| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > rexrnmptw | Structured version Visualization version GIF version | ||
| Description: A restricted quantifier over an image set. Version of rexrnmpt 7072 with a disjoint variable condition, which does not require ax-13 2371. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2371. (Revised by GG, 26-Jan-2024.) |
| Ref | Expression |
|---|---|
| rexrnmptw.1 | ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) |
| rexrnmptw.2 | ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) |
| Ref | Expression |
|---|---|
| rexrnmptw | ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rexrnmptw.1 | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐴 ↦ 𝐵) | |
| 2 | rexrnmptw.2 | . . . . 5 ⊢ (𝑦 = 𝐵 → (𝜓 ↔ 𝜒)) | |
| 3 | 2 | notbid 318 | . . . 4 ⊢ (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒)) |
| 4 | 1, 3 | ralrnmptw 7069 | . . 3 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
| 5 | 4 | notbid 318 | . 2 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒)) |
| 6 | dfrex2 3057 | . 2 ⊢ (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓) | |
| 7 | dfrex2 3057 | . 2 ⊢ (∃𝑥 ∈ 𝐴 𝜒 ↔ ¬ ∀𝑥 ∈ 𝐴 ¬ 𝜒) | |
| 8 | 5, 6, 7 | 3bitr4g 314 | 1 ⊢ (∀𝑥 ∈ 𝐴 𝐵 ∈ 𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥 ∈ 𝐴 𝜒)) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 = wceq 1540 ∈ wcel 2109 ∀wral 3045 ∃wrex 3054 ↦ cmpt 5191 ran crn 5642 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-mpt 5192 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fn 6517 df-fv 6522 |
| This theorem is referenced by: onoviun 8315 onnseq 8316 ghmcyg 19833 pgpfac1lem2 20014 pgpfac1lem3 20016 pgpfac1lem4 20017 pptbas 22902 lly1stc 23390 txbas 23461 eltsms 24027 tsmsf1o 24039 psmetutop 24462 xrge0tsms 24730 fmcfil 25179 ellimc2 25785 limcflf 25789 xrge0tsmsd 33009 rspectopn 33864 poimirlem23 37644 poimirlem24 37645 poimirlem30 37651 cntotbnd 37797 mnurndlem1 44277 |
| Copyright terms: Public domain | W3C validator |