Mathbox for Mario Carneiro |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > elmsubrn | Structured version Visualization version GIF version |
Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.) |
Ref | Expression |
---|---|
elmsubrn.e | ⊢ 𝐸 = (mEx‘𝑇) |
elmsubrn.o | ⊢ 𝑂 = (mRSubst‘𝑇) |
elmsubrn.s | ⊢ 𝑆 = (mSubst‘𝑇) |
Ref | Expression |
---|---|
elmsubrn | ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqid 2738 | . . . . . 6 ⊢ (mVR‘𝑇) = (mVR‘𝑇) | |
2 | eqid 2738 | . . . . . 6 ⊢ (mREx‘𝑇) = (mREx‘𝑇) | |
3 | elmsubrn.s | . . . . . 6 ⊢ 𝑆 = (mSubst‘𝑇) | |
4 | elmsubrn.e | . . . . . 6 ⊢ 𝐸 = (mEx‘𝑇) | |
5 | elmsubrn.o | . . . . . 6 ⊢ 𝑂 = (mRSubst‘𝑇) | |
6 | 1, 2, 3, 4, 5 | msubffval 33385 | . . . . 5 ⊢ (𝑇 ∈ V → 𝑆 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
7 | 1, 2, 5 | mrsubff 33374 | . . . . . . . 8 ⊢ (𝑇 ∈ V → 𝑂:((mREx‘𝑇) ↑pm (mVR‘𝑇))⟶((mREx‘𝑇) ↑m (mREx‘𝑇))) |
8 | 7 | ffnd 6585 | . . . . . . 7 ⊢ (𝑇 ∈ V → 𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇))) |
9 | fnfvelrn 6940 | . . . . . . 7 ⊢ ((𝑂 Fn ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) | |
10 | 8, 9 | sylan 579 | . . . . . 6 ⊢ ((𝑇 ∈ V ∧ 𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇))) → (𝑂‘𝑔) ∈ ran 𝑂) |
11 | 7 | feqmptd 6819 | . . . . . 6 ⊢ (𝑇 ∈ V → 𝑂 = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑂‘𝑔))) |
12 | eqidd 2739 | . . . . . 6 ⊢ (𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
13 | fveq1 6755 | . . . . . . . 8 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑓‘(2nd ‘𝑒)) = ((𝑂‘𝑔)‘(2nd ‘𝑒))) | |
14 | 13 | opeq2d 4808 | . . . . . . 7 ⊢ (𝑓 = (𝑂‘𝑔) → 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉 = 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉) |
15 | 14 | mpteq2dv 5172 | . . . . . 6 ⊢ (𝑓 = (𝑂‘𝑔) → (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉) = (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉)) |
16 | 10, 11, 12, 15 | fmptco 6983 | . . . . 5 ⊢ (𝑇 ∈ V → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = (𝑔 ∈ ((mREx‘𝑇) ↑pm (mVR‘𝑇)) ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), ((𝑂‘𝑔)‘(2nd ‘𝑒))〉))) |
17 | 6, 16 | eqtr4d 2781 | . . . 4 ⊢ (𝑇 ∈ V → 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
18 | 17 | rneqd 5836 | . . 3 ⊢ (𝑇 ∈ V → ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂)) |
19 | rnco 6145 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) | |
20 | ssid 3939 | . . . . . 6 ⊢ ran 𝑂 ⊆ ran 𝑂 | |
21 | resmpt 5934 | . . . . . 6 ⊢ (ran 𝑂 ⊆ ran 𝑂 → ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) | |
22 | 20, 21 | ax-mp 5 | . . . . 5 ⊢ ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
23 | 22 | rneqi 5835 | . . . 4 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ↾ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
24 | 19, 23 | eqtri 2766 | . . 3 ⊢ ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
25 | 18, 24 | eqtrdi 2795 | . 2 ⊢ (𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
26 | mpt0 6559 | . . . . 5 ⊢ (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = ∅ | |
27 | 26 | eqcomi 2747 | . . . 4 ⊢ ∅ = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
28 | fvprc 6748 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → (mSubst‘𝑇) = ∅) | |
29 | 3, 28 | syl5eq 2791 | . . . 4 ⊢ (¬ 𝑇 ∈ V → 𝑆 = ∅) |
30 | 5 | rnfvprc 6750 | . . . . 5 ⊢ (¬ 𝑇 ∈ V → ran 𝑂 = ∅) |
31 | 30 | mpteq1d 5165 | . . . 4 ⊢ (¬ 𝑇 ∈ V → (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) = (𝑓 ∈ ∅ ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
32 | 27, 29, 31 | 3eqtr4a 2805 | . . 3 ⊢ (¬ 𝑇 ∈ V → 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
33 | 32 | rneqd 5836 | . 2 ⊢ (¬ 𝑇 ∈ V → ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉))) |
34 | 25, 33 | pm2.61i 182 | 1 ⊢ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ 〈(1st ‘𝑒), (𝑓‘(2nd ‘𝑒))〉)) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 〈cop 4564 ↦ cmpt 5153 ran crn 5581 ↾ cres 5582 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 2nd c2nd 7803 ↑m cmap 8573 ↑pm cpm 8574 mVRcmvar 33323 mRExcmrex 33328 mExcmex 33329 mRSubstcmrsub 33332 mSubstcmsub 33333 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-1st 7804 df-2nd 7805 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-n0 12164 df-z 12250 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-word 14146 df-concat 14202 df-s1 14229 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-0g 17069 df-gsum 17070 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-submnd 18346 df-frmd 18403 df-mrex 33348 df-mrsub 33352 df-msub 33353 |
This theorem is referenced by: msubco 33393 msubvrs 33422 |
Copyright terms: Public domain | W3C validator |