Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > imaco | Structured version Visualization version GIF version |
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) |
Ref | Expression |
---|---|
imaco | ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-rex 3070 | . . 3 ⊢ (∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) | |
2 | vex 3436 | . . . 4 ⊢ 𝑥 ∈ V | |
3 | 2 | elima 5974 | . . 3 ⊢ (𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶)) ↔ ∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥) |
4 | rexcom4 3233 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
5 | r19.41v 3276 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
6 | 5 | exbii 1850 | . . . . 5 ⊢ (∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
7 | 4, 6 | bitri 274 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
8 | 2 | elima 5974 | . . . . 5 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥) |
9 | vex 3436 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
10 | 9, 2 | brco 5779 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
11 | 10 | rexbii 3181 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
12 | 8, 11 | bitri 274 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
13 | vex 3436 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
14 | 13 | elima 5974 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧𝐵𝑦) |
15 | 14 | anbi1i 624 | . . . . 5 ⊢ ((𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
16 | 15 | exbii 1850 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
17 | 7, 12, 16 | 3bitr4i 303 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) |
18 | 1, 3, 17 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶))) |
19 | 18 | eqriv 2735 | 1 ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
Colors of variables: wff setvar class |
Syntax hints: ∧ wa 396 = wceq 1539 ∃wex 1782 ∈ wcel 2106 ∃wrex 3065 class class class wbr 5074 “ cima 5592 ∘ ccom 5593 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-11 2154 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-sb 2068 df-clab 2716 df-cleq 2730 df-clel 2816 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-dif 3890 df-un 3892 df-in 3894 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-br 5075 df-opab 5137 df-xp 5595 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 |
This theorem is referenced by: fvco2 6865 suppco 8022 fipreima 9125 fsuppcolem 9160 psgnunilem1 19101 gsumzf1o 19513 dprdf1o 19635 frlmup3 21007 f1lindf 21029 lindfmm 21034 cnco 22417 cnpco 22418 ptrescn 22790 xkoco1cn 22808 xkoco2cn 22809 xkococnlem 22810 qtopcn 22865 fmco 23112 uniioombllem3 24749 cncombf 24822 deg1val 25261 ofpreima 31002 mbfmco 32231 eulerpartlemmf 32342 erdsze2lem2 33166 cvmliftmolem1 33243 cvmlift2lem9a 33265 cvmlift2lem9 33273 mclsppslem 33545 bj-imdirco 35361 poimirlem15 35792 poimirlem16 35793 poimirlem19 35796 cnambfre 35825 ftc1anclem3 35852 trclimalb2 41334 brtrclfv2 41335 frege97d 41360 frege109d 41365 frege131d 41372 extoimad 41775 imo72b2lem0 41776 imo72b2lem2 41778 imo72b2lem1 41780 imo72b2 41783 limccog 43161 smfco 44336 afv2co2 44749 isomgrtrlem 45290 |
Copyright terms: Public domain | W3C validator |