MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzinv Structured version   Visualization version   GIF version

Theorem gsumzinv 19882
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzinv.b 𝐵 = (Base‘𝐺)
gsumzinv.0 0 = (0g𝐺)
gsumzinv.z 𝑍 = (Cntz‘𝐺)
gsumzinv.i 𝐼 = (invg𝐺)
gsumzinv.g (𝜑𝐺 ∈ Grp)
gsumzinv.a (𝜑𝐴𝑉)
gsumzinv.f (𝜑𝐹:𝐴𝐵)
gsumzinv.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzinv.n (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzinv (𝜑 → (𝐺 Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumzinv
StepHypRef Expression
1 gsumzinv.b . . 3 𝐵 = (Base‘𝐺)
2 gsumzinv.0 . . 3 0 = (0g𝐺)
3 gsumzinv.z . . 3 𝑍 = (Cntz‘𝐺)
4 eqid 2730 . . 3 (oppg𝐺) = (oppg𝐺)
5 gsumzinv.g . . . 4 (𝜑𝐺 ∈ Grp)
65grpmndd 18885 . . 3 (𝜑𝐺 ∈ Mnd)
7 gsumzinv.a . . 3 (𝜑𝐴𝑉)
8 gsumzinv.i . . . . . 6 𝐼 = (invg𝐺)
91, 8grpinvf 18925 . . . . 5 (𝐺 ∈ Grp → 𝐼:𝐵𝐵)
105, 9syl 17 . . . 4 (𝜑𝐼:𝐵𝐵)
11 gsumzinv.f . . . 4 (𝜑𝐹:𝐴𝐵)
12 fco 6715 . . . 4 ((𝐼:𝐵𝐵𝐹:𝐴𝐵) → (𝐼𝐹):𝐴𝐵)
1310, 11, 12syl2anc 584 . . 3 (𝜑 → (𝐼𝐹):𝐴𝐵)
144, 8invoppggim 19299 . . . . . 6 (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg𝐺)))
15 gimghm 19203 . . . . . 6 (𝐼 ∈ (𝐺 GrpIso (oppg𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg𝐺)))
16 ghmmhm 19165 . . . . . 6 (𝐼 ∈ (𝐺 GrpHom (oppg𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
175, 14, 15, 164syl 19 . . . . 5 (𝜑𝐼 ∈ (𝐺 MndHom (oppg𝐺)))
18 gsumzinv.c . . . . 5 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
19 eqid 2730 . . . . . 6 (Cntz‘(oppg𝐺)) = (Cntz‘(oppg𝐺))
203, 19cntzmhm2 19281 . . . . 5 ((𝐼 ∈ (𝐺 MndHom (oppg𝐺)) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹)))
2117, 18, 20syl2anc 584 . . . 4 (𝜑 → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹)))
22 rnco2 6229 . . . 4 ran (𝐼𝐹) = (𝐼 “ ran 𝐹)
2322fveq2i 6864 . . . . 5 (𝑍‘ran (𝐼𝐹)) = (𝑍‘(𝐼 “ ran 𝐹))
244, 3oppgcntz 19303 . . . . 5 (𝑍‘(𝐼 “ ran 𝐹)) = ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹))
2523, 24eqtri 2753 . . . 4 (𝑍‘ran (𝐼𝐹)) = ((Cntz‘(oppg𝐺))‘(𝐼 “ ran 𝐹))
2621, 22, 253sstr4g 4003 . . 3 (𝜑 → ran (𝐼𝐹) ⊆ (𝑍‘ran (𝐼𝐹)))
272fvexi 6875 . . . . 5 0 ∈ V
2827a1i 11 . . . 4 (𝜑0 ∈ V)
291fvexi 6875 . . . . 5 𝐵 ∈ V
3029a1i 11 . . . 4 (𝜑𝐵 ∈ V)
31 gsumzinv.n . . . 4 (𝜑𝐹 finSupp 0 )
322, 8grpinvid 18938 . . . . 5 (𝐺 ∈ Grp → (𝐼0 ) = 0 )
335, 32syl 17 . . . 4 (𝜑 → (𝐼0 ) = 0 )
3428, 11, 10, 7, 30, 31, 33fsuppco2 9361 . . 3 (𝜑 → (𝐼𝐹) finSupp 0 )
351, 2, 3, 4, 6, 7, 13, 26, 34gsumzoppg 19881 . 2 (𝜑 → ((oppg𝐺) Σg (𝐼𝐹)) = (𝐺 Σg (𝐼𝐹)))
364oppgmnd 19293 . . . 4 (𝐺 ∈ Mnd → (oppg𝐺) ∈ Mnd)
376, 36syl 17 . . 3 (𝜑 → (oppg𝐺) ∈ Mnd)
381, 3, 6, 37, 7, 17, 11, 18, 2, 31gsumzmhm 19874 . 2 (𝜑 → ((oppg𝐺) Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))
3935, 38eqtr3d 2767 1 (𝜑 → (𝐺 Σg (𝐼𝐹)) = (𝐼‘(𝐺 Σg 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1540  wcel 2109  Vcvv 3450  wss 3917   class class class wbr 5110  ran crn 5642  cima 5644  ccom 5645  wf 6510  cfv 6514  (class class class)co 7390   finSupp cfsupp 9319  Basecbs 17186  0gc0g 17409   Σg cgsu 17410  Mndcmnd 18668   MndHom cmhm 18715  Grpcgrp 18872  invgcminusg 18873   GrpHom cghm 19151   GrpIso cgim 19196  Cntzccntz 19254  oppgcoppg 19284
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-tpos 8208  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-n0 12450  df-z 12537  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-0g 17411  df-gsum 17412  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-ghm 19152  df-gim 19198  df-cntz 19256  df-oppg 19285  df-cmn 19719
This theorem is referenced by:  dprdfinv  19958
  Copyright terms: Public domain W3C validator