Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsubrn Structured version   Visualization version   GIF version

Theorem elmsubrn 35496
Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
elmsubrn.e 𝐸 = (mEx‘𝑇)
elmsubrn.o 𝑂 = (mRSubst‘𝑇)
elmsubrn.s 𝑆 = (mSubst‘𝑇)
Assertion
Ref Expression
elmsubrn ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑇,𝑒
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑇(𝑓)

Proof of Theorem elmsubrn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2740 . . . . . 6 (mVR‘𝑇) = (mVR‘𝑇)
2 eqid 2740 . . . . . 6 (mREx‘𝑇) = (mREx‘𝑇)
3 elmsubrn.s . . . . . 6 𝑆 = (mSubst‘𝑇)
4 elmsubrn.e . . . . . 6 𝐸 = (mEx‘𝑇)
5 elmsubrn.o . . . . . 6 𝑂 = (mRSubst‘𝑇)
61, 2, 3, 4, 5msubffval 35491 . . . . 5 (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
71, 2, 5mrsubff 35480 . . . . . . . 8 (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇)))
87ffnd 6748 . . . . . . 7 (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)))
9 fnfvelrn 7114 . . . . . . 7 ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
108, 9sylan 579 . . . . . 6 ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂𝑔) ∈ ran 𝑂)
117feqmptd 6990 . . . . . 6 (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂𝑔)))
12 eqidd 2741 . . . . . 6 (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
13 fveq1 6919 . . . . . . . 8 (𝑓 = (𝑂𝑔) → (𝑓‘(2nd𝑒)) = ((𝑂𝑔)‘(2nd𝑒)))
1413opeq2d 4904 . . . . . . 7 (𝑓 = (𝑂𝑔) → ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩ = ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)
1514mpteq2dv 5268 . . . . . 6 (𝑓 = (𝑂𝑔) → (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩) = (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩))
1610, 11, 12, 15fmptco 7163 . . . . 5 (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), ((𝑂𝑔)‘(2nd𝑒))⟩)))
176, 16eqtr4d 2783 . . . 4 (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
1817rneqd 5963 . . 3 (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂))
19 rnco 6283 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂)
20 ssid 4031 . . . . . 6 ran 𝑂 ⊆ ran 𝑂
21 resmpt 6066 . . . . . 6 (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
2220, 21ax-mp 5 . . . . 5 ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2322rneqi 5962 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2419, 23eqtri 2768 . . 3 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
2518, 24eqtrdi 2796 . 2 (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
26 mpt0 6722 . . . . 5 (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = ∅
2726eqcomi 2749 . . . 4 ∅ = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
28 fvprc 6912 . . . . 5 𝑇 ∈ V → (mSubst‘𝑇) = ∅)
293, 28eqtrid 2792 . . . 4 𝑇 ∈ V → 𝑆 = ∅)
305rnfvprc 6914 . . . . 5 𝑇 ∈ V → ran 𝑂 = ∅)
3130mpteq1d 5261 . . . 4 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)) = (𝑓 ∈ ∅ ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3227, 29, 313eqtr4a 2806 . . 3 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3332rneqd 5963 . 2 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩)))
3425, 33pm2.61i 182 1 ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒𝐸 ↦ ⟨(1st𝑒), (𝑓‘(2nd𝑒))⟩))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3   = wceq 1537  wcel 2108  Vcvv 3488  wss 3976  c0 4352  cop 4654  cmpt 5249  ran crn 5701  cres 5702  ccom 5704   Fn wfn 6568  cfv 6573  (class class class)co 7448  1st c1st 8028  2nd c2nd 8029  m cmap 8884  pm cpm 8885  mVRcmvar 35429  mRExcmrex 35434  mExcmex 35435  mRSubstcmrsub 35438  mSubstcmsub 35439
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-card 10008  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-n0 12554  df-z 12640  df-uz 12904  df-fz 13568  df-fzo 13712  df-seq 14053  df-hash 14380  df-word 14563  df-concat 14619  df-s1 14644  df-struct 17194  df-sets 17211  df-slot 17229  df-ndx 17241  df-base 17259  df-ress 17288  df-plusg 17324  df-0g 17501  df-gsum 17502  df-mgm 18678  df-sgrp 18757  df-mnd 18773  df-submnd 18819  df-frmd 18884  df-mrex 35454  df-mrsub 35458  df-msub 35459
This theorem is referenced by:  msubco  35499  msubvrs  35528
  Copyright terms: Public domain W3C validator