Users' Mathboxes Mathbox for Mario Carneiro < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  elmsubrn Structured version   Visualization version   GIF version

Theorem elmsubrn 34514
Description: Characterization of substitution in terms of raw substitution, without reference to the generating functions. (Contributed by Mario Carneiro, 18-Jul-2016.)
Hypotheses
Ref Expression
elmsubrn.e 𝐸 = (mExβ€˜π‘‡)
elmsubrn.o 𝑂 = (mRSubstβ€˜π‘‡)
elmsubrn.s 𝑆 = (mSubstβ€˜π‘‡)
Assertion
Ref Expression
elmsubrn ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
Distinct variable groups:   𝑒,𝑓,𝐸   𝑒,𝑂,𝑓   𝑇,𝑒
Allowed substitution hints:   𝑆(𝑒,𝑓)   𝑇(𝑓)

Proof of Theorem elmsubrn
Dummy variable 𝑔 is distinct from all other variables.
StepHypRef Expression
1 eqid 2732 . . . . . 6 (mVRβ€˜π‘‡) = (mVRβ€˜π‘‡)
2 eqid 2732 . . . . . 6 (mRExβ€˜π‘‡) = (mRExβ€˜π‘‡)
3 elmsubrn.s . . . . . 6 𝑆 = (mSubstβ€˜π‘‡)
4 elmsubrn.e . . . . . 6 𝐸 = (mExβ€˜π‘‡)
5 elmsubrn.o . . . . . 6 𝑂 = (mRSubstβ€˜π‘‡)
61, 2, 3, 4, 5msubffval 34509 . . . . 5 (𝑇 ∈ V β†’ 𝑆 = (𝑔 ∈ ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡)) ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), ((π‘‚β€˜π‘”)β€˜(2nd β€˜π‘’))⟩)))
71, 2, 5mrsubff 34498 . . . . . . . 8 (𝑇 ∈ V β†’ 𝑂:((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡))⟢((mRExβ€˜π‘‡) ↑m (mRExβ€˜π‘‡)))
87ffnd 6718 . . . . . . 7 (𝑇 ∈ V β†’ 𝑂 Fn ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡)))
9 fnfvelrn 7082 . . . . . . 7 ((𝑂 Fn ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡)) ∧ 𝑔 ∈ ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡))) β†’ (π‘‚β€˜π‘”) ∈ ran 𝑂)
108, 9sylan 580 . . . . . 6 ((𝑇 ∈ V ∧ 𝑔 ∈ ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡))) β†’ (π‘‚β€˜π‘”) ∈ ran 𝑂)
117feqmptd 6960 . . . . . 6 (𝑇 ∈ V β†’ 𝑂 = (𝑔 ∈ ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡)) ↦ (π‘‚β€˜π‘”)))
12 eqidd 2733 . . . . . 6 (𝑇 ∈ V β†’ (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
13 fveq1 6890 . . . . . . . 8 (𝑓 = (π‘‚β€˜π‘”) β†’ (π‘“β€˜(2nd β€˜π‘’)) = ((π‘‚β€˜π‘”)β€˜(2nd β€˜π‘’)))
1413opeq2d 4880 . . . . . . 7 (𝑓 = (π‘‚β€˜π‘”) β†’ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩ = ⟨(1st β€˜π‘’), ((π‘‚β€˜π‘”)β€˜(2nd β€˜π‘’))⟩)
1514mpteq2dv 5250 . . . . . 6 (𝑓 = (π‘‚β€˜π‘”) β†’ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩) = (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), ((π‘‚β€˜π‘”)β€˜(2nd β€˜π‘’))⟩))
1610, 11, 12, 15fmptco 7126 . . . . 5 (𝑇 ∈ V β†’ ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) ∘ 𝑂) = (𝑔 ∈ ((mRExβ€˜π‘‡) ↑pm (mVRβ€˜π‘‡)) ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), ((π‘‚β€˜π‘”)β€˜(2nd β€˜π‘’))⟩)))
176, 16eqtr4d 2775 . . . 4 (𝑇 ∈ V β†’ 𝑆 = ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) ∘ 𝑂))
1817rneqd 5937 . . 3 (𝑇 ∈ V β†’ ran 𝑆 = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) ∘ 𝑂))
19 rnco 6251 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) ∘ 𝑂) = ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) β†Ύ ran 𝑂)
20 ssid 4004 . . . . . 6 ran 𝑂 βŠ† ran 𝑂
21 resmpt 6037 . . . . . 6 (ran 𝑂 βŠ† ran 𝑂 β†’ ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) β†Ύ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
2220, 21ax-mp 5 . . . . 5 ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) β†Ύ ran 𝑂) = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
2322rneqi 5936 . . . 4 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) β†Ύ ran 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
2419, 23eqtri 2760 . . 3 ran ((𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) ∘ 𝑂) = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
2518, 24eqtrdi 2788 . 2 (𝑇 ∈ V β†’ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
26 mpt0 6692 . . . . 5 (𝑓 ∈ βˆ… ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) = βˆ…
2726eqcomi 2741 . . . 4 βˆ… = (𝑓 ∈ βˆ… ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
28 fvprc 6883 . . . . 5 (Β¬ 𝑇 ∈ V β†’ (mSubstβ€˜π‘‡) = βˆ…)
293, 28eqtrid 2784 . . . 4 (Β¬ 𝑇 ∈ V β†’ 𝑆 = βˆ…)
305rnfvprc 6885 . . . . 5 (Β¬ 𝑇 ∈ V β†’ ran 𝑂 = βˆ…)
3130mpteq1d 5243 . . . 4 (Β¬ 𝑇 ∈ V β†’ (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)) = (𝑓 ∈ βˆ… ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
3227, 29, 313eqtr4a 2798 . . 3 (Β¬ 𝑇 ∈ V β†’ 𝑆 = (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
3332rneqd 5937 . 2 (Β¬ 𝑇 ∈ V β†’ ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩)))
3425, 33pm2.61i 182 1 ran 𝑆 = ran (𝑓 ∈ ran 𝑂 ↦ (𝑒 ∈ 𝐸 ↦ ⟨(1st β€˜π‘’), (π‘“β€˜(2nd β€˜π‘’))⟩))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   = wceq 1541   ∈ wcel 2106  Vcvv 3474   βŠ† wss 3948  βˆ…c0 4322  βŸ¨cop 4634   ↦ cmpt 5231  ran crn 5677   β†Ύ cres 5678   ∘ ccom 5680   Fn wfn 6538  β€˜cfv 6543  (class class class)co 7408  1st c1st 7972  2nd c2nd 7973   ↑m cmap 8819   ↑pm cpm 8820  mVRcmvar 34447  mRExcmrex 34452  mExcmex 34453  mRSubstcmrsub 34456  mSubstcmsub 34457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5363  ax-pr 5427  ax-un 7724  ax-cnex 11165  ax-resscn 11166  ax-1cn 11167  ax-icn 11168  ax-addcl 11169  ax-addrcl 11170  ax-mulcl 11171  ax-mulrcl 11172  ax-mulcom 11173  ax-addass 11174  ax-mulass 11175  ax-distr 11176  ax-i2m1 11177  ax-1ne0 11178  ax-1rid 11179  ax-rnegex 11180  ax-rrecex 11181  ax-cnre 11182  ax-pre-lttri 11183  ax-pre-lttrn 11184  ax-pre-ltadd 11185  ax-pre-mulgt0 11186
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3778  df-csb 3894  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-pss 3967  df-nul 4323  df-if 4529  df-pw 4604  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-int 4951  df-iun 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5574  df-eprel 5580  df-po 5588  df-so 5589  df-fr 5631  df-we 5633  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-res 5688  df-ima 5689  df-pred 6300  df-ord 6367  df-on 6368  df-lim 6369  df-suc 6370  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-riota 7364  df-ov 7411  df-oprab 7412  df-mpo 7413  df-om 7855  df-1st 7974  df-2nd 7975  df-frecs 8265  df-wrecs 8296  df-recs 8370  df-rdg 8409  df-1o 8465  df-er 8702  df-map 8821  df-pm 8822  df-en 8939  df-dom 8940  df-sdom 8941  df-fin 8942  df-card 9933  df-pnf 11249  df-mnf 11250  df-xr 11251  df-ltxr 11252  df-le 11253  df-sub 11445  df-neg 11446  df-nn 12212  df-2 12274  df-n0 12472  df-z 12558  df-uz 12822  df-fz 13484  df-fzo 13627  df-seq 13966  df-hash 14290  df-word 14464  df-concat 14520  df-s1 14545  df-struct 17079  df-sets 17096  df-slot 17114  df-ndx 17126  df-base 17144  df-ress 17173  df-plusg 17209  df-0g 17386  df-gsum 17387  df-mgm 18560  df-sgrp 18609  df-mnd 18625  df-submnd 18671  df-frmd 18729  df-mrex 34472  df-mrsub 34476  df-msub 34477
This theorem is referenced by:  msubco  34517  msubvrs  34546
  Copyright terms: Public domain W3C validator