| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > gsumzinv | Structured version Visualization version GIF version | ||
| Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
| Ref | Expression |
|---|---|
| gsumzinv.b | ⊢ 𝐵 = (Base‘𝐺) |
| gsumzinv.0 | ⊢ 0 = (0g‘𝐺) |
| gsumzinv.z | ⊢ 𝑍 = (Cntz‘𝐺) |
| gsumzinv.i | ⊢ 𝐼 = (invg‘𝐺) |
| gsumzinv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
| gsumzinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| gsumzinv.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| gsumzinv.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| gsumzinv.n | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
| Ref | Expression |
|---|---|
| gsumzinv | ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsumzinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
| 2 | gsumzinv.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
| 3 | gsumzinv.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
| 4 | eqid 2731 | . . 3 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
| 5 | gsumzinv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
| 6 | 5 | grpmndd 18859 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 7 | gsumzinv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
| 8 | gsumzinv.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
| 9 | 1, 8 | grpinvf 18899 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐼:𝐵⟶𝐵) |
| 10 | 5, 9 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼:𝐵⟶𝐵) |
| 11 | gsumzinv.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
| 12 | fco 6675 | . . . 4 ⊢ ((𝐼:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐼 ∘ 𝐹):𝐴⟶𝐵) | |
| 13 | 10, 11, 12 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝐼 ∘ 𝐹):𝐴⟶𝐵) |
| 14 | 4, 8 | invoppggim 19272 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺))) |
| 15 | gimghm 19176 | . . . . . 6 ⊢ (𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺))) | |
| 16 | ghmmhm 19138 | . . . . . 6 ⊢ (𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) | |
| 17 | 5, 14, 15, 16 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) |
| 18 | gsumzinv.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
| 19 | eqid 2731 | . . . . . 6 ⊢ (Cntz‘(oppg‘𝐺)) = (Cntz‘(oppg‘𝐺)) | |
| 20 | 3, 19 | cntzmhm2 19254 | . . . . 5 ⊢ ((𝐼 ∈ (𝐺 MndHom (oppg‘𝐺)) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹))) |
| 21 | 17, 18, 20 | syl2anc 584 | . . . 4 ⊢ (𝜑 → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹))) |
| 22 | rnco2 6201 | . . . 4 ⊢ ran (𝐼 ∘ 𝐹) = (𝐼 “ ran 𝐹) | |
| 23 | 22 | fveq2i 6825 | . . . . 5 ⊢ (𝑍‘ran (𝐼 ∘ 𝐹)) = (𝑍‘(𝐼 “ ran 𝐹)) |
| 24 | 4, 3 | oppgcntz 19276 | . . . . 5 ⊢ (𝑍‘(𝐼 “ ran 𝐹)) = ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹)) |
| 25 | 23, 24 | eqtri 2754 | . . . 4 ⊢ (𝑍‘ran (𝐼 ∘ 𝐹)) = ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹)) |
| 26 | 21, 22, 25 | 3sstr4g 3983 | . . 3 ⊢ (𝜑 → ran (𝐼 ∘ 𝐹) ⊆ (𝑍‘ran (𝐼 ∘ 𝐹))) |
| 27 | 2 | fvexi 6836 | . . . . 5 ⊢ 0 ∈ V |
| 28 | 27 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
| 29 | 1 | fvexi 6836 | . . . . 5 ⊢ 𝐵 ∈ V |
| 30 | 29 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
| 31 | gsumzinv.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
| 32 | 2, 8 | grpinvid 18912 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝐼‘ 0 ) = 0 ) |
| 33 | 5, 32 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼‘ 0 ) = 0 ) |
| 34 | 28, 11, 10, 7, 30, 31, 33 | fsuppco2 9287 | . . 3 ⊢ (𝜑 → (𝐼 ∘ 𝐹) finSupp 0 ) |
| 35 | 1, 2, 3, 4, 6, 7, 13, 26, 34 | gsumzoppg 19856 | . 2 ⊢ (𝜑 → ((oppg‘𝐺) Σg (𝐼 ∘ 𝐹)) = (𝐺 Σg (𝐼 ∘ 𝐹))) |
| 36 | 4 | oppgmnd 19266 | . . . 4 ⊢ (𝐺 ∈ Mnd → (oppg‘𝐺) ∈ Mnd) |
| 37 | 6, 36 | syl 17 | . . 3 ⊢ (𝜑 → (oppg‘𝐺) ∈ Mnd) |
| 38 | 1, 3, 6, 37, 7, 17, 11, 18, 2, 31 | gsumzmhm 19849 | . 2 ⊢ (𝜑 → ((oppg‘𝐺) Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
| 39 | 35, 38 | eqtr3d 2768 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2111 Vcvv 3436 ⊆ wss 3897 class class class wbr 5089 ran crn 5615 “ cima 5617 ∘ ccom 5618 ⟶wf 6477 ‘cfv 6481 (class class class)co 7346 finSupp cfsupp 9245 Basecbs 17120 0gc0g 17343 Σg cgsu 17344 Mndcmnd 18642 MndHom cmhm 18689 Grpcgrp 18846 invgcminusg 18847 GrpHom cghm 19124 GrpIso cgim 19169 Cntzccntz 19227 oppgcoppg 19257 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-rep 5215 ax-sep 5232 ax-nul 5242 ax-pow 5301 ax-pr 5368 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-pss 3917 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-int 4896 df-iun 4941 df-iin 4942 df-br 5090 df-opab 5152 df-mpt 5171 df-tr 5197 df-id 5509 df-eprel 5514 df-po 5522 df-so 5523 df-fr 5567 df-se 5568 df-we 5569 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-isom 6490 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-1st 7921 df-2nd 7922 df-supp 8091 df-tpos 8156 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-1o 8385 df-2o 8386 df-er 8622 df-map 8752 df-en 8870 df-dom 8871 df-sdom 8872 df-fin 8873 df-fsupp 9246 df-oi 9396 df-card 9832 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-n0 12382 df-z 12469 df-uz 12733 df-fz 13408 df-fzo 13555 df-seq 13909 df-hash 14238 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-ress 17142 df-plusg 17174 df-0g 17345 df-gsum 17346 df-mre 17488 df-mrc 17489 df-acs 17491 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mhm 18691 df-submnd 18692 df-grp 18849 df-minusg 18850 df-ghm 19125 df-gim 19171 df-cntz 19229 df-oppg 19258 df-cmn 19694 |
| This theorem is referenced by: dprdfinv 19933 |
| Copyright terms: Public domain | W3C validator |