![]() |
Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmsubrn | Structured version Visualization version GIF version |
Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
elmsubrn.e | ⊢ 𝐸 = (mEx‘𝑇) |
elmsubrn.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
elmsubrn.s | ⊢ 𝑆 = (mSubst‘𝑇) |
Ref | Expression |
---|---|
elmsubrn | ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2740 | . . . . . 6 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
2 | eqid 2740 | . . . . . 6 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
3 | elmsubrn.s | . . . . . 6 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | elmsubrn.e | . . . . . 6 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | elmsubrn.o | . . . . . 6 ⊢ 𝑂 = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubffval 35491 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
7 | 1, 2, 5 | mrsubff 35480 | . . . . . . . 8 ⊢ (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
8 | 7 | ffnd 6748 | . . . . . . 7 ⊢ (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇))) |
9 | fnfvelrn 7114 | . . . . . . 7 ⊢ ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) | |
10 | 8, 9 | sylan 579 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) |
11 | 7 | feqmptd 6990 | . . . . . 6 ⊢ (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂‘𝑔))) |
12 | eqidd 2741 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
13 | fveq1 6919 | . . . . . . . 8 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑓‘(2nd ‘𝑒)) = ((𝑂‘𝑔)‘(2nd ‘𝑒))) | |
14 | 13 | opeq2d 4904 | . . . . . . 7 ⊢ (𝑓 = (𝑂‘𝑔) → 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉) |
15 | 14 | mpteq2dv 5268 | . . . . . 6 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉)) |
16 | 10, 11, 12, 15 | fmptco 7163 | . . . . 5 ⊢ (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
17 | 6, 16 | eqtr4d 2783 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
18 | 17 | rneqd 5963 | . . 3 ⊢ (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
19 | rnco 6283 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) | |
20 | ssid 4031 | . . . . . 6 ⊢ ran 𝑂 ⊆ ran 𝑂 | |
21 | resmpt 6066 | . . . . . 6 ⊢ (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
23 | 22 | rneqi 5962 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
24 | 19, 23 | eqtri 2768 | . . 3 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
25 | 18, 24 | eqtrdi 2796 | . 2 ⊢ (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
26 | mpt0 6722 | . . . . 5 ⊢ (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = ∅ | |
27 | 26 | eqcomi 2749 | . . . 4 ⊢ ∅ = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
28 | fvprc 6912 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mSubst‘𝑇) = ∅) | |
29 | 3, 28 | eqtrid 2792 | . . . 4 ⊢ (¬ 𝑇 ∈ V → 𝑆 = ∅) |
30 | 5 | rnfvprc 6914 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑂 = ∅) |
31 | 30 | mpteq1d 5261 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
32 | 27, 29, 31 | 3eqtr4a 2806 | . . 3 ⊢ (¬ 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
33 | 32 | rneqd 5963 | . 2 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
34 | 25, 33 | pm2.61i 182 | 1 ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 〈cop 4654 ↦ cmpt 5249 ran crn 5701 ↾ cres 5702 ∘ ccom 5704 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 1st c1st 8028 2nd c2nd 8029 ↑m cmap 8884 ↑pm cpm 8885 mVRcmvar 35429 mRExcmrex 35434 mExcmex 35435 mRSubstcmrsub 35438 mSubstcmsub 35439 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-om 7904 df-1st 8030 df-2nd 8031 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-er 8763 df-map 8886 df-pm 8887 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-n0 12554 df-z 12640 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-word 14563 df-concat 14619 df-s1 14644 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-0g 17501 df-gsum 17502 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-submnd 18819 df-frmd 18884 df-mrex 35454 df-mrsub 35458 df-msub 35459 |
This theorem is referenced by: msubco 35499 msubvrs 35528 |
Copyright terms: Public domain | W3C validator |