MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmptw Structured version   Visualization version   GIF version

Theorem rexrnmptw 7095
Description: A restricted quantifier over an image set. Version of rexrnmpt 7097 with a disjoint variable condition, which does not require ax-13 2375. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2375. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
rexrnmptw.1 𝐹 = (𝑥𝐴𝐵)
rexrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmptw (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmptw
StepHypRef Expression
1 rexrnmptw.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
2 rexrnmptw.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32notbid 318 . . . 4 (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒))
41, 3ralrnmptw 7094 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥𝐴 ¬ 𝜒))
54notbid 318 . 2 (∀𝑥𝐴 𝐵𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒))
6 dfrex2 3062 . 2 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓)
7 dfrex2 3062 . 2 (∃𝑥𝐴 𝜒 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒)
85, 6, 73bitr4g 314 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1539  wcel 2107  wral 3050  wrex 3059  cmpt 5205  ran crn 5666
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2706  ax-sep 5276  ax-nul 5286  ax-pr 5412
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2726  df-clel 2808  df-nfc 2884  df-ne 2932  df-ral 3051  df-rex 3060  df-rab 3420  df-v 3465  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4888  df-br 5124  df-opab 5186  df-mpt 5206  df-id 5558  df-xp 5671  df-rel 5672  df-cnv 5673  df-co 5674  df-dm 5675  df-rn 5676  df-res 5677  df-ima 5678  df-iota 6494  df-fun 6543  df-fn 6544  df-fv 6549
This theorem is referenced by:  onoviun  8365  onnseq  8366  ghmcyg  19882  pgpfac1lem2  20063  pgpfac1lem3  20065  pgpfac1lem4  20066  pptbas  22962  lly1stc  23450  txbas  23521  eltsms  24087  tsmsf1o  24099  psmetutop  24524  xrge0tsms  24792  fmcfil  25242  ellimc2  25848  limcflf  25852  xrge0tsmsd  33004  rspectopn  33825  poimirlem23  37609  poimirlem24  37610  poimirlem30  37616  cntotbnd  37762  mnurndlem1  44257
  Copyright terms: Public domain W3C validator