| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaco | Structured version Visualization version GIF version | ||
| Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| Ref | Expression |
|---|---|
| imaco | ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3055 | . . 3 ⊢ (∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) | |
| 2 | vex 3454 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elima 6039 | . . 3 ⊢ (𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶)) ↔ ∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥) |
| 4 | vex 3454 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 5 | 4, 2 | brco 5837 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 6 | 5 | rexbii 3077 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 7 | rexcom4 3265 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 8 | r19.41v 3168 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 9 | 8 | exbii 1848 | . . . . 5 ⊢ (∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 10 | 6, 7, 9 | 3bitri 297 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 11 | 2 | elima 6039 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥) |
| 12 | vex 3454 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | 12 | elima 6039 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧𝐵𝑦) |
| 14 | 13 | anbi1i 624 | . . . . 5 ⊢ ((𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 15 | 14 | exbii 1848 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 16 | 10, 11, 15 | 3bitr4i 303 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) |
| 17 | 1, 3, 16 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶))) |
| 18 | 17 | eqriv 2727 | 1 ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∃wex 1779 ∈ wcel 2109 ∃wrex 3054 class class class wbr 5110 “ cima 5644 ∘ ccom 5645 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-11 2158 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-sb 2066 df-clab 2709 df-cleq 2722 df-clel 2804 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-sn 4593 df-pr 4595 df-op 4599 df-br 5111 df-opab 5173 df-xp 5647 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 |
| This theorem is referenced by: fvco2 6961 suppco 8188 fipreima 9316 fsuppcolem 9359 psgnunilem1 19430 gsumzf1o 19849 dprdf1o 19971 frlmup3 21716 f1lindf 21738 lindfmm 21743 cnco 23160 cnpco 23161 ptrescn 23533 xkoco1cn 23551 xkoco2cn 23552 xkococnlem 23553 qtopcn 23608 fmco 23855 uniioombllem3 25493 cncombf 25566 deg1val 26008 ofpreima 32596 mbfmco 34262 eulerpartlemmf 34373 erdsze2lem2 35198 cvmliftmolem1 35275 cvmlift2lem9a 35297 cvmlift2lem9 35305 mclsppslem 35577 bj-imdirco 37185 poimirlem15 37636 poimirlem16 37637 poimirlem19 37640 cnambfre 37669 ftc1anclem3 37696 aks6d1c6lem4 42168 aks6d1c6lem5 42172 trclimalb2 43722 brtrclfv2 43723 frege97d 43748 frege109d 43753 frege131d 43760 extoimad 44160 imo72b2lem0 44161 imo72b2lem2 44163 imo72b2lem1 44165 imo72b2 44168 limccog 45625 smfco 46807 afv2co2 47262 grimco 47893 |
| Copyright terms: Public domain | W3C validator |