| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > imaco | Structured version Visualization version GIF version | ||
| Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.) (Proof shortened by Wolf Lammen, 16-May-2025.) |
| Ref | Expression |
|---|---|
| imaco | ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-rex 3058 | . . 3 ⊢ (∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) | |
| 2 | vex 3441 | . . . 4 ⊢ 𝑥 ∈ V | |
| 3 | 2 | elima 6018 | . . 3 ⊢ (𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶)) ↔ ∃𝑦 ∈ (𝐵 “ 𝐶)𝑦𝐴𝑥) |
| 4 | vex 3441 | . . . . . . 7 ⊢ 𝑧 ∈ V | |
| 5 | 4, 2 | brco 5814 | . . . . . 6 ⊢ (𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 6 | 5 | rexbii 3080 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 7 | rexcom4 3260 | . . . . 5 ⊢ (∃𝑧 ∈ 𝐶 ∃𝑦(𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 8 | r19.41v 3163 | . . . . . 6 ⊢ (∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) | |
| 9 | 8 | exbii 1849 | . . . . 5 ⊢ (∃𝑦∃𝑧 ∈ 𝐶 (𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 10 | 6, 7, 9 | 3bitri 297 | . . . 4 ⊢ (∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥 ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 11 | 2 | elima 6018 | . . . 4 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧(𝐴 ∘ 𝐵)𝑥) |
| 12 | vex 3441 | . . . . . . 7 ⊢ 𝑦 ∈ V | |
| 13 | 12 | elima 6018 | . . . . . 6 ⊢ (𝑦 ∈ (𝐵 “ 𝐶) ↔ ∃𝑧 ∈ 𝐶 𝑧𝐵𝑦) |
| 14 | 13 | anbi1i 624 | . . . . 5 ⊢ ((𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 15 | 14 | exbii 1849 | . . . 4 ⊢ (∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧 ∈ 𝐶 𝑧𝐵𝑦 ∧ 𝑦𝐴𝑥)) |
| 16 | 10, 11, 15 | 3bitr4i 303 | . . 3 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵 “ 𝐶) ∧ 𝑦𝐴𝑥)) |
| 17 | 1, 3, 16 | 3bitr4ri 304 | . 2 ⊢ (𝑥 ∈ ((𝐴 ∘ 𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵 “ 𝐶))) |
| 18 | 17 | eqriv 2730 | 1 ⊢ ((𝐴 ∘ 𝐵) “ 𝐶) = (𝐴 “ (𝐵 “ 𝐶)) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1541 ∃wex 1780 ∈ wcel 2113 ∃wrex 3057 class class class wbr 5093 “ cima 5622 ∘ ccom 5623 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-11 2162 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-sb 2068 df-clab 2712 df-cleq 2725 df-clel 2808 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-br 5094 df-opab 5156 df-xp 5625 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 |
| This theorem is referenced by: fvco2 6925 suppco 8142 fipreima 9249 fsuppcolem 9292 psgnunilem1 19407 gsumzf1o 19826 dprdf1o 19948 frlmup3 21739 f1lindf 21761 lindfmm 21766 cnco 23182 cnpco 23183 ptrescn 23555 xkoco1cn 23573 xkoco2cn 23574 xkococnlem 23575 qtopcn 23630 fmco 23877 uniioombllem3 25514 cncombf 25587 deg1val 26029 ofpreima 32649 esplysply 33611 mbfmco 34298 eulerpartlemmf 34409 erdsze2lem2 35269 cvmliftmolem1 35346 cvmlift2lem9a 35368 cvmlift2lem9 35376 mclsppslem 35648 bj-imdirco 37255 poimirlem15 37695 poimirlem16 37696 poimirlem19 37699 cnambfre 37728 ftc1anclem3 37755 aks6d1c6lem4 42286 aks6d1c6lem5 42290 trclimalb2 43843 brtrclfv2 43844 frege97d 43869 frege109d 43874 frege131d 43881 extoimad 44281 imo72b2lem0 44282 imo72b2lem2 44284 imo72b2lem1 44286 imo72b2 44289 limccog 45744 smfco 46924 afv2co2 47381 grimco 48013 |
| Copyright terms: Public domain | W3C validator |