| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaco | Structured version Visualization version GIF version | ||
| Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| Ref | Expression |
|---|---|
| imaco | ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3057 | . . 3 ⊢ (∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) | |
| 2 | vex 3440 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elima 6014 | . . 3 ⊢ (𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶)) ↔ ∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥) |
| 4 | vex 3440 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 5 | 4, 2 | brco 5810 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 6 | 5 | rexbii 3079 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 7 | rexcom4 3259 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 8 | r19.41v 3162 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 9 | 8 | exbii 1849 | . . . . 5 ⊢ (∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 10 | 6, 7, 9 | 3bitri 297 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 11 | 2 | elima 6014 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥) |
| 12 | vex 3440 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | 12 | elima 6014 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧𝐵𝑦) |
| 14 | 13 | anbi1i 624 | . . . . 5 ⊢ ((𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 15 | 14 | exbii 1849 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 16 | 10, 11, 15 | 3bitr4i 303 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) |
| 17 | 1, 3, 16 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶))) |
| 18 | 17 | eqriv 2728 | 1 ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2111 ∃wrex 3056 class class class wbr 5091 “ cima 5619 ∘ ccom 5620 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-11 2160 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pr 5370 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2710 df-cleq 2723 df-clel 2806 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4284 df-if 4476 df-sn 4577 df-pr 4579 df-op 4583 df-br 5092 df-opab 5154 df-xp 5622 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 |
| This theorem is referenced by: fvco2 6919 suppco 8136 fipreima 9242 fsuppcolem 9285 psgnunilem1 19403 gsumzf1o 19822 dprdf1o 19944 frlmup3 21735 f1lindf 21757 lindfmm 21762 cnco 23179 cnpco 23180 ptrescn 23552 xkoco1cn 23570 xkoco2cn 23571 xkococnlem 23572 qtopcn 23627 fmco 23874 uniioombllem3 25511 cncombf 25584 deg1val 26026 ofpreima 32642 esplysply 33587 mbfmco 34272 eulerpartlemmf 34383 erdsze2lem2 35236 cvmliftmolem1 35313 cvmlift2lem9a 35335 cvmlift2lem9 35343 mclsppslem 35615 bj-imdirco 37223 poimirlem15 37674 poimirlem16 37675 poimirlem19 37678 cnambfre 37707 ftc1anclem3 37734 aks6d1c6lem4 42205 aks6d1c6lem5 42209 trclimalb2 43758 brtrclfv2 43759 frege97d 43784 frege109d 43789 frege131d 43796 extoimad 44196 imo72b2lem0 44197 imo72b2lem2 44199 imo72b2lem1 44201 imo72b2 44204 limccog 45659 smfco 46839 afv2co2 47287 grimco 47919 |
| Copyright terms: Public domain | W3C validator |