MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rexrnmptw Structured version   Visualization version   GIF version

Theorem rexrnmptw 7029
Description: A restricted quantifier over an image set. Version of rexrnmpt 7031 with a disjoint variable condition, which does not require ax-13 2370. (Contributed by Mario Carneiro, 20-Aug-2015.) Avoid ax-13 2370. (Revised by GG, 26-Jan-2024.)
Hypotheses
Ref Expression
rexrnmptw.1 𝐹 = (𝑥𝐴𝐵)
rexrnmptw.2 (𝑦 = 𝐵 → (𝜓𝜒))
Assertion
Ref Expression
rexrnmptw (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Distinct variable groups:   𝑥,𝑦   𝑥,𝐴   𝑦,𝐵   𝜒,𝑦   𝑦,𝐹   𝜓,𝑥
Allowed substitution hints:   𝜓(𝑦)   𝜒(𝑥)   𝐴(𝑦)   𝐵(𝑥)   𝐹(𝑥)   𝑉(𝑥,𝑦)

Proof of Theorem rexrnmptw
StepHypRef Expression
1 rexrnmptw.1 . . . 4 𝐹 = (𝑥𝐴𝐵)
2 rexrnmptw.2 . . . . 5 (𝑦 = 𝐵 → (𝜓𝜒))
32notbid 318 . . . 4 (𝑦 = 𝐵 → (¬ 𝜓 ↔ ¬ 𝜒))
41, 3ralrnmptw 7028 . . 3 (∀𝑥𝐴 𝐵𝑉 → (∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ∀𝑥𝐴 ¬ 𝜒))
54notbid 318 . 2 (∀𝑥𝐴 𝐵𝑉 → (¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒))
6 dfrex2 3056 . 2 (∃𝑦 ∈ ran 𝐹𝜓 ↔ ¬ ∀𝑦 ∈ ran 𝐹 ¬ 𝜓)
7 dfrex2 3056 . 2 (∃𝑥𝐴 𝜒 ↔ ¬ ∀𝑥𝐴 ¬ 𝜒)
85, 6, 73bitr4g 314 1 (∀𝑥𝐴 𝐵𝑉 → (∃𝑦 ∈ ran 𝐹𝜓 ↔ ∃𝑥𝐴 𝜒))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206   = wceq 1540  wcel 2109  wral 3044  wrex 3053  cmpt 5173  ran crn 5620
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5235  ax-nul 5245  ax-pr 5371
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-nul 4285  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4859  df-br 5093  df-opab 5155  df-mpt 5174  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-iota 6438  df-fun 6484  df-fn 6485  df-fv 6490
This theorem is referenced by:  onoviun  8266  onnseq  8267  ghmcyg  19775  pgpfac1lem2  19956  pgpfac1lem3  19958  pgpfac1lem4  19959  pptbas  22893  lly1stc  23381  txbas  23452  eltsms  24018  tsmsf1o  24030  psmetutop  24453  xrge0tsms  24721  fmcfil  25170  ellimc2  25776  limcflf  25780  xrge0tsmsd  33015  rspectopn  33834  poimirlem23  37627  poimirlem24  37628  poimirlem30  37634  cntotbnd  37780  mnurndlem1  44258
  Copyright terms: Public domain W3C validator