Users' Mathboxes Mathbox for Brendan Leahy < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  ftc1anclem3 Structured version   Visualization version   GIF version

Theorem ftc1anclem3 35779
Description: Lemma for ftc1anc 35785- the absolute value of the sum of a simple function and i times another simple function is itself a simple function. (Contributed by Brendan Leahy, 27-May-2018.)
Assertion
Ref Expression
ftc1anclem3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)

Proof of Theorem ftc1anclem3
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 i1ff 24745 . . . . . . . 8 (𝐹 ∈ dom ∫1𝐹:ℝ⟶ℝ)
21ffvelrnda 6943 . . . . . . 7 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
3 i1ff 24745 . . . . . . . 8 (𝐺 ∈ dom ∫1𝐺:ℝ⟶ℝ)
43ffvelrnda 6943 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℝ)
5 absreim 14933 . . . . . . 7 (((𝐹𝑥) ∈ ℝ ∧ (𝐺𝑥) ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
62, 4, 5syl2an 595 . . . . . 6 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
76anandirs 675 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))))
82recnd 10934 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℂ)
98sqvald 13789 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥)↑2) = ((𝐹𝑥) · (𝐹𝑥)))
104recnd 10934 . . . . . . . . 9 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (𝐺𝑥) ∈ ℂ)
1110sqvald 13789 . . . . . . . 8 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥)↑2) = ((𝐺𝑥) · (𝐺𝑥)))
129, 11oveqan12d 7274 . . . . . . 7 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1312anandirs 675 . . . . . 6 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥)↑2) + ((𝐺𝑥)↑2)) = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))
1413fveq2d 6760 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (√‘(((𝐹𝑥)↑2) + ((𝐺𝑥)↑2))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
157, 14eqtrd 2778 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
1615mpteq2dva 5170 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
17 ax-icn 10861 . . . . . . 7 i ∈ ℂ
18 mulcl 10886 . . . . . . 7 ((i ∈ ℂ ∧ (𝐺𝑥) ∈ ℂ) → (i · (𝐺𝑥)) ∈ ℂ)
1917, 10, 18sylancr 586 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ ℂ)
20 addcl 10884 . . . . . 6 (((𝐹𝑥) ∈ ℂ ∧ (i · (𝐺𝑥)) ∈ ℂ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
218, 19, 20syl2an 595 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
2221anandirs 675 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) + (i · (𝐺𝑥))) ∈ ℂ)
23 reex 10893 . . . . . 6 ℝ ∈ V
2423a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ℝ ∈ V)
252adantlr 711 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (𝐹𝑥) ∈ ℝ)
26 ovexd 7290 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (i · (𝐺𝑥)) ∈ V)
271feqmptd 6819 . . . . . 6 (𝐹 ∈ dom ∫1𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2827adantr 480 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹𝑥)))
2923a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → ℝ ∈ V)
3017a1i 11 . . . . . . 7 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → i ∈ ℂ)
31 fconstmpt 5640 . . . . . . . 8 (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)
3231a1i 11 . . . . . . 7 (𝐺 ∈ dom ∫1 → (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i))
333feqmptd 6819 . . . . . . 7 (𝐺 ∈ dom ∫1𝐺 = (𝑥 ∈ ℝ ↦ (𝐺𝑥)))
3429, 30, 4, 32, 33offval2 7531 . . . . . 6 (𝐺 ∈ dom ∫1 → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3534adantl 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺𝑥))))
3624, 25, 26, 28, 35offval2 7531 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f + ((ℝ × {i}) ∘f · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) + (i · (𝐺𝑥)))))
37 absf 14977 . . . . . 6 abs:ℂ⟶ℝ
3837a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs:ℂ⟶ℝ)
3938feqmptd 6819 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦)))
40 fveq2 6756 . . . 4 (𝑦 = ((𝐹𝑥) + (i · (𝐺𝑥))) → (abs‘𝑦) = (abs‘((𝐹𝑥) + (i · (𝐺𝑥)))))
4122, 36, 39, 40fmptco 6983 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹𝑥) + (i · (𝐺𝑥))))))
428, 8mulcld 10926 . . . . . 6 ((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4310, 10mulcld 10926 . . . . . 6 ((𝐺 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
44 addcl 10884 . . . . . 6 ((((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ ∧ ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4542, 43, 44syl2an 595 . . . . 5 (((𝐹 ∈ dom ∫1𝑥 ∈ ℝ) ∧ (𝐺 ∈ dom ∫1𝑥 ∈ ℝ)) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4645anandirs 675 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) ∈ ℂ)
4742adantlr 711 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐹𝑥) · (𝐹𝑥)) ∈ ℂ)
4843adantll 710 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ ℝ) → ((𝐺𝑥) · (𝐺𝑥)) ∈ ℂ)
4923a1i 11 . . . . . . 7 (𝐹 ∈ dom ∫1 → ℝ ∈ V)
5049, 2, 2, 27, 27offval2 7531 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5150adantr 480 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹𝑥) · (𝐹𝑥))))
5229, 4, 4, 33, 33offval2 7531 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5352adantl 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺𝑥) · (𝐺𝑥))))
5424, 47, 48, 51, 53offval2 7531 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
55 sqrtf 15003 . . . . . 6 √:ℂ⟶ℂ
5655a1i 11 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √:ℂ⟶ℂ)
5756feqmptd 6819 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦)))
58 fveq2 6756 . . . 4 (𝑦 = (((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))) → (√‘𝑦) = (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥)))))
5946, 54, 57, 58fmptco 6983 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (𝑥 ∈ ℝ ↦ (√‘(((𝐹𝑥) · (𝐹𝑥)) + ((𝐺𝑥) · (𝐺𝑥))))))
6016, 41, 593eqtr4d 2788 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) = (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))))
61 elrege0 13115 . . . . . . 7 (𝑥 ∈ (0[,)+∞) ↔ (𝑥 ∈ ℝ ∧ 0 ≤ 𝑥))
62 resqrtcl 14893 . . . . . . 7 ((𝑥 ∈ ℝ ∧ 0 ≤ 𝑥) → (√‘𝑥) ∈ ℝ)
6361, 62sylbi 216 . . . . . 6 (𝑥 ∈ (0[,)+∞) → (√‘𝑥) ∈ ℝ)
6463adantl 481 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ)
65 id 22 . . . . . . . . 9 (√:ℂ⟶ℂ → √:ℂ⟶ℂ)
6665feqmptd 6819 . . . . . . . 8 (√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥)))
6755, 66ax-mp 5 . . . . . . 7 √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))
6867reseq1i 5876 . . . . . 6 (√ ↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞))
69 rge0ssre 13117 . . . . . . . 8 (0[,)+∞) ⊆ ℝ
70 ax-resscn 10859 . . . . . . . 8 ℝ ⊆ ℂ
7169, 70sstri 3926 . . . . . . 7 (0[,)+∞) ⊆ ℂ
72 resmpt 5934 . . . . . . 7 ((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥)))
7371, 72ax-mp 5 . . . . . 6 ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7468, 73eqtri 2766 . . . . 5 (√ ↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦ (√‘𝑥))
7564, 74fmptd 6970 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ)
76 ge0addcl 13121 . . . . . 6 ((𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞)) → (𝑥 + 𝑦) ∈ (0[,)+∞))
7776adantl 481 . . . . 5 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞))
78 oveq12 7264 . . . . . . . . 9 ((𝑧 = 𝐹𝑧 = 𝐹) → (𝑧f · 𝑧) = (𝐹f · 𝐹))
7978anidms 566 . . . . . . . 8 (𝑧 = 𝐹 → (𝑧f · 𝑧) = (𝐹f · 𝐹))
8079feq1d 6569 . . . . . . 7 (𝑧 = 𝐹 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐹f · 𝐹):ℝ⟶(0[,)+∞)))
81 i1ff 24745 . . . . . . . . . . . 12 (𝑧 ∈ dom ∫1𝑧:ℝ⟶ℝ)
8281ffvelrnda 6943 . . . . . . . . . . 11 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → (𝑧𝑥) ∈ ℝ)
8382, 82remulcld 10936 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ)
8482msqge0d 11473 . . . . . . . . . 10 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → 0 ≤ ((𝑧𝑥) · (𝑧𝑥)))
85 elrege0 13115 . . . . . . . . . 10 (((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞) ↔ (((𝑧𝑥) · (𝑧𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧𝑥) · (𝑧𝑥))))
8683, 84, 85sylanbrc 582 . . . . . . . . 9 ((𝑧 ∈ dom ∫1𝑥 ∈ ℝ) → ((𝑧𝑥) · (𝑧𝑥)) ∈ (0[,)+∞))
8786fmpttd 6971 . . . . . . . 8 (𝑧 ∈ dom ∫1 → (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞))
8823a1i 11 . . . . . . . . . 10 (𝑧 ∈ dom ∫1 → ℝ ∈ V)
8981feqmptd 6819 . . . . . . . . . 10 (𝑧 ∈ dom ∫1𝑧 = (𝑥 ∈ ℝ ↦ (𝑧𝑥)))
9088, 82, 82, 89, 89offval2 7531 . . . . . . . . 9 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))))
9190feq1d 6569 . . . . . . . 8 (𝑧 ∈ dom ∫1 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧𝑥) · (𝑧𝑥))):ℝ⟶(0[,)+∞)))
9287, 91mpbird 256 . . . . . . 7 (𝑧 ∈ dom ∫1 → (𝑧f · 𝑧):ℝ⟶(0[,)+∞))
9380, 92vtoclga 3503 . . . . . 6 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
9493adantr 480 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶(0[,)+∞))
95 oveq12 7264 . . . . . . . . 9 ((𝑧 = 𝐺𝑧 = 𝐺) → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9695anidms 566 . . . . . . . 8 (𝑧 = 𝐺 → (𝑧f · 𝑧) = (𝐺f · 𝐺))
9796feq1d 6569 . . . . . . 7 (𝑧 = 𝐺 → ((𝑧f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝐺f · 𝐺):ℝ⟶(0[,)+∞)))
9897, 92vtoclga 3503 . . . . . 6 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
9998adantl 481 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶(0[,)+∞))
100 inidm 4149 . . . . 5 (ℝ ∩ ℝ) = ℝ
10177, 94, 99, 24, 24, 100off 7529 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞))
102 fco2 6611 . . . 4 (((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶(0[,)+∞)) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
10375, 101, 102syl2anc 583 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))):ℝ⟶ℝ)
104 rnco 6145 . . . 4 ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
105 ffn 6584 . . . . . . . 8 (√:ℂ⟶ℂ → √ Fn ℂ)
10655, 105ax-mp 5 . . . . . . 7 √ Fn ℂ
107 readdcl 10885 . . . . . . . . . . 11 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ)
108107adantl 481 . . . . . . . . . 10 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 + 𝑦) ∈ ℝ)
109 remulcl 10887 . . . . . . . . . . . . 13 ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ)
110109adantl 481 . . . . . . . . . . . 12 ((𝐹 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
111110, 1, 1, 49, 49, 100off 7529 . . . . . . . . . . 11 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹):ℝ⟶ℝ)
112111adantr 480 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹):ℝ⟶ℝ)
113109adantl 481 . . . . . . . . . . . 12 ((𝐺 ∈ dom ∫1 ∧ (𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ)) → (𝑥 · 𝑦) ∈ ℝ)
114113, 3, 3, 29, 29, 100off 7529 . . . . . . . . . . 11 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺):ℝ⟶ℝ)
115114adantl 481 . . . . . . . . . 10 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺):ℝ⟶ℝ)
116108, 112, 115, 24, 24, 100off 7529 . . . . . . . . 9 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)):ℝ⟶ℝ)
117116frnd 6592 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℝ)
118117, 70sstrdi 3929 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ)
119 fnssres 6539 . . . . . . 7 ((√ Fn ℂ ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ⊆ ℂ) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
120106, 118, 119sylancr 586 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)))
121 id 22 . . . . . . . . . 10 (𝐹 ∈ dom ∫1𝐹 ∈ dom ∫1)
122121, 121i1fmul 24765 . . . . . . . . 9 (𝐹 ∈ dom ∫1 → (𝐹f · 𝐹) ∈ dom ∫1)
123122adantr 480 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐹f · 𝐹) ∈ dom ∫1)
124 id 22 . . . . . . . . . 10 (𝐺 ∈ dom ∫1𝐺 ∈ dom ∫1)
125124, 124i1fmul 24765 . . . . . . . . 9 (𝐺 ∈ dom ∫1 → (𝐺f · 𝐺) ∈ dom ∫1)
126125adantl 481 . . . . . . . 8 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (𝐺f · 𝐺) ∈ dom ∫1)
127123, 126i1fadd 24764 . . . . . . 7 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1)
128 i1frn 24746 . . . . . . 7 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
129127, 128syl 17 . . . . . 6 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin)
130 fnfi 8925 . . . . . 6 (((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) Fn ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∧ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ Fin) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
131120, 129, 130syl2anc 583 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
132 rnfi 9032 . . . . 5 ((√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
133131, 132syl 17 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ↾ ran ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
134104, 133eqeltrid 2843 . . 3 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ Fin)
135 cnvco 5783 . . . . . . 7 (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √)
136135imaeq1i 5955 . . . . . 6 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥})
137 imaco 6144 . . . . . 6 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∘ √) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
138136, 137eqtri 2766 . . . . 5 ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) = (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))
139 i1fima 24747 . . . . . 6 (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
140127, 139syl 17 . . . . 5 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})) ∈ dom vol)
141138, 140eqeltrid 2843 . . . 4 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
142141adantr 480 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → ((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥}) ∈ dom vol)
143138fveq2i 6759 . . . 4 (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) = (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥})))
144 eldifsni 4720 . . . . . . . 8 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → 𝑥 ≠ 0)
145 c0ex 10900 . . . . . . . . . . . 12 0 ∈ V
146145elsn 4573 . . . . . . . . . . 11 (0 ∈ {𝑥} ↔ 0 = 𝑥)
147 eqcom 2745 . . . . . . . . . . 11 (0 = 𝑥𝑥 = 0)
148146, 147bitri 274 . . . . . . . . . 10 (0 ∈ {𝑥} ↔ 𝑥 = 0)
149148necon3bbii 2990 . . . . . . . . 9 (¬ 0 ∈ {𝑥} ↔ 𝑥 ≠ 0)
150 sqrt0 14881 . . . . . . . . . 10 (√‘0) = 0
151150eleq1i 2829 . . . . . . . . 9 ((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥})
152149, 151xchnxbir 332 . . . . . . . 8 (¬ (√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0)
153144, 152sylibr 233 . . . . . . 7 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ (√‘0) ∈ {𝑥})
154153olcd 870 . . . . . 6 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
155 ianor 978 . . . . . . 7 (¬ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
156 elpreima 6917 . . . . . . . 8 (√ Fn ℂ → (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥})))
15755, 105, 156mp2b 10 . . . . . . 7 (0 ∈ (√ “ {𝑥}) ↔ (0 ∈ ℂ ∧ (√‘0) ∈ {𝑥}))
158155, 157xchnxbir 332 . . . . . 6 (¬ 0 ∈ (√ “ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬ (√‘0) ∈ {𝑥}))
159154, 158sylibr 233 . . . . 5 (𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0}) → ¬ 0 ∈ (√ “ {𝑥}))
160 i1fima2 24748 . . . . 5 ((((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) ∈ dom ∫1 ∧ ¬ 0 ∈ (√ “ {𝑥})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
161127, 159, 160syl2an 595 . . . 4 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘(((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺)) “ (√ “ {𝑥}))) ∈ ℝ)
162143, 161eqeltrid 2843 . . 3 (((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) ∧ 𝑥 ∈ (ran (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∖ {0})) → (vol‘((√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) “ {𝑥})) ∈ ℝ)
163103, 134, 142, 162i1fd 24750 . 2 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (√ ∘ ((𝐹f · 𝐹) ∘f + (𝐺f · 𝐺))) ∈ dom ∫1)
16460, 163eqeltrd 2839 1 ((𝐹 ∈ dom ∫1𝐺 ∈ dom ∫1) → (abs ∘ (𝐹f + ((ℝ × {i}) ∘f · 𝐺))) ∈ dom ∫1)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 395  wo 843   = wceq 1539  wcel 2108  wne 2942  Vcvv 3422  cdif 3880  wss 3883  {csn 4558   class class class wbr 5070  cmpt 5153   × cxp 5578  ccnv 5579  dom cdm 5580  ran crn 5581  cres 5582  cima 5583  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  f cof 7509  Fincfn 8691  cc 10800  cr 10801  0cc0 10802  ici 10804   + caddc 10805   · cmul 10807  +∞cpnf 10937  cle 10941  2c2 11958  [,)cico 13010  cexp 13710  csqrt 14872  abscabs 14873  volcvol 24532  1citg1 24684
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-inf2 9329  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879  ax-pre-sup 10880
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rmo 3071  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-int 4877  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-se 5536  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-isom 6427  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-of 7511  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-2o 8268  df-er 8456  df-map 8575  df-pm 8576  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-inf 9132  df-oi 9199  df-dju 9590  df-card 9628  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-div 11563  df-nn 11904  df-2 11966  df-3 11967  df-n0 12164  df-z 12250  df-uz 12512  df-q 12618  df-rp 12660  df-xadd 12778  df-ioo 13012  df-ico 13014  df-icc 13015  df-fz 13169  df-fzo 13312  df-fl 13440  df-seq 13650  df-exp 13711  df-hash 13973  df-cj 14738  df-re 14739  df-im 14740  df-sqrt 14874  df-abs 14875  df-clim 15125  df-sum 15326  df-xmet 20503  df-met 20504  df-ovol 24533  df-vol 24534  df-mbf 24688  df-itg1 24689
This theorem is referenced by:  ftc1anclem7  35783  ftc1anclem8  35784
  Copyright terms: Public domain W3C validator