Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem3 Structured version   Visualization version   GIF version

Theorem ftc1anclem3 34971
Description: Lemma for ftc1anc 34977- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
Assertion
Ref Expression
ftc1anclem3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)

Proof of Theorem ftc1anclem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 24279 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelrnda 6853 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3 i1ff 24279 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
43ffvelrnda 6853 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
5 absreim 14655 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
62, 4, 5syl2an 597 . . . . . 6 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
76anandirs 677 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
82recnd 10671 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
98sqvald 13510 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥)↑2) = ((𝐹𝑥) · (𝐹𝑥)))
104recnd 10671 . . . . . . . . 9 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1110sqvald 13510 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
129, 11oveqan12d 7177 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1312anandirs 677 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1413fveq2d 6676 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
157, 14eqtrd 2858 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
1615mpteq2dva 5163 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
17 ax-icn 10598 . . . . . . 7 i ∈ ℂ
18 mulcl 10623 . . . . . . 7 ((i ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → (i · (𝐺𝑥)) ∈ ℂ)
1917, 10, 18sylancr 589 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ ℂ)
20 addcl 10621 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (i · (𝐺𝑥)) ∈ ℂ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
218, 19, 20syl2an 597 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
2221anandirs 677 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
23 reex 10630 . . . . . 6 ℝ ∈ V
2423a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
252adantlr 713 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
26 ovexd 7193 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ V)
271feqmptd 6735 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2827adantr 483 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2923a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → ℝ ∈ V)
3017a1i 11 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → i ∈ ℂ)
31 fconstmpt 5616 . . . . . . . 8 (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)
3231a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i))
333feqmptd 6735 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺 = (𝑥 ∈ ℝ ↦ (𝐺𝑥)))
3429, 30, 4, 32, 33offval2 7428 . . . . . 6 (𝐺 ∈ dom ∫1 → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3534adantl 484 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3624, 25, 26, 28, 35offval2 7428 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {i}) ∘f · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) + (i · (𝐺𝑥)))))
37 absf 14699 . . . . . 6 abs:ℂ⟶ℝ
3837a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs:ℂ⟶ℝ)
3938feqmptd 6735 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦)))
40 fveq2 6672 . . . 4 (𝑦 = ((𝐹𝑥) + (i · (𝐺𝑥))) → (abs‘𝑦) = (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))))
4122, 36, 39, 40fmptco 6893 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))))
428, 8mulcld 10663 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4310, 10mulcld 10663 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
44 addcl 10621 . . . . . 6 ((((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ ∧ ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4542, 43, 44syl2an 597 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4645anandirs 677 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4742adantlr 713 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4843adantll 712 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
4923a1i 11 . . . . . . 7 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
5049, 2, 2, 27, 27offval2 7428 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5150adantr 483 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5229, 4, 4, 33, 33offval2 7428 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5352adantl 484 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5424, 47, 48, 51, 53offval2 7428 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
55 sqrtf 14725 . . . . . 6 √:ℂ⟶ℂ
5655a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √:ℂ⟶ℂ)
5756feqmptd 6735 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦)))
58 fveq2 6672 . . . 4 (𝑦 = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) → (√‘𝑦) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
5946, 54, 57, 58fmptco 6893 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
6016, 41, 593eqtr4d 2868 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))))
61 elrege0 12845 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
62 resqrtcl 14615 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ ℝ)
6361, 62sylbi 219 . . . . . 6 (𝑥 ∈ (0[,)+∞) → (√‘𝑥) ∈ ℝ)
6463adantl 484 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ)
65 id 22 . . . . . . . . 9 (√:ℂ⟶ℂ → √:ℂ⟶ℂ)
6665feqmptd 6735 . . . . . . . 8 (√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
6755, 66ax-mp 5 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))
6867reseq1i 5851 . . . . . 6 (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞))
69 rge0ssre 12847 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
70 ax-resscn 10596 . . . . . . . 8 ℝ ⊆ ℂ
7169, 70sstri 3978 . . . . . . 7 (0[,)+∞) ⊆ ℂ
72 resmpt 5907 . . . . . . 7 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
7371, 72ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7468, 73eqtri 2846 . . . . 5 (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7564, 74fmptd 6880 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ)
76 ge0addcl 12851 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
7776adantl 484 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
78 oveq12 7167 . . . . . . . . 9 ((𝑧 = 𝐹𝑧 = 𝐹) → (𝑧f · 𝑧) = (𝐹f · 𝐹))
7978anidms 569 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧f · 𝑧) = (𝐹f · 𝐹))
8079feq1d 6501 . . . . . . 7 (𝑧 = 𝐹 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐹f · 𝐹):ℝ⟶(0[,)+∞)))
81 i1ff 24279 . . . . . . . . . . . 12 (𝑧 ∈ dom ∫1𝑧:ℝ⟶ℝ)
8281ffvelrnda 6853 . . . . . . . . . . 11 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑧𝑥) ∈ ℝ)
8382, 82remulcld 10673 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ)
8482msqge0d 11210 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ ((𝑧𝑥) · (𝑧𝑥)))
85 elrege0 12845 . . . . . . . . . 10 (((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞) ↔ (((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧𝑥) · (𝑧𝑥))))
8683, 84, 85sylanbrc 585 . . . . . . . . 9 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞))
8786fmpttd 6881 . . . . . . . 8 (𝑧 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞))
8823a1i 11 . . . . . . . . . 10 (𝑧 ∈ dom ∫1 → ℝ ∈ V)
8981feqmptd 6735 . . . . . . . . . 10 (𝑧 ∈ dom ∫1𝑧 = (𝑥 ∈ ℝ ↦ (𝑧𝑥)))
9088, 82, 82, 89, 89offval2 7428 . . . . . . . . 9 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))))
9190feq1d 6501 . . . . . . . 8 (𝑧 ∈ dom ∫1 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞)))
9287, 91mpbird 259 . . . . . . 7 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧):ℝ⟶(0[,)+∞))
9380, 92vtoclga 3576 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
9493adantr 483 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
95 oveq12 7167 . . . . . . . . 9 ((𝑧 = 𝐺𝑧 = 𝐺) → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9695anidms 569 . . . . . . . 8 (𝑧 = 𝐺 → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9796feq1d 6501 . . . . . . 7 (𝑧 = 𝐺 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐺f · 𝐺):ℝ⟶(0[,)+∞)))
9897, 92vtoclga 3576 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
9998adantl 484 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
100 inidm 4197 . . . . 5 (ℝ ∩ ℝ) = ℝ
10177, 94, 99, 24, 24, 100off 7426 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞))
102 fco2 6535 . . . 4 (((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞)) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
10375, 101, 102syl2anc 586 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
104 rnco 6107 . . . 4 ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
105 ffn 6516 . . . . . . . 8 (√:ℂ⟶ℂ → √ Fn ℂ)
10655, 105ax-mp 5 . . . . . . 7 √ Fn ℂ
107 readdcl 10622 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
108107adantl 484 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
109 remulcl 10624 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
110109adantl 484 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111110, 1, 1, 49, 49, 100off 7426 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶ℝ)
112111adantr 483 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶ℝ)
113109adantl 484 . . . . . . . . . . . 12 ((𝐺 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
114113, 3, 3, 29, 29, 100off 7426 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶ℝ)
115114adantl 484 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶ℝ)
116108, 112, 115, 24, 24, 100off 7426 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶ℝ)
117116frnd 6523 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℝ)
118117, 70sstrdi 3981 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ)
119 fnssres 6472 . . . . . . 7 ((√ Fn ℂ ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
120106, 118, 119sylancr 589 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
121 id 22 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
122121, 121i1fmul 24299 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) ∈ dom ∫1)
123122adantr 483 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) ∈ dom ∫1)
124 id 22 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺 ∈ dom ∫1)
125124, 124i1fmul 24299 . . . . . . . . 9 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) ∈ dom ∫1)
126125adantl 484 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) ∈ dom ∫1)
127123, 126i1fadd 24298 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1)
128 i1frn 24280 . . . . . . 7 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
129127, 128syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
130 fnfi 8798 . . . . . 6 (((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
131120, 129, 130syl2anc 586 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
132 rnfi 8809 . . . . 5 ((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
133131, 132syl 17 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
134104, 133eqeltrid 2919 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
135 cnvco 5758 . . . . . . 7 (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √)
136135imaeq1i 5928 . . . . . 6 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥})
137 imaco 6106 . . . . . 6 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
138136, 137eqtri 2846 . . . . 5 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
139 i1fima 24281 . . . . . 6 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
140127, 139syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
141138, 140eqeltrid 2919 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
142141adantr 483 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
143138fveq2i 6675 . . . 4 (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) = (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})))
144 eldifsni 4724 . . . . . . . 8 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → 𝑥 ≠ 0)
145 c0ex 10637 . . . . . . . . . . . 12 0 ∈ V
146145elsn 4584 . . . . . . . . . . 11 (0 ∈ {𝑥} ↔ 0 = 𝑥)
147 eqcom 2830 . . . . . . . . . . 11 (0 = 𝑥𝑥 = 0)
148146, 147bitri 277 . . . . . . . . . 10 (0 ∈ {𝑥} ↔ 𝑥 = 0)
149148necon3bbii 3065 . . . . . . . . 9 (¬ 0 ∈ {𝑥} ↔ 𝑥 ≠ 0)
150 sqrt0 14603 . . . . . . . . . 10 (√‘0) = 0
151150eleq1i 2905 . . . . . . . . 9 ((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥})
152149, 151xchnxbir 335 . . . . . . . 8 (¬ (√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0)
153144, 152sylibr 236 . . . . . . 7 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ (√‘0) ∈ {𝑥})
154153olcd 870 . . . . . 6 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
155 ianor 978 . . . . . . 7 (¬ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
156 elpreima 6830 . . . . . . . 8 (√ Fn ℂ → (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥})))
15755, 105, 156mp2b 10 . . . . . . 7 (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}))
158155, 157xchnxbir 335 . . . . . 6 (¬ 0 ∈ (√ “ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
159154, 158sylibr 236 . . . . 5 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ 0 ∈ (√ “ {𝑥}))
160 i1fima2 24282 . . . . 5 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 ∧ ¬ 0 ∈ (√ “ {𝑥})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
161127, 159, 160syl2an 597 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
162143, 161eqeltrid 2919 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) ∈ ℝ)
163103, 134, 142, 162i1fd 24284 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ dom ∫1)
16460, 163eqeltrd 2915 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 208  wa 398  wo 843   = wceq 1537  wcel 2114  wne 3018  Vcvv 3496  cdif 3935  wss 3938  {csn 4569   class class class wbr 5068  cmpt 5148   × cxp 5555  ccnv 5556  dom cdm 5557  ran crn 5558  cres 5559  cima 5560  ccom 5561   Fn wfn 6352  wf 6353  cfv 6357  (class class class)co 7158  f cof 7409  Fincfn 8511  cc 10537  cr 10538  0cc0 10539  ici 10541   + caddc 10542   · cmul 10544  +∞cpnf 10674  cle 10678  2c2 11695  [,)cico 12743  cexp 13432  csqrt 14594  abscabs 14595  volcvol 24066  1citg1 24218
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2795  ax-rep 5192  ax-sep 5205  ax-nul 5212  ax-pow 5268  ax-pr 5332  ax-un 7463  ax-inf2 9106  ax-cnex 10595  ax-resscn 10596  ax-1cn 10597  ax-icn 10598  ax-addcl 10599  ax-addrcl 10600  ax-mulcl 10601  ax-mulrcl 10602  ax-mulcom 10603  ax-addass 10604  ax-mulass 10605  ax-distr 10606  ax-i2m1 10607  ax-1ne0 10608  ax-1rid 10609  ax-rnegex 10610  ax-rrecex 10611  ax-cnre 10612  ax-pre-lttri 10613  ax-pre-lttrn 10614  ax-pre-ltadd 10615  ax-pre-mulgt0 10616  ax-pre-sup 10617
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-fal 1550  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2802  df-cleq 2816  df-clel 2895  df-nfc 2965  df-ne 3019  df-nel 3126  df-ral 3145  df-rex 3146  df-reu 3147  df-rmo 3148  df-rab 3149  df-v 3498  df-sbc 3775  df-csb 3886  df-dif 3941  df-un 3943  df-in 3945  df-ss 3954  df-pss 3956  df-nul 4294  df-if 4470  df-pw 4543  df-sn 4570  df-pr 4572  df-tp 4574  df-op 4576  df-uni 4841  df-int 4879  df-iun 4923  df-br 5069  df-opab 5131  df-mpt 5149  df-tr 5175  df-id 5462  df-eprel 5467  df-po 5476  df-so 5477  df-fr 5516  df-se 5517  df-we 5518  df-xp 5563  df-rel 5564  df-cnv 5565  df-co 5566  df-dm 5567  df-rn 5568  df-res 5569  df-ima 5570  df-pred 6150  df-ord 6196  df-on 6197  df-lim 6198  df-suc 6199  df-iota 6316  df-fun 6359  df-fn 6360  df-f 6361  df-f1 6362  df-fo 6363  df-f1o 6364  df-fv 6365  df-isom 6366  df-riota 7116  df-ov 7161  df-oprab 7162  df-mpo 7163  df-of 7411  df-om 7583  df-1st 7691  df-2nd 7692  df-wrecs 7949  df-recs 8010  df-rdg 8048  df-1o 8104  df-2o 8105  df-oadd 8108  df-er 8291  df-map 8410  df-pm 8411  df-en 8512  df-dom 8513  df-sdom 8514  df-fin 8515  df-sup 8908  df-inf 8909  df-oi 8976  df-dju 9332  df-card 9370  df-pnf 10679  df-mnf 10680  df-xr 10681  df-ltxr 10682  df-le 10683  df-sub 10874  df-neg 10875  df-div 11300  df-nn 11641  df-2 11703  df-3 11704  df-n0 11901  df-z 11985  df-uz 12247  df-q 12352  df-rp 12393  df-xadd 12511  df-ioo 12745  df-ico 12747  df-icc 12748  df-fz 12896  df-fzo 13037  df-fl 13165  df-seq 13373  df-exp 13433  df-hash 13694  df-cj 14460  df-re 14461  df-im 14462  df-sqrt 14596  df-abs 14597  df-clim 14847  df-sum 15045  df-xmet 20540  df-met 20541  df-ovol 24067  df-vol 24068  df-mbf 24222  df-itg1 24223
This theorem is referenced by:  ftc1anclem7  34975  ftc1anclem8  34976
  Copyright terms: Public domain W3C validator