Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem3 Structured version   Visualization version   GIF version

Theorem ftc1anclem3 36431
Description: Lemma for ftc1anc 36437- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
Assertion
Ref Expression
ftc1anclem3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)

Proof of Theorem ftc1anclem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 25124 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelcdmda 7072 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3 i1ff 25124 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
43ffvelcdmda 7072 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
5 absreim 15224 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
62, 4, 5syl2an 596 . . . . . 6 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
76anandirs 677 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
82recnd 11226 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
98sqvald 14092 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥)↑2) = ((𝐹𝑥) · (𝐹𝑥)))
104recnd 11226 . . . . . . . . 9 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1110sqvald 14092 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
129, 11oveqan12d 7413 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1312anandirs 677 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1413fveq2d 6883 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
157, 14eqtrd 2772 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
1615mpteq2dva 5242 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
17 ax-icn 11153 . . . . . . 7 i ∈ ℂ
18 mulcl 11178 . . . . . . 7 ((i ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → (i · (𝐺𝑥)) ∈ ℂ)
1917, 10, 18sylancr 587 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ ℂ)
20 addcl 11176 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (i · (𝐺𝑥)) ∈ ℂ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
218, 19, 20syl2an 596 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
2221anandirs 677 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
23 reex 11185 . . . . . 6 ℝ ∈ V
2423a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
252adantlr 713 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
26 ovexd 7429 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ V)
271feqmptd 6947 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2827adantr 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2923a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → ℝ ∈ V)
3017a1i 11 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → i ∈ ℂ)
31 fconstmpt 5731 . . . . . . . 8 (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)
3231a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i))
333feqmptd 6947 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺 = (𝑥 ∈ ℝ ↦ (𝐺𝑥)))
3429, 30, 4, 32, 33offval2 7674 . . . . . 6 (𝐺 ∈ dom ∫1 → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3534adantl 482 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3624, 25, 26, 28, 35offval2 7674 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {i}) ∘f · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) + (i · (𝐺𝑥)))))
37 absf 15268 . . . . . 6 abs:ℂ⟶ℝ
3837a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs:ℂ⟶ℝ)
3938feqmptd 6947 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦)))
40 fveq2 6879 . . . 4 (𝑦 = ((𝐹𝑥) + (i · (𝐺𝑥))) → (abs‘𝑦) = (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))))
4122, 36, 39, 40fmptco 7112 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))))
428, 8mulcld 11218 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4310, 10mulcld 11218 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
44 addcl 11176 . . . . . 6 ((((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ ∧ ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4542, 43, 44syl2an 596 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4645anandirs 677 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4742adantlr 713 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4843adantll 712 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
4923a1i 11 . . . . . . 7 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
5049, 2, 2, 27, 27offval2 7674 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5150adantr 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5229, 4, 4, 33, 33offval2 7674 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5352adantl 482 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5424, 47, 48, 51, 53offval2 7674 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
55 sqrtf 15294 . . . . . 6 √:ℂ⟶ℂ
5655a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √:ℂ⟶ℂ)
5756feqmptd 6947 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦)))
58 fveq2 6879 . . . 4 (𝑦 = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) → (√‘𝑦) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
5946, 54, 57, 58fmptco 7112 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
6016, 41, 593eqtr4d 2782 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))))
61 elrege0 13415 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
62 resqrtcl 15184 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ ℝ)
6361, 62sylbi 216 . . . . . 6 (𝑥 ∈ (0[,)+∞) → (√‘𝑥) ∈ ℝ)
6463adantl 482 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ)
65 id 22 . . . . . . . . 9 (√:ℂ⟶ℂ → √:ℂ⟶ℂ)
6665feqmptd 6947 . . . . . . . 8 (√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
6755, 66ax-mp 5 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))
6867reseq1i 5970 . . . . . 6 (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞))
69 rge0ssre 13417 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
70 ax-resscn 11151 . . . . . . . 8 ℝ ⊆ ℂ
7169, 70sstri 3988 . . . . . . 7 (0[,)+∞) ⊆ ℂ
72 resmpt 6028 . . . . . . 7 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
7371, 72ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7468, 73eqtri 2760 . . . . 5 (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7564, 74fmptd 7099 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ)
76 ge0addcl 13421 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
7776adantl 482 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
78 oveq12 7403 . . . . . . . . 9 ((𝑧 = 𝐹𝑧 = 𝐹) → (𝑧f · 𝑧) = (𝐹f · 𝐹))
7978anidms 567 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧f · 𝑧) = (𝐹f · 𝐹))
8079feq1d 6690 . . . . . . 7 (𝑧 = 𝐹 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐹f · 𝐹):ℝ⟶(0[,)+∞)))
81 i1ff 25124 . . . . . . . . . . . 12 (𝑧 ∈ dom ∫1𝑧:ℝ⟶ℝ)
8281ffvelcdmda 7072 . . . . . . . . . . 11 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑧𝑥) ∈ ℝ)
8382, 82remulcld 11228 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ)
8482msqge0d 11766 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ ((𝑧𝑥) · (𝑧𝑥)))
85 elrege0 13415 . . . . . . . . . 10 (((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞) ↔ (((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧𝑥) · (𝑧𝑥))))
8683, 84, 85sylanbrc 583 . . . . . . . . 9 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞))
8786fmpttd 7100 . . . . . . . 8 (𝑧 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞))
8823a1i 11 . . . . . . . . . 10 (𝑧 ∈ dom ∫1 → ℝ ∈ V)
8981feqmptd 6947 . . . . . . . . . 10 (𝑧 ∈ dom ∫1𝑧 = (𝑥 ∈ ℝ ↦ (𝑧𝑥)))
9088, 82, 82, 89, 89offval2 7674 . . . . . . . . 9 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))))
9190feq1d 6690 . . . . . . . 8 (𝑧 ∈ dom ∫1 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞)))
9287, 91mpbird 256 . . . . . . 7 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧):ℝ⟶(0[,)+∞))
9380, 92vtoclga 3563 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
9493adantr 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
95 oveq12 7403 . . . . . . . . 9 ((𝑧 = 𝐺𝑧 = 𝐺) → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9695anidms 567 . . . . . . . 8 (𝑧 = 𝐺 → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9796feq1d 6690 . . . . . . 7 (𝑧 = 𝐺 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐺f · 𝐺):ℝ⟶(0[,)+∞)))
9897, 92vtoclga 3563 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
9998adantl 482 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
100 inidm 4215 . . . . 5 (ℝ ∩ ℝ) = ℝ
10177, 94, 99, 24, 24, 100off 7672 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞))
102 fco2 6732 . . . 4 (((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞)) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
10375, 101, 102syl2anc 584 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
104 rnco 6241 . . . 4 ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
105 ffn 6705 . . . . . . . 8 (√:ℂ⟶ℂ → √ Fn ℂ)
10655, 105ax-mp 5 . . . . . . 7 √ Fn ℂ
107 readdcl 11177 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
108107adantl 482 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
109 remulcl 11179 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
110109adantl 482 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111110, 1, 1, 49, 49, 100off 7672 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶ℝ)
112111adantr 481 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶ℝ)
113109adantl 482 . . . . . . . . . . . 12 ((𝐺 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
114113, 3, 3, 29, 29, 100off 7672 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶ℝ)
115114adantl 482 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶ℝ)
116108, 112, 115, 24, 24, 100off 7672 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶ℝ)
117116frnd 6713 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℝ)
118117, 70sstrdi 3991 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ)
119 fnssres 6661 . . . . . . 7 ((√ Fn ℂ ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
120106, 118, 119sylancr 587 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
121 id 22 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
122121, 121i1fmul 25144 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) ∈ dom ∫1)
123122adantr 481 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) ∈ dom ∫1)
124 id 22 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺 ∈ dom ∫1)
125124, 124i1fmul 25144 . . . . . . . . 9 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) ∈ dom ∫1)
126125adantl 482 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) ∈ dom ∫1)
127123, 126i1fadd 25143 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1)
128 i1frn 25125 . . . . . . 7 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
129127, 128syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
130 fnfi 9166 . . . . . 6 (((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
131120, 129, 130syl2anc 584 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
132 rnfi 9320 . . . . 5 ((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
133131, 132syl 17 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
134104, 133eqeltrid 2837 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
135 cnvco 5878 . . . . . . 7 (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √)
136135imaeq1i 6047 . . . . . 6 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥})
137 imaco 6240 . . . . . 6 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
138136, 137eqtri 2760 . . . . 5 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
139 i1fima 25126 . . . . . 6 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
140127, 139syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
141138, 140eqeltrid 2837 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
142141adantr 481 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
143138fveq2i 6882 . . . 4 (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) = (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})))
144 eldifsni 4787 . . . . . . . 8 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → 𝑥 ≠ 0)
145 c0ex 11192 . . . . . . . . . . . 12 0 ∈ V
146145elsn 4638 . . . . . . . . . . 11 (0 ∈ {𝑥} ↔ 0 = 𝑥)
147 eqcom 2739 . . . . . . . . . . 11 (0 = 𝑥𝑥 = 0)
148146, 147bitri 274 . . . . . . . . . 10 (0 ∈ {𝑥} ↔ 𝑥 = 0)
149148necon3bbii 2988 . . . . . . . . 9 (¬ 0 ∈ {𝑥} ↔ 𝑥 ≠ 0)
150 sqrt0 15172 . . . . . . . . . 10 (√‘0) = 0
151150eleq1i 2824 . . . . . . . . 9 ((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥})
152149, 151xchnxbir 332 . . . . . . . 8 (¬ (√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0)
153144, 152sylibr 233 . . . . . . 7 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ (√‘0) ∈ {𝑥})
154153olcd 872 . . . . . 6 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
155 ianor 980 . . . . . . 7 (¬ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
156 elpreima 7045 . . . . . . . 8 (√ Fn ℂ → (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥})))
15755, 105, 156mp2b 10 . . . . . . 7 (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}))
158155, 157xchnxbir 332 . . . . . 6 (¬ 0 ∈ (√ “ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
159154, 158sylibr 233 . . . . 5 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ 0 ∈ (√ “ {𝑥}))
160 i1fima2 25127 . . . . 5 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 ∧ ¬ 0 ∈ (√ “ {𝑥})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
161127, 159, 160syl2an 596 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
162143, 161eqeltrid 2837 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) ∈ ℝ)
163103, 134, 142, 162i1fd 25129 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ dom ∫1)
16460, 163eqeltrd 2833 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  wo 845   = wceq 1541  wcel 2106  wne 2940  Vcvv 3474  cdif 3942  wss 3945  {csn 4623   class class class wbr 5142  cmpt 5225   × cxp 5668  ccnv 5669  dom cdm 5670  ran crn 5671  cres 5672  cima 5673  ccom 5674   Fn wfn 6528  wf 6529  cfv 6533  (class class class)co 7394  f cof 7652  Fincfn 8924  cc 11092  cr 11093  0cc0 11094  ici 11096   + caddc 11097   · cmul 11099  +∞cpnf 11229  cle 11233  2c2 12251  [,)cico 13310  cexp 14011  csqrt 15164  abscabs 15165  volcvol 24911  1citg1 25063
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5279  ax-sep 5293  ax-nul 5300  ax-pow 5357  ax-pr 5421  ax-un 7709  ax-inf2 9620  ax-cnex 11150  ax-resscn 11151  ax-1cn 11152  ax-icn 11153  ax-addcl 11154  ax-addrcl 11155  ax-mulcl 11156  ax-mulrcl 11157  ax-mulcom 11158  ax-addass 11159  ax-mulass 11160  ax-distr 11161  ax-i2m1 11162  ax-1ne0 11163  ax-1rid 11164  ax-rnegex 11165  ax-rrecex 11166  ax-cnre 11167  ax-pre-lttri 11168  ax-pre-lttrn 11169  ax-pre-ltadd 11170  ax-pre-mulgt0 11171  ax-pre-sup 11172
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-pss 3964  df-nul 4320  df-if 4524  df-pw 4599  df-sn 4624  df-pr 4626  df-op 4630  df-uni 4903  df-int 4945  df-iun 4993  df-br 5143  df-opab 5205  df-mpt 5226  df-tr 5260  df-id 5568  df-eprel 5574  df-po 5582  df-so 5583  df-fr 5625  df-se 5626  df-we 5627  df-xp 5676  df-rel 5677  df-cnv 5678  df-co 5679  df-dm 5680  df-rn 5681  df-res 5682  df-ima 5683  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7350  df-ov 7397  df-oprab 7398  df-mpo 7399  df-of 7654  df-om 7840  df-1st 7959  df-2nd 7960  df-frecs 8250  df-wrecs 8281  df-recs 8355  df-rdg 8394  df-1o 8450  df-2o 8451  df-er 8688  df-map 8807  df-pm 8808  df-en 8925  df-dom 8926  df-sdom 8927  df-fin 8928  df-sup 9421  df-inf 9422  df-oi 9489  df-dju 9880  df-card 9918  df-pnf 11234  df-mnf 11235  df-xr 11236  df-ltxr 11237  df-le 11238  df-sub 11430  df-neg 11431  df-div 11856  df-nn 12197  df-2 12259  df-3 12260  df-n0 12457  df-z 12543  df-uz 12807  df-q 12917  df-rp 12959  df-xadd 13077  df-ioo 13312  df-ico 13314  df-icc 13315  df-fz 13469  df-fzo 13612  df-fl 13741  df-seq 13951  df-exp 14012  df-hash 14275  df-cj 15030  df-re 15031  df-im 15032  df-sqrt 15166  df-abs 15167  df-clim 15416  df-sum 15617  df-xmet 20873  df-met 20874  df-ovol 24912  df-vol 24913  df-mbf 25067  df-itg1 25068
This theorem is referenced by:  ftc1anclem7  36435  ftc1anclem8  36436
  Copyright terms: Public domain W3C validator