![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumzinv | Structured version Visualization version GIF version |
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsumzinv.b | β’ π΅ = (BaseβπΊ) |
gsumzinv.0 | β’ 0 = (0gβπΊ) |
gsumzinv.z | β’ π = (CntzβπΊ) |
gsumzinv.i | β’ πΌ = (invgβπΊ) |
gsumzinv.g | β’ (π β πΊ β Grp) |
gsumzinv.a | β’ (π β π΄ β π) |
gsumzinv.f | β’ (π β πΉ:π΄βΆπ΅) |
gsumzinv.c | β’ (π β ran πΉ β (πβran πΉ)) |
gsumzinv.n | β’ (π β πΉ finSupp 0 ) |
Ref | Expression |
---|---|
gsumzinv | β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzinv.b | . . 3 β’ π΅ = (BaseβπΊ) | |
2 | gsumzinv.0 | . . 3 β’ 0 = (0gβπΊ) | |
3 | gsumzinv.z | . . 3 β’ π = (CntzβπΊ) | |
4 | eqid 2732 | . . 3 β’ (oppgβπΊ) = (oppgβπΊ) | |
5 | gsumzinv.g | . . . 4 β’ (π β πΊ β Grp) | |
6 | 5 | grpmndd 18828 | . . 3 β’ (π β πΊ β Mnd) |
7 | gsumzinv.a | . . 3 β’ (π β π΄ β π) | |
8 | gsumzinv.i | . . . . . 6 β’ πΌ = (invgβπΊ) | |
9 | 1, 8 | grpinvf 18867 | . . . . 5 β’ (πΊ β Grp β πΌ:π΅βΆπ΅) |
10 | 5, 9 | syl 17 | . . . 4 β’ (π β πΌ:π΅βΆπ΅) |
11 | gsumzinv.f | . . . 4 β’ (π β πΉ:π΄βΆπ΅) | |
12 | fco 6738 | . . . 4 β’ ((πΌ:π΅βΆπ΅ β§ πΉ:π΄βΆπ΅) β (πΌ β πΉ):π΄βΆπ΅) | |
13 | 10, 11, 12 | syl2anc 584 | . . 3 β’ (π β (πΌ β πΉ):π΄βΆπ΅) |
14 | 4, 8 | invoppggim 19221 | . . . . . 6 β’ (πΊ β Grp β πΌ β (πΊ GrpIso (oppgβπΊ))) |
15 | gimghm 19132 | . . . . . 6 β’ (πΌ β (πΊ GrpIso (oppgβπΊ)) β πΌ β (πΊ GrpHom (oppgβπΊ))) | |
16 | ghmmhm 19096 | . . . . . 6 β’ (πΌ β (πΊ GrpHom (oppgβπΊ)) β πΌ β (πΊ MndHom (oppgβπΊ))) | |
17 | 5, 14, 15, 16 | 4syl 19 | . . . . 5 β’ (π β πΌ β (πΊ MndHom (oppgβπΊ))) |
18 | gsumzinv.c | . . . . 5 β’ (π β ran πΉ β (πβran πΉ)) | |
19 | eqid 2732 | . . . . . 6 β’ (Cntzβ(oppgβπΊ)) = (Cntzβ(oppgβπΊ)) | |
20 | 3, 19 | cntzmhm2 19200 | . . . . 5 β’ ((πΌ β (πΊ MndHom (oppgβπΊ)) β§ ran πΉ β (πβran πΉ)) β (πΌ β ran πΉ) β ((Cntzβ(oppgβπΊ))β(πΌ β ran πΉ))) |
21 | 17, 18, 20 | syl2anc 584 | . . . 4 β’ (π β (πΌ β ran πΉ) β ((Cntzβ(oppgβπΊ))β(πΌ β ran πΉ))) |
22 | rnco2 6249 | . . . 4 β’ ran (πΌ β πΉ) = (πΌ β ran πΉ) | |
23 | 22 | fveq2i 6891 | . . . . 5 β’ (πβran (πΌ β πΉ)) = (πβ(πΌ β ran πΉ)) |
24 | 4, 3 | oppgcntz 19225 | . . . . 5 β’ (πβ(πΌ β ran πΉ)) = ((Cntzβ(oppgβπΊ))β(πΌ β ran πΉ)) |
25 | 23, 24 | eqtri 2760 | . . . 4 β’ (πβran (πΌ β πΉ)) = ((Cntzβ(oppgβπΊ))β(πΌ β ran πΉ)) |
26 | 21, 22, 25 | 3sstr4g 4026 | . . 3 β’ (π β ran (πΌ β πΉ) β (πβran (πΌ β πΉ))) |
27 | 2 | fvexi 6902 | . . . . 5 β’ 0 β V |
28 | 27 | a1i 11 | . . . 4 β’ (π β 0 β V) |
29 | 1 | fvexi 6902 | . . . . 5 β’ π΅ β V |
30 | 29 | a1i 11 | . . . 4 β’ (π β π΅ β V) |
31 | gsumzinv.n | . . . 4 β’ (π β πΉ finSupp 0 ) | |
32 | 2, 8 | grpinvid 18880 | . . . . 5 β’ (πΊ β Grp β (πΌβ 0 ) = 0 ) |
33 | 5, 32 | syl 17 | . . . 4 β’ (π β (πΌβ 0 ) = 0 ) |
34 | 28, 11, 10, 7, 30, 31, 33 | fsuppco2 9394 | . . 3 β’ (π β (πΌ β πΉ) finSupp 0 ) |
35 | 1, 2, 3, 4, 6, 7, 13, 26, 34 | gsumzoppg 19806 | . 2 β’ (π β ((oppgβπΊ) Ξ£g (πΌ β πΉ)) = (πΊ Ξ£g (πΌ β πΉ))) |
36 | 4 | oppgmnd 19215 | . . . 4 β’ (πΊ β Mnd β (oppgβπΊ) β Mnd) |
37 | 6, 36 | syl 17 | . . 3 β’ (π β (oppgβπΊ) β Mnd) |
38 | 1, 3, 6, 37, 7, 17, 11, 18, 2, 31 | gsumzmhm 19799 | . 2 β’ (π β ((oppgβπΊ) Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) |
39 | 35, 38 | eqtr3d 2774 | 1 β’ (π β (πΊ Ξ£g (πΌ β πΉ)) = (πΌβ(πΊ Ξ£g πΉ))) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 = wceq 1541 β wcel 2106 Vcvv 3474 β wss 3947 class class class wbr 5147 ran crn 5676 β cima 5678 β ccom 5679 βΆwf 6536 βcfv 6540 (class class class)co 7405 finSupp cfsupp 9357 Basecbs 17140 0gc0g 17381 Ξ£g cgsu 17382 Mndcmnd 18621 MndHom cmhm 18665 Grpcgrp 18815 invgcminusg 18816 GrpHom cghm 19083 GrpIso cgim 19125 Cntzccntz 19173 oppgcoppg 19203 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7721 ax-cnex 11162 ax-resscn 11163 ax-1cn 11164 ax-icn 11165 ax-addcl 11166 ax-addrcl 11167 ax-mulcl 11168 ax-mulrcl 11169 ax-mulcom 11170 ax-addass 11171 ax-mulass 11172 ax-distr 11173 ax-i2m1 11174 ax-1ne0 11175 ax-1rid 11176 ax-rnegex 11177 ax-rrecex 11178 ax-cnre 11179 ax-pre-lttri 11180 ax-pre-lttrn 11181 ax-pre-ltadd 11182 ax-pre-mulgt0 11183 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-pss 3966 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-iun 4998 df-iin 4999 df-br 5148 df-opab 5210 df-mpt 5231 df-tr 5265 df-id 5573 df-eprel 5579 df-po 5587 df-so 5588 df-fr 5630 df-se 5631 df-we 5632 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-pred 6297 df-ord 6364 df-on 6365 df-lim 6366 df-suc 6367 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-isom 6549 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7852 df-1st 7971 df-2nd 7972 df-supp 8143 df-tpos 8207 df-frecs 8262 df-wrecs 8293 df-recs 8367 df-rdg 8406 df-1o 8462 df-er 8699 df-map 8818 df-en 8936 df-dom 8937 df-sdom 8938 df-fin 8939 df-fsupp 9358 df-oi 9501 df-card 9930 df-pnf 11246 df-mnf 11247 df-xr 11248 df-ltxr 11249 df-le 11250 df-sub 11442 df-neg 11443 df-nn 12209 df-2 12271 df-n0 12469 df-z 12555 df-uz 12819 df-fz 13481 df-fzo 13624 df-seq 13963 df-hash 14287 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17141 df-ress 17170 df-plusg 17206 df-0g 17383 df-gsum 17384 df-mre 17526 df-mrc 17527 df-acs 17529 df-mgm 18557 df-sgrp 18606 df-mnd 18622 df-mhm 18667 df-submnd 18668 df-grp 18818 df-minusg 18819 df-ghm 19084 df-gim 19127 df-cntz 19175 df-oppg 19204 df-cmn 19644 |
This theorem is referenced by: dprdfinv 19883 |
Copyright terms: Public domain | W3C validator |