![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > gsumzinv | Structured version Visualization version GIF version |
Description: Inverse of a group sum. (Contributed by Mario Carneiro, 25-Apr-2016.) (Revised by AV, 6-Jun-2019.) |
Ref | Expression |
---|---|
gsumzinv.b | ⊢ 𝐵 = (Base‘𝐺) |
gsumzinv.0 | ⊢ 0 = (0g‘𝐺) |
gsumzinv.z | ⊢ 𝑍 = (Cntz‘𝐺) |
gsumzinv.i | ⊢ 𝐼 = (invg‘𝐺) |
gsumzinv.g | ⊢ (𝜑 → 𝐺 ∈ Grp) |
gsumzinv.a | ⊢ (𝜑 → 𝐴 ∈ 𝑉) |
gsumzinv.f | ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
gsumzinv.c | ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
gsumzinv.n | ⊢ (𝜑 → 𝐹 finSupp 0 ) |
Ref | Expression |
---|---|
gsumzinv | ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsumzinv.b | . . 3 ⊢ 𝐵 = (Base‘𝐺) | |
2 | gsumzinv.0 | . . 3 ⊢ 0 = (0g‘𝐺) | |
3 | gsumzinv.z | . . 3 ⊢ 𝑍 = (Cntz‘𝐺) | |
4 | eqid 2771 | . . 3 ⊢ (oppg‘𝐺) = (oppg‘𝐺) | |
5 | gsumzinv.g | . . . 4 ⊢ (𝜑 → 𝐺 ∈ Grp) | |
6 | grpmnd 17637 | . . . 4 ⊢ (𝐺 ∈ Grp → 𝐺 ∈ Mnd) | |
7 | 5, 6 | syl 17 | . . 3 ⊢ (𝜑 → 𝐺 ∈ Mnd) |
8 | gsumzinv.a | . . 3 ⊢ (𝜑 → 𝐴 ∈ 𝑉) | |
9 | gsumzinv.i | . . . . . 6 ⊢ 𝐼 = (invg‘𝐺) | |
10 | 1, 9 | grpinvf 17674 | . . . . 5 ⊢ (𝐺 ∈ Grp → 𝐼:𝐵⟶𝐵) |
11 | 5, 10 | syl 17 | . . . 4 ⊢ (𝜑 → 𝐼:𝐵⟶𝐵) |
12 | gsumzinv.f | . . . 4 ⊢ (𝜑 → 𝐹:𝐴⟶𝐵) | |
13 | fco 6199 | . . . 4 ⊢ ((𝐼:𝐵⟶𝐵 ∧ 𝐹:𝐴⟶𝐵) → (𝐼 ∘ 𝐹):𝐴⟶𝐵) | |
14 | 11, 12, 13 | syl2anc 573 | . . 3 ⊢ (𝜑 → (𝐼 ∘ 𝐹):𝐴⟶𝐵) |
15 | 4, 9 | invoppggim 17997 | . . . . . 6 ⊢ (𝐺 ∈ Grp → 𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺))) |
16 | gimghm 17914 | . . . . . 6 ⊢ (𝐼 ∈ (𝐺 GrpIso (oppg‘𝐺)) → 𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺))) | |
17 | ghmmhm 17878 | . . . . . 6 ⊢ (𝐼 ∈ (𝐺 GrpHom (oppg‘𝐺)) → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) | |
18 | 5, 15, 16, 17 | 4syl 19 | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ (𝐺 MndHom (oppg‘𝐺))) |
19 | gsumzinv.c | . . . . 5 ⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) | |
20 | eqid 2771 | . . . . . 6 ⊢ (Cntz‘(oppg‘𝐺)) = (Cntz‘(oppg‘𝐺)) | |
21 | 3, 20 | cntzmhm2 17979 | . . . . 5 ⊢ ((𝐼 ∈ (𝐺 MndHom (oppg‘𝐺)) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹))) |
22 | 18, 19, 21 | syl2anc 573 | . . . 4 ⊢ (𝜑 → (𝐼 “ ran 𝐹) ⊆ ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹))) |
23 | rnco2 5785 | . . . 4 ⊢ ran (𝐼 ∘ 𝐹) = (𝐼 “ ran 𝐹) | |
24 | 23 | fveq2i 6336 | . . . . 5 ⊢ (𝑍‘ran (𝐼 ∘ 𝐹)) = (𝑍‘(𝐼 “ ran 𝐹)) |
25 | 4, 3 | oppgcntz 18001 | . . . . 5 ⊢ (𝑍‘(𝐼 “ ran 𝐹)) = ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹)) |
26 | 24, 25 | eqtri 2793 | . . . 4 ⊢ (𝑍‘ran (𝐼 ∘ 𝐹)) = ((Cntz‘(oppg‘𝐺))‘(𝐼 “ ran 𝐹)) |
27 | 22, 23, 26 | 3sstr4g 3795 | . . 3 ⊢ (𝜑 → ran (𝐼 ∘ 𝐹) ⊆ (𝑍‘ran (𝐼 ∘ 𝐹))) |
28 | 2 | fvexi 6345 | . . . . 5 ⊢ 0 ∈ V |
29 | 28 | a1i 11 | . . . 4 ⊢ (𝜑 → 0 ∈ V) |
30 | 1 | fvexi 6345 | . . . . 5 ⊢ 𝐵 ∈ V |
31 | 30 | a1i 11 | . . . 4 ⊢ (𝜑 → 𝐵 ∈ V) |
32 | gsumzinv.n | . . . 4 ⊢ (𝜑 → 𝐹 finSupp 0 ) | |
33 | 2, 9 | grpinvid 17684 | . . . . 5 ⊢ (𝐺 ∈ Grp → (𝐼‘ 0 ) = 0 ) |
34 | 5, 33 | syl 17 | . . . 4 ⊢ (𝜑 → (𝐼‘ 0 ) = 0 ) |
35 | 29, 12, 11, 8, 31, 32, 34 | fsuppco2 8468 | . . 3 ⊢ (𝜑 → (𝐼 ∘ 𝐹) finSupp 0 ) |
36 | 1, 2, 3, 4, 7, 8, 14, 27, 35 | gsumzoppg 18551 | . 2 ⊢ (𝜑 → ((oppg‘𝐺) Σg (𝐼 ∘ 𝐹)) = (𝐺 Σg (𝐼 ∘ 𝐹))) |
37 | 4 | oppgmnd 17991 | . . . 4 ⊢ (𝐺 ∈ Mnd → (oppg‘𝐺) ∈ Mnd) |
38 | 7, 37 | syl 17 | . . 3 ⊢ (𝜑 → (oppg‘𝐺) ∈ Mnd) |
39 | 1, 3, 7, 38, 8, 18, 12, 19, 2, 32 | gsumzmhm 18544 | . 2 ⊢ (𝜑 → ((oppg‘𝐺) Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
40 | 36, 39 | eqtr3d 2807 | 1 ⊢ (𝜑 → (𝐺 Σg (𝐼 ∘ 𝐹)) = (𝐼‘(𝐺 Σg 𝐹))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1631 ∈ wcel 2145 Vcvv 3351 ⊆ wss 3723 class class class wbr 4787 ran crn 5251 “ cima 5253 ∘ ccom 5254 ⟶wf 6026 ‘cfv 6030 (class class class)co 6796 finSupp cfsupp 8435 Basecbs 16064 0gc0g 16308 Σg cgsu 16309 Mndcmnd 17502 MndHom cmhm 17541 Grpcgrp 17630 invgcminusg 17631 GrpHom cghm 17865 GrpIso cgim 17907 Cntzccntz 17955 oppgcoppg 17982 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1870 ax-4 1885 ax-5 1991 ax-6 2057 ax-7 2093 ax-8 2147 ax-9 2154 ax-10 2174 ax-11 2190 ax-12 2203 ax-13 2408 ax-ext 2751 ax-rep 4905 ax-sep 4916 ax-nul 4924 ax-pow 4975 ax-pr 5035 ax-un 7100 ax-cnex 10198 ax-resscn 10199 ax-1cn 10200 ax-icn 10201 ax-addcl 10202 ax-addrcl 10203 ax-mulcl 10204 ax-mulrcl 10205 ax-mulcom 10206 ax-addass 10207 ax-mulass 10208 ax-distr 10209 ax-i2m1 10210 ax-1ne0 10211 ax-1rid 10212 ax-rnegex 10213 ax-rrecex 10214 ax-cnre 10215 ax-pre-lttri 10216 ax-pre-lttrn 10217 ax-pre-ltadd 10218 ax-pre-mulgt0 10219 |
This theorem depends on definitions: df-bi 197 df-an 383 df-or 837 df-3or 1072 df-3an 1073 df-tru 1634 df-ex 1853 df-nf 1858 df-sb 2050 df-eu 2622 df-mo 2623 df-clab 2758 df-cleq 2764 df-clel 2767 df-nfc 2902 df-ne 2944 df-nel 3047 df-ral 3066 df-rex 3067 df-reu 3068 df-rmo 3069 df-rab 3070 df-v 3353 df-sbc 3588 df-csb 3683 df-dif 3726 df-un 3728 df-in 3730 df-ss 3737 df-pss 3739 df-nul 4064 df-if 4227 df-pw 4300 df-sn 4318 df-pr 4320 df-tp 4322 df-op 4324 df-uni 4576 df-int 4613 df-iun 4657 df-iin 4658 df-br 4788 df-opab 4848 df-mpt 4865 df-tr 4888 df-id 5158 df-eprel 5163 df-po 5171 df-so 5172 df-fr 5209 df-se 5210 df-we 5211 df-xp 5256 df-rel 5257 df-cnv 5258 df-co 5259 df-dm 5260 df-rn 5261 df-res 5262 df-ima 5263 df-pred 5822 df-ord 5868 df-on 5869 df-lim 5870 df-suc 5871 df-iota 5993 df-fun 6032 df-fn 6033 df-f 6034 df-f1 6035 df-fo 6036 df-f1o 6037 df-fv 6038 df-isom 6039 df-riota 6757 df-ov 6799 df-oprab 6800 df-mpt2 6801 df-om 7217 df-1st 7319 df-2nd 7320 df-supp 7451 df-tpos 7508 df-wrecs 7563 df-recs 7625 df-rdg 7663 df-1o 7717 df-oadd 7721 df-er 7900 df-map 8015 df-en 8114 df-dom 8115 df-sdom 8116 df-fin 8117 df-fsupp 8436 df-oi 8575 df-card 8969 df-pnf 10282 df-mnf 10283 df-xr 10284 df-ltxr 10285 df-le 10286 df-sub 10474 df-neg 10475 df-nn 11227 df-2 11285 df-n0 11500 df-z 11585 df-uz 11894 df-fz 12534 df-fzo 12674 df-seq 13009 df-hash 13322 df-ndx 16067 df-slot 16068 df-base 16070 df-sets 16071 df-ress 16072 df-plusg 16162 df-0g 16310 df-gsum 16311 df-mre 16454 df-mrc 16455 df-acs 16457 df-mgm 17450 df-sgrp 17492 df-mnd 17503 df-mhm 17543 df-submnd 17544 df-grp 17633 df-minusg 17634 df-ghm 17866 df-gim 17909 df-cntz 17957 df-oppg 17983 df-cmn 18402 |
This theorem is referenced by: dprdfinv 18626 |
Copyright terms: Public domain | W3C validator |