![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmsubrn | Structured version Visualization version GIF version |
Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
elmsubrn.e | ⊢ 𝐸 = (mEx‘𝑇) |
elmsubrn.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
elmsubrn.s | ⊢ 𝑆 = (mSubst‘𝑇) |
Ref | Expression |
---|---|
elmsubrn | ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2728 | . . . . . 6 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
2 | eqid 2728 | . . . . . 6 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
3 | elmsubrn.s | . . . . . 6 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | elmsubrn.e | . . . . . 6 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | elmsubrn.o | . . . . . 6 ⊢ 𝑂 = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubffval 35128 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
7 | 1, 2, 5 | mrsubff 35117 | . . . . . . . 8 ⊢ (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
8 | 7 | ffnd 6718 | . . . . . . 7 ⊢ (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇))) |
9 | fnfvelrn 7085 | . . . . . . 7 ⊢ ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) | |
10 | 8, 9 | sylan 579 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) |
11 | 7 | feqmptd 6962 | . . . . . 6 ⊢ (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂‘𝑔))) |
12 | eqidd 2729 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
13 | fveq1 6891 | . . . . . . . 8 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑓‘(2nd ‘𝑒)) = ((𝑂‘𝑔)‘(2nd ‘𝑒))) | |
14 | 13 | opeq2d 4877 | . . . . . . 7 ⊢ (𝑓 = (𝑂‘𝑔) → 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉) |
15 | 14 | mpteq2dv 5245 | . . . . . 6 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉)) |
16 | 10, 11, 12, 15 | fmptco 7133 | . . . . 5 ⊢ (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
17 | 6, 16 | eqtr4d 2771 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
18 | 17 | rneqd 5935 | . . 3 ⊢ (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
19 | rnco 6251 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) | |
20 | ssid 4001 | . . . . . 6 ⊢ ran 𝑂 ⊆ ran 𝑂 | |
21 | resmpt 6036 | . . . . . 6 ⊢ (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
23 | 22 | rneqi 5934 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
24 | 19, 23 | eqtri 2756 | . . 3 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
25 | 18, 24 | eqtrdi 2784 | . 2 ⊢ (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
26 | mpt0 6692 | . . . . 5 ⊢ (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = ∅ | |
27 | 26 | eqcomi 2737 | . . . 4 ⊢ ∅ = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
28 | fvprc 6884 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mSubst‘𝑇) = ∅) | |
29 | 3, 28 | eqtrid 2780 | . . . 4 ⊢ (¬ 𝑇 ∈ V → 𝑆 = ∅) |
30 | 5 | rnfvprc 6886 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑂 = ∅) |
31 | 30 | mpteq1d 5238 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
32 | 27, 29, 31 | 3eqtr4a 2794 | . . 3 ⊢ (¬ 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
33 | 32 | rneqd 5935 | . 2 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
34 | 25, 33 | pm2.61i 182 | 1 ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1534 ∈ wcel 2099 Vcvv 3470 ⊆ wss 3945 ∅c0 4319 〈cop 4631 ↦ cmpt 5226 ran crn 5674 ↾ cres 5675 ∘ ccom 5677 Fn wfn 6538 ‘cfv 6543 (class class class)co 7415 1st c1st 7986 2nd c2nd 7987 ↑m cmap 8839 ↑pm cpm 8840 mVRcmvar 35066 mRExcmrex 35071 mExcmex 35072 mRSubstcmrsub 35075 mSubstcmsub 35076 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2699 ax-rep 5280 ax-sep 5294 ax-nul 5301 ax-pow 5360 ax-pr 5424 ax-un 7735 ax-cnex 11189 ax-resscn 11190 ax-1cn 11191 ax-icn 11192 ax-addcl 11193 ax-addrcl 11194 ax-mulcl 11195 ax-mulrcl 11196 ax-mulcom 11197 ax-addass 11198 ax-mulass 11199 ax-distr 11200 ax-i2m1 11201 ax-1ne0 11202 ax-1rid 11203 ax-rnegex 11204 ax-rrecex 11205 ax-cnre 11206 ax-pre-lttri 11207 ax-pre-lttrn 11208 ax-pre-ltadd 11209 ax-pre-mulgt0 11210 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 847 df-3or 1086 df-3an 1087 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2530 df-eu 2559 df-clab 2706 df-cleq 2720 df-clel 2806 df-nfc 2881 df-ne 2937 df-nel 3043 df-ral 3058 df-rex 3067 df-rmo 3372 df-reu 3373 df-rab 3429 df-v 3472 df-sbc 3776 df-csb 3891 df-dif 3948 df-un 3950 df-in 3952 df-ss 3962 df-pss 3964 df-nul 4320 df-if 4526 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4905 df-int 4946 df-iun 4994 df-br 5144 df-opab 5206 df-mpt 5227 df-tr 5261 df-id 5571 df-eprel 5577 df-po 5585 df-so 5586 df-fr 5628 df-we 5630 df-xp 5679 df-rel 5680 df-cnv 5681 df-co 5682 df-dm 5683 df-rn 5684 df-res 5685 df-ima 5686 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7371 df-ov 7418 df-oprab 7419 df-mpo 7420 df-om 7866 df-1st 7988 df-2nd 7989 df-frecs 8281 df-wrecs 8312 df-recs 8386 df-rdg 8425 df-1o 8481 df-er 8719 df-map 8841 df-pm 8842 df-en 8959 df-dom 8960 df-sdom 8961 df-fin 8962 df-card 9957 df-pnf 11275 df-mnf 11276 df-xr 11277 df-ltxr 11278 df-le 11279 df-sub 11471 df-neg 11472 df-nn 12238 df-2 12300 df-n0 12498 df-z 12584 df-uz 12848 df-fz 13512 df-fzo 13655 df-seq 13994 df-hash 14317 df-word 14492 df-concat 14548 df-s1 14573 df-struct 17110 df-sets 17127 df-slot 17145 df-ndx 17157 df-base 17175 df-ress 17204 df-plusg 17240 df-0g 17417 df-gsum 17418 df-mgm 18594 df-sgrp 18673 df-mnd 18689 df-submnd 18735 df-frmd 18795 df-mrex 35091 df-mrsub 35095 df-msub 35096 |
This theorem is referenced by: msubco 35136 msubvrs 35165 |
Copyright terms: Public domain | W3C validator |