| Step | Hyp | Ref
| Expression |
| 1 | | i1ff 25711 |
. . . . . . . 8
⊢ (𝐹 ∈ dom ∫1
→ 𝐹:ℝ⟶ℝ) |
| 2 | 1 | ffvelcdmda 7104 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
ℝ) |
| 3 | | i1ff 25711 |
. . . . . . . 8
⊢ (𝐺 ∈ dom ∫1
→ 𝐺:ℝ⟶ℝ) |
| 4 | 3 | ffvelcdmda 7104 |
. . . . . . 7
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐺‘𝑥) ∈
ℝ) |
| 5 | | absreim 15332 |
. . . . . . 7
⊢ (((𝐹‘𝑥) ∈ ℝ ∧ (𝐺‘𝑥) ∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
| 6 | 2, 4, 5 | syl2an 596 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
| 7 | 6 | anandirs 679 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)))) |
| 8 | 2 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐹‘𝑥) ∈
ℂ) |
| 9 | 8 | sqvald 14183 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥)↑2) = ((𝐹‘𝑥) · (𝐹‘𝑥))) |
| 10 | 4 | recnd 11289 |
. . . . . . . . 9
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝐺‘𝑥) ∈
ℂ) |
| 11 | 10 | sqvald 14183 |
. . . . . . . 8
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐺‘𝑥)↑2) = ((𝐺‘𝑥) · (𝐺‘𝑥))) |
| 12 | 9, 11 | oveqan12d 7450 |
. . . . . . 7
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)) = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 13 | 12 | anandirs 679 |
. . . . . 6
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2)) = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 14 | 13 | fveq2d 6910 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (√‘(((𝐹‘𝑥)↑2) + ((𝐺‘𝑥)↑2))) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
| 15 | 7, 14 | eqtrd 2777 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
| 16 | 15 | mpteq2dva 5242 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝑥 ∈ ℝ ↦ (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) = (𝑥 ∈ ℝ ↦
(√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))))) |
| 17 | | ax-icn 11214 |
. . . . . . 7
⊢ i ∈
ℂ |
| 18 | | mulcl 11239 |
. . . . . . 7
⊢ ((i
∈ ℂ ∧ (𝐺‘𝑥) ∈ ℂ) → (i · (𝐺‘𝑥)) ∈ ℂ) |
| 19 | 17, 10, 18 | sylancr 587 |
. . . . . 6
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (i · (𝐺‘𝑥)) ∈ ℂ) |
| 20 | | addcl 11237 |
. . . . . 6
⊢ (((𝐹‘𝑥) ∈ ℂ ∧ (i · (𝐺‘𝑥)) ∈ ℂ) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
| 21 | 8, 19, 20 | syl2an 596 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
| 22 | 21 | anandirs 679 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) ∈ ℂ) |
| 23 | | reex 11246 |
. . . . . 6
⊢ ℝ
∈ V |
| 24 | 23 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ℝ ∈ V) |
| 25 | 2 | adantlr 715 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (𝐹‘𝑥) ∈ ℝ) |
| 26 | | ovexd 7466 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (i · (𝐺‘𝑥)) ∈ V) |
| 27 | 1 | feqmptd 6977 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 = (𝑥 ∈ ℝ ↦ (𝐹‘𝑥))) |
| 28 | 27 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → 𝐹
= (𝑥 ∈ ℝ ↦
(𝐹‘𝑥))) |
| 29 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ ℝ ∈ V) |
| 30 | 17 | a1i 11 |
. . . . . . 7
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ i ∈ ℂ) |
| 31 | | fconstmpt 5747 |
. . . . . . . 8
⊢ (ℝ
× {i}) = (𝑥 ∈
ℝ ↦ i) |
| 32 | 31 | a1i 11 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ (ℝ × {i}) = (𝑥 ∈ ℝ ↦ i)) |
| 33 | 3 | feqmptd 6977 |
. . . . . . 7
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 = (𝑥 ∈ ℝ ↦ (𝐺‘𝑥))) |
| 34 | 29, 30, 4, 32, 33 | offval2 7717 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ ((ℝ × {i}) ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺‘𝑥)))) |
| 35 | 34 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((ℝ × {i}) ∘f ·
𝐺) = (𝑥 ∈ ℝ ↦ (i · (𝐺‘𝑥)))) |
| 36 | 24, 25, 26, 28, 35 | offval2 7717 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘f + ((ℝ ×
{i}) ∘f · 𝐺)) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) |
| 37 | | absf 15376 |
. . . . . 6
⊢
abs:ℂ⟶ℝ |
| 38 | 37 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → abs:ℂ⟶ℝ) |
| 39 | 38 | feqmptd 6977 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → abs = (𝑦 ∈ ℂ ↦ (abs‘𝑦))) |
| 40 | | fveq2 6906 |
. . . 4
⊢ (𝑦 = ((𝐹‘𝑥) + (i · (𝐺‘𝑥))) → (abs‘𝑦) = (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥))))) |
| 41 | 22, 36, 39, 40 | fmptco 7149 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘f + ((ℝ ×
{i}) ∘f · 𝐺))) = (𝑥 ∈ ℝ ↦ (abs‘((𝐹‘𝑥) + (i · (𝐺‘𝑥)))))) |
| 42 | 8, 8 | mulcld 11281 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
| 43 | 10, 10 | mulcld 11281 |
. . . . . 6
⊢ ((𝐺 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
| 44 | | addcl 11237 |
. . . . . 6
⊢ ((((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ ∧ ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
| 45 | 42, 43, 44 | syl2an 596 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
∧ (𝐺 ∈ dom
∫1 ∧ 𝑥
∈ ℝ)) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
| 46 | 45 | anandirs 679 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) ∈ ℂ) |
| 47 | 42 | adantlr 715 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐹‘𝑥) · (𝐹‘𝑥)) ∈ ℂ) |
| 48 | 43 | adantll 714 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ ℝ) → ((𝐺‘𝑥) · (𝐺‘𝑥)) ∈ ℂ) |
| 49 | 23 | a1i 11 |
. . . . . . 7
⊢ (𝐹 ∈ dom ∫1
→ ℝ ∈ V) |
| 50 | 49, 2, 2, 27, 27 | offval2 7717 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) · (𝐹‘𝑥)))) |
| 51 | 50 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘f · 𝐹) = (𝑥 ∈ ℝ ↦ ((𝐹‘𝑥) · (𝐹‘𝑥)))) |
| 52 | 29, 4, 4, 33, 33 | offval2 7717 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 53 | 52 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘f · 𝐺) = (𝑥 ∈ ℝ ↦ ((𝐺‘𝑥) · (𝐺‘𝑥)))) |
| 54 | 24, 47, 48, 51, 53 | offval2 7717 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) = (𝑥 ∈ ℝ ↦ (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
| 55 | | sqrtf 15402 |
. . . . . 6
⊢
√:ℂ⟶ℂ |
| 56 | 55 | a1i 11 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → √:ℂ⟶ℂ) |
| 57 | 56 | feqmptd 6977 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → √ = (𝑦 ∈ ℂ ↦ (√‘𝑦))) |
| 58 | | fveq2 6906 |
. . . 4
⊢ (𝑦 = (((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))) → (√‘𝑦) = (√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥))))) |
| 59 | 46, 54, 57, 58 | fmptco 7149 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) = (𝑥 ∈ ℝ ↦
(√‘(((𝐹‘𝑥) · (𝐹‘𝑥)) + ((𝐺‘𝑥) · (𝐺‘𝑥)))))) |
| 60 | 16, 41, 59 | 3eqtr4d 2787 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘f + ((ℝ ×
{i}) ∘f · 𝐺))) = (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)))) |
| 61 | | elrege0 13494 |
. . . . . . 7
⊢ (𝑥 ∈ (0[,)+∞) ↔
(𝑥 ∈ ℝ ∧ 0
≤ 𝑥)) |
| 62 | | resqrtcl 15292 |
. . . . . . 7
⊢ ((𝑥 ∈ ℝ ∧ 0 ≤
𝑥) →
(√‘𝑥) ∈
ℝ) |
| 63 | 61, 62 | sylbi 217 |
. . . . . 6
⊢ (𝑥 ∈ (0[,)+∞) →
(√‘𝑥) ∈
ℝ) |
| 64 | 63 | adantl 481 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (0[,)+∞)) → (√‘𝑥) ∈ ℝ) |
| 65 | | id 22 |
. . . . . . . . 9
⊢
(√:ℂ⟶ℂ →
√:ℂ⟶ℂ) |
| 66 | 65 | feqmptd 6977 |
. . . . . . . 8
⊢
(√:ℂ⟶ℂ → √ = (𝑥 ∈ ℂ ↦ (√‘𝑥))) |
| 67 | 55, 66 | ax-mp 5 |
. . . . . . 7
⊢ √ =
(𝑥 ∈ ℂ ↦
(√‘𝑥)) |
| 68 | 67 | reseq1i 5993 |
. . . . . 6
⊢ (√
↾ (0[,)+∞)) = ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾
(0[,)+∞)) |
| 69 | | rge0ssre 13496 |
. . . . . . . 8
⊢
(0[,)+∞) ⊆ ℝ |
| 70 | | ax-resscn 11212 |
. . . . . . . 8
⊢ ℝ
⊆ ℂ |
| 71 | 69, 70 | sstri 3993 |
. . . . . . 7
⊢
(0[,)+∞) ⊆ ℂ |
| 72 | | resmpt 6055 |
. . . . . . 7
⊢
((0[,)+∞) ⊆ ℂ → ((𝑥 ∈ ℂ ↦ (√‘𝑥)) ↾ (0[,)+∞)) =
(𝑥 ∈ (0[,)+∞)
↦ (√‘𝑥))) |
| 73 | 71, 72 | ax-mp 5 |
. . . . . 6
⊢ ((𝑥 ∈ ℂ ↦
(√‘𝑥)) ↾
(0[,)+∞)) = (𝑥 ∈
(0[,)+∞) ↦ (√‘𝑥)) |
| 74 | 68, 73 | eqtri 2765 |
. . . . 5
⊢ (√
↾ (0[,)+∞)) = (𝑥 ∈ (0[,)+∞) ↦
(√‘𝑥)) |
| 75 | 64, 74 | fmptd 7134 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾
(0[,)+∞)):(0[,)+∞)⟶ℝ) |
| 76 | | ge0addcl 13500 |
. . . . . 6
⊢ ((𝑥 ∈ (0[,)+∞) ∧
𝑦 ∈ (0[,)+∞))
→ (𝑥 + 𝑦) ∈
(0[,)+∞)) |
| 77 | 76 | adantl 481 |
. . . . 5
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ (𝑥
∈ (0[,)+∞) ∧ 𝑦 ∈ (0[,)+∞))) → (𝑥 + 𝑦) ∈ (0[,)+∞)) |
| 78 | | oveq12 7440 |
. . . . . . . . 9
⊢ ((𝑧 = 𝐹 ∧ 𝑧 = 𝐹) → (𝑧 ∘f · 𝑧) = (𝐹 ∘f · 𝐹)) |
| 79 | 78 | anidms 566 |
. . . . . . . 8
⊢ (𝑧 = 𝐹 → (𝑧 ∘f · 𝑧) = (𝐹 ∘f · 𝐹)) |
| 80 | 79 | feq1d 6720 |
. . . . . . 7
⊢ (𝑧 = 𝐹 → ((𝑧 ∘f · 𝑧):ℝ⟶(0[,)+∞)
↔ (𝐹
∘f · 𝐹):ℝ⟶(0[,)+∞))) |
| 81 | | i1ff 25711 |
. . . . . . . . . . . 12
⊢ (𝑧 ∈ dom ∫1
→ 𝑧:ℝ⟶ℝ) |
| 82 | 81 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ (𝑧‘𝑥) ∈
ℝ) |
| 83 | 82, 82 | remulcld 11291 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ ℝ) |
| 84 | 82 | msqge0d 11831 |
. . . . . . . . . 10
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ 0 ≤ ((𝑧‘𝑥) · (𝑧‘𝑥))) |
| 85 | | elrege0 13494 |
. . . . . . . . . 10
⊢ (((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ (0[,)+∞) ↔ (((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ ℝ ∧ 0 ≤ ((𝑧‘𝑥) · (𝑧‘𝑥)))) |
| 86 | 83, 84, 85 | sylanbrc 583 |
. . . . . . . . 9
⊢ ((𝑧 ∈ dom ∫1
∧ 𝑥 ∈ ℝ)
→ ((𝑧‘𝑥) · (𝑧‘𝑥)) ∈ (0[,)+∞)) |
| 87 | 86 | fmpttd 7135 |
. . . . . . . 8
⊢ (𝑧 ∈ dom ∫1
→ (𝑥 ∈ ℝ
↦ ((𝑧‘𝑥) · (𝑧‘𝑥))):ℝ⟶(0[,)+∞)) |
| 88 | 23 | a1i 11 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom ∫1
→ ℝ ∈ V) |
| 89 | 81 | feqmptd 6977 |
. . . . . . . . . 10
⊢ (𝑧 ∈ dom ∫1
→ 𝑧 = (𝑥 ∈ ℝ ↦ (𝑧‘𝑥))) |
| 90 | 88, 82, 82, 89, 89 | offval2 7717 |
. . . . . . . . 9
⊢ (𝑧 ∈ dom ∫1
→ (𝑧
∘f · 𝑧) = (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥)))) |
| 91 | 90 | feq1d 6720 |
. . . . . . . 8
⊢ (𝑧 ∈ dom ∫1
→ ((𝑧
∘f · 𝑧):ℝ⟶(0[,)+∞) ↔ (𝑥 ∈ ℝ ↦ ((𝑧‘𝑥) · (𝑧‘𝑥))):ℝ⟶(0[,)+∞))) |
| 92 | 87, 91 | mpbird 257 |
. . . . . . 7
⊢ (𝑧 ∈ dom ∫1
→ (𝑧
∘f · 𝑧):ℝ⟶(0[,)+∞)) |
| 93 | 80, 92 | vtoclga 3577 |
. . . . . 6
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘f · 𝐹):ℝ⟶(0[,)+∞)) |
| 94 | 93 | adantr 480 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘f · 𝐹):ℝ⟶(0[,)+∞)) |
| 95 | | oveq12 7440 |
. . . . . . . . 9
⊢ ((𝑧 = 𝐺 ∧ 𝑧 = 𝐺) → (𝑧 ∘f · 𝑧) = (𝐺 ∘f · 𝐺)) |
| 96 | 95 | anidms 566 |
. . . . . . . 8
⊢ (𝑧 = 𝐺 → (𝑧 ∘f · 𝑧) = (𝐺 ∘f · 𝐺)) |
| 97 | 96 | feq1d 6720 |
. . . . . . 7
⊢ (𝑧 = 𝐺 → ((𝑧 ∘f · 𝑧):ℝ⟶(0[,)+∞)
↔ (𝐺
∘f · 𝐺):ℝ⟶(0[,)+∞))) |
| 98 | 97, 92 | vtoclga 3577 |
. . . . . 6
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘f · 𝐺):ℝ⟶(0[,)+∞)) |
| 99 | 98 | adantl 481 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘f · 𝐺):ℝ⟶(0[,)+∞)) |
| 100 | | inidm 4227 |
. . . . 5
⊢ (ℝ
∩ ℝ) = ℝ |
| 101 | 77, 94, 99, 24, 24, 100 | off 7715 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)):ℝ⟶(0[,)+∞)) |
| 102 | | fco2 6762 |
. . . 4
⊢
(((√ ↾ (0[,)+∞)):(0[,)+∞)⟶ℝ ∧
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺)):ℝ⟶(0[,)+∞)) →
(√ ∘ ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))):ℝ⟶ℝ) |
| 103 | 75, 101, 102 | syl2anc 584 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))):ℝ⟶ℝ) |
| 104 | | rnco 6272 |
. . . 4
⊢ ran
(√ ∘ ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))) = ran (√ ↾ ran
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) |
| 105 | | ffn 6736 |
. . . . . . . 8
⊢
(√:ℂ⟶ℂ → √ Fn
ℂ) |
| 106 | 55, 105 | ax-mp 5 |
. . . . . . 7
⊢ √
Fn ℂ |
| 107 | | readdcl 11238 |
. . . . . . . . . . 11
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 + 𝑦) ∈ ℝ) |
| 108 | 107 | adantl 481 |
. . . . . . . . . 10
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ (𝑥
∈ ℝ ∧ 𝑦
∈ ℝ)) → (𝑥
+ 𝑦) ∈
ℝ) |
| 109 | | remulcl 11240 |
. . . . . . . . . . . . 13
⊢ ((𝑥 ∈ ℝ ∧ 𝑦 ∈ ℝ) → (𝑥 · 𝑦) ∈ ℝ) |
| 110 | 109 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐹 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 · 𝑦) ∈
ℝ) |
| 111 | 110, 1, 1, 49, 49, 100 | off 7715 |
. . . . . . . . . . 11
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘f · 𝐹):ℝ⟶ℝ) |
| 112 | 111 | adantr 480 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘f · 𝐹):ℝ⟶ℝ) |
| 113 | 109 | adantl 481 |
. . . . . . . . . . . 12
⊢ ((𝐺 ∈ dom ∫1
∧ (𝑥 ∈ ℝ
∧ 𝑦 ∈ ℝ))
→ (𝑥 · 𝑦) ∈
ℝ) |
| 114 | 113, 3, 3, 29, 29, 100 | off 7715 |
. . . . . . . . . . 11
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘f · 𝐺):ℝ⟶ℝ) |
| 115 | 114 | adantl 481 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘f · 𝐺):ℝ⟶ℝ) |
| 116 | 108, 112,
115, 24, 24, 100 | off 7715 |
. . . . . . . . 9
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)):ℝ⟶ℝ) |
| 117 | 116 | frnd 6744 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ⊆
ℝ) |
| 118 | 117, 70 | sstrdi 3996 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ⊆
ℂ) |
| 119 | | fnssres 6691 |
. . . . . . 7
⊢ ((√
Fn ℂ ∧ ran ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺)) ⊆ ℂ) →
(√ ↾ ran ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))) Fn ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) |
| 120 | 106, 118,
119 | sylancr 587 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾ ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) Fn ran ((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺))) |
| 121 | | id 22 |
. . . . . . . . . 10
⊢ (𝐹 ∈ dom ∫1
→ 𝐹 ∈ dom
∫1) |
| 122 | 121, 121 | i1fmul 25731 |
. . . . . . . . 9
⊢ (𝐹 ∈ dom ∫1
→ (𝐹
∘f · 𝐹) ∈ dom
∫1) |
| 123 | 122 | adantr 480 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐹 ∘f · 𝐹) ∈ dom
∫1) |
| 124 | | id 22 |
. . . . . . . . . 10
⊢ (𝐺 ∈ dom ∫1
→ 𝐺 ∈ dom
∫1) |
| 125 | 124, 124 | i1fmul 25731 |
. . . . . . . . 9
⊢ (𝐺 ∈ dom ∫1
→ (𝐺
∘f · 𝐺) ∈ dom
∫1) |
| 126 | 125 | adantl 481 |
. . . . . . . 8
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (𝐺 ∘f · 𝐺) ∈ dom
∫1) |
| 127 | 123, 126 | i1fadd 25730 |
. . . . . . 7
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∈ dom
∫1) |
| 128 | | i1frn 25712 |
. . . . . . 7
⊢ (((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) ∈ dom
∫1 → ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∈
Fin) |
| 129 | 127, 128 | syl 17 |
. . . . . 6
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∈
Fin) |
| 130 | | fnfi 9218 |
. . . . . 6
⊢
(((√ ↾ ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) Fn ran ((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) ∧ ran
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺)) ∈ Fin) → (√ ↾ ran
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) ∈ Fin) |
| 131 | 120, 129,
130 | syl2anc 584 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ↾ ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∈
Fin) |
| 132 | | rnfi 9380 |
. . . . 5
⊢ ((√
↾ ran ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))) ∈ Fin → ran
(√ ↾ ran ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))) ∈ Fin) |
| 133 | 131, 132 | syl 17 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran (√ ↾ ran ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∈
Fin) |
| 134 | 104, 133 | eqeltrid 2845 |
. . 3
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → ran (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∈
Fin) |
| 135 | | cnvco 5896 |
. . . . . . 7
⊢ ◡(√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) = (◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∘ ◡√) |
| 136 | 135 | imaeq1i 6075 |
. . . . . 6
⊢ (◡(√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) “ {𝑥}) = ((◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∘ ◡√) “ {𝑥}) |
| 137 | | imaco 6271 |
. . . . . 6
⊢ ((◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) ∘ ◡√) “ {𝑥}) = (◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) “ (◡√ “ {𝑥})) |
| 138 | 136, 137 | eqtri 2765 |
. . . . 5
⊢ (◡(√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) “ {𝑥}) = (◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) “ (◡√ “ {𝑥})) |
| 139 | | i1fima 25713 |
. . . . . 6
⊢ (((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) ∈ dom
∫1 → (◡((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) “ (◡√ “ {𝑥})) ∈ dom vol) |
| 140 | 127, 139 | syl 17 |
. . . . 5
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (◡((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) “ (◡√ “ {𝑥})) ∈ dom vol) |
| 141 | 138, 140 | eqeltrid 2845 |
. . . 4
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (◡(√
∘ ((𝐹
∘f · 𝐹) ∘f + (𝐺 ∘f · 𝐺))) “ {𝑥}) ∈ dom vol) |
| 142 | 141 | adantr 480 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∖ {0})) →
(◡(√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) “ {𝑥}) ∈ dom
vol) |
| 143 | 138 | fveq2i 6909 |
. . . 4
⊢
(vol‘(◡(√ ∘
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) “ {𝑥})) = (vol‘(◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) “ (◡√ “ {𝑥}))) |
| 144 | | eldifsni 4790 |
. . . . . . . 8
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) ∖ {0}) → 𝑥 ≠ 0) |
| 145 | | c0ex 11255 |
. . . . . . . . . . . 12
⊢ 0 ∈
V |
| 146 | 145 | elsn 4641 |
. . . . . . . . . . 11
⊢ (0 ∈
{𝑥} ↔ 0 = 𝑥) |
| 147 | | eqcom 2744 |
. . . . . . . . . . 11
⊢ (0 =
𝑥 ↔ 𝑥 = 0) |
| 148 | 146, 147 | bitri 275 |
. . . . . . . . . 10
⊢ (0 ∈
{𝑥} ↔ 𝑥 = 0) |
| 149 | 148 | necon3bbii 2988 |
. . . . . . . . 9
⊢ (¬ 0
∈ {𝑥} ↔ 𝑥 ≠ 0) |
| 150 | | sqrt0 15280 |
. . . . . . . . . 10
⊢
(√‘0) = 0 |
| 151 | 150 | eleq1i 2832 |
. . . . . . . . 9
⊢
((√‘0) ∈ {𝑥} ↔ 0 ∈ {𝑥}) |
| 152 | 149, 151 | xchnxbir 333 |
. . . . . . . 8
⊢ (¬
(√‘0) ∈ {𝑥} ↔ 𝑥 ≠ 0) |
| 153 | 144, 152 | sylibr 234 |
. . . . . . 7
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) ∖ {0}) → ¬
(√‘0) ∈ {𝑥}) |
| 154 | 153 | olcd 875 |
. . . . . 6
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) ∖ {0}) → (¬ 0 ∈
ℂ ∨ ¬ (√‘0) ∈ {𝑥})) |
| 155 | | ianor 984 |
. . . . . . 7
⊢ (¬ (0
∈ ℂ ∧ (√‘0) ∈ {𝑥}) ↔ (¬ 0 ∈ ℂ ∨ ¬
(√‘0) ∈ {𝑥})) |
| 156 | | elpreima 7078 |
. . . . . . . 8
⊢ (√
Fn ℂ → (0 ∈ (◡√
“ {𝑥}) ↔ (0
∈ ℂ ∧ (√‘0) ∈ {𝑥}))) |
| 157 | 55, 105, 156 | mp2b 10 |
. . . . . . 7
⊢ (0 ∈
(◡√ “ {𝑥}) ↔ (0 ∈ ℂ ∧
(√‘0) ∈ {𝑥})) |
| 158 | 155, 157 | xchnxbir 333 |
. . . . . 6
⊢ (¬ 0
∈ (◡√ “ {𝑥}) ↔ (¬ 0 ∈
ℂ ∨ ¬ (√‘0) ∈ {𝑥})) |
| 159 | 154, 158 | sylibr 234 |
. . . . 5
⊢ (𝑥 ∈ (ran (√ ∘
((𝐹 ∘f
· 𝐹)
∘f + (𝐺
∘f · 𝐺))) ∖ {0}) → ¬ 0 ∈
(◡√ “ {𝑥})) |
| 160 | | i1fima2 25714 |
. . . . 5
⊢ ((((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺)) ∈ dom
∫1 ∧ ¬ 0 ∈ (◡√ “ {𝑥})) → (vol‘(◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) “ (◡√ “ {𝑥}))) ∈ ℝ) |
| 161 | 127, 159,
160 | syl2an 596 |
. . . 4
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∖ {0})) →
(vol‘(◡((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺)) “ (◡√ “ {𝑥}))) ∈ ℝ) |
| 162 | 143, 161 | eqeltrid 2845 |
. . 3
⊢ (((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) ∧ 𝑥
∈ (ran (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∖ {0})) →
(vol‘(◡(√ ∘ ((𝐹 ∘f ·
𝐹) ∘f +
(𝐺 ∘f
· 𝐺))) “
{𝑥})) ∈
ℝ) |
| 163 | 103, 134,
142, 162 | i1fd 25716 |
. 2
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (√ ∘ ((𝐹 ∘f · 𝐹) ∘f + (𝐺 ∘f ·
𝐺))) ∈ dom
∫1) |
| 164 | 60, 163 | eqeltrd 2841 |
1
⊢ ((𝐹 ∈ dom ∫1
∧ 𝐺 ∈ dom
∫1) → (abs ∘ (𝐹 ∘f + ((ℝ ×
{i}) ∘f · 𝐺))) ∈ dom
∫1) |