
6 dfrex2 3063 . 2 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓)
7 dfrex2 3063 . 2 (∃𝑥𝐴 𝜒 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒)
85, 6, 73bitr4g 314 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2108  wral 3051  wrex 3060  cmpt 5201  ran crn 5655
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pr 5402
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-fv 6538
This theorem is referenced by:  onoviun  8355  onnseq  8356  ghmcyg  19875  pgpfac1lem2  20056  pgpfac1lem3  20058  pgpfac1lem4  20059  pptbas  22944  lly1stc  23432  txbas  23503  eltsms  24069  tsmsf1o  24081  psmetutop  24504  xrge0tsms  24772  fmcfil  25222  ellimc2  25828  limcflf  25832  xrge0tsmsd  33002  rspectopn  33844  poimirlem23  37613  poimirlem24  37614  poimirlem30  37620  cntotbnd  37766  mnurndlem1  44253
  Copyright terms: Public domain W3C validator