MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  imaco Structured version   Visualization version   GIF version

Theorem imaco 6155
Description: Image of the composition of two classes. (Contributed by Jason Orendorff, 12-Dec-2006.)
Assertion
Ref Expression
imaco ((𝐴𝐵) “ 𝐶) = (𝐴 “ (𝐵𝐶))

Proof of Theorem imaco
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 df-rex 3070 . . 3 (∃𝑦 ∈ (𝐵𝐶)𝑦𝐴𝑥 ↔ ∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥))
2 vex 3436 . . . 4 𝑥 ∈ V
32elima 5974 . . 3 (𝑥 ∈ (𝐴 “ (𝐵𝐶)) ↔ ∃𝑦 ∈ (𝐵𝐶)𝑦𝐴𝑥)
4 rexcom4 3233 . . . . 5 (∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥))
5 r19.41v 3276 . . . . . 6 (∃𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥) ↔ (∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
65exbii 1850 . . . . 5 (∃𝑦𝑧𝐶 (𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
74, 6bitri 274 . . . 4 (∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
82elima 5974 . . . . 5 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑧𝐶 𝑧(𝐴𝐵)𝑥)
9 vex 3436 . . . . . . 7 𝑧 ∈ V
109, 2brco 5779 . . . . . 6 (𝑧(𝐴𝐵)𝑥 ↔ ∃𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
1110rexbii 3181 . . . . 5 (∃𝑧𝐶 𝑧(𝐴𝐵)𝑥 ↔ ∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
128, 11bitri 274 . . . 4 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑧𝐶𝑦(𝑧𝐵𝑦𝑦𝐴𝑥))
13 vex 3436 . . . . . . 7 𝑦 ∈ V
1413elima 5974 . . . . . 6 (𝑦 ∈ (𝐵𝐶) ↔ ∃𝑧𝐶 𝑧𝐵𝑦)
1514anbi1i 624 . . . . 5 ((𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥) ↔ (∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
1615exbii 1850 . . . 4 (∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥) ↔ ∃𝑦(∃𝑧𝐶 𝑧𝐵𝑦𝑦𝐴𝑥))
177, 12, 163bitr4i 303 . . 3 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ ∃𝑦(𝑦 ∈ (𝐵𝐶) ∧ 𝑦𝐴𝑥))
181, 3, 173bitr4ri 304 . 2 (𝑥 ∈ ((𝐴𝐵) “ 𝐶) ↔ 𝑥 ∈ (𝐴 “ (𝐵𝐶)))
1918eqriv 2735 1 ((𝐴𝐵) “ 𝐶) = (𝐴 “ (𝐵𝐶))
Colors of variables: wff setvar class
Syntax hints:  wa 396   = wceq 1539  wex 1782  wcel 2106  wrex 3065   class class class wbr 5074  cima 5592  ccom 5593
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-11 2154  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-sb 2068  df-clab 2716  df-cleq 2730  df-clel 2816  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-dif 3890  df-un 3892  df-in 3894  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-br 5075  df-opab 5137  df-xp 5595  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602
This theorem is referenced by:  fvco2  6865  suppco  8022  fipreima  9125  fsuppcolem  9160  psgnunilem1  19101  gsumzf1o  19513  dprdf1o  19635  frlmup3  21007  f1lindf  21029  lindfmm  21034  cnco  22417  cnpco  22418  ptrescn  22790  xkoco1cn  22808  xkoco2cn  22809  xkococnlem  22810  qtopcn  22865  fmco  23112  uniioombllem3  24749  cncombf  24822  deg1val  25261  ofpreima  31002  mbfmco  32231  eulerpartlemmf  32342  erdsze2lem2  33166  cvmliftmolem1  33243  cvmlift2lem9a  33265  cvmlift2lem9  33273  mclsppslem  33545  bj-imdirco  35361  poimirlem15  35792  poimirlem16  35793  poimirlem19  35796  cnambfre  35825  ftc1anclem3  35852  trclimalb2  41334  brtrclfv2  41335  frege97d  41360  frege109d  41365  frege131d  41372  extoimad  41775  imo72b2lem0  41776  imo72b2lem2  41778  imo72b2lem1  41780  imo72b2  41783  limccog  43161  smfco  44336  afv2co2  44749  isomgrtrlem  45290
  Copyright terms: Public domain W3C validator