MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  gsumzmhm Structured version   Visualization version   GIF version

Theorem gsumzmhm 19714
Description: Apply a group homomorphism to a group sum. (Contributed by Mario Carneiro, 24-Apr-2016.) (Revised by AV, 6-Jun-2019.)
Hypotheses
Ref Expression
gsumzmhm.b 𝐵 = (Base‘𝐺)
gsumzmhm.z 𝑍 = (Cntz‘𝐺)
gsumzmhm.g (𝜑𝐺 ∈ Mnd)
gsumzmhm.h (𝜑𝐻 ∈ Mnd)
gsumzmhm.a (𝜑𝐴𝑉)
gsumzmhm.k (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
gsumzmhm.f (𝜑𝐹:𝐴𝐵)
gsumzmhm.c (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
gsumzmhm.0 0 = (0g𝐺)
gsumzmhm.w (𝜑𝐹 finSupp 0 )
Assertion
Ref Expression
gsumzmhm (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))

Proof of Theorem gsumzmhm
Dummy variables 𝑘 𝑥 𝑦 𝑓 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 gsumzmhm.h . . . . . . 7 (𝜑𝐻 ∈ Mnd)
2 gsumzmhm.a . . . . . . 7 (𝜑𝐴𝑉)
3 eqid 2736 . . . . . . . 8 (0g𝐻) = (0g𝐻)
43gsumz 18646 . . . . . . 7 ((𝐻 ∈ Mnd ∧ 𝐴𝑉) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
51, 2, 4syl2anc 584 . . . . . 6 (𝜑 → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
65adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (0g𝐻))
7 gsumzmhm.k . . . . . . 7 (𝜑𝐾 ∈ (𝐺 MndHom 𝐻))
8 gsumzmhm.0 . . . . . . . 8 0 = (0g𝐺)
98, 3mhm0 18610 . . . . . . 7 (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾0 ) = (0g𝐻))
107, 9syl 17 . . . . . 6 (𝜑 → (𝐾0 ) = (0g𝐻))
1110adantr 481 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾0 ) = (0g𝐻))
126, 11eqtr4d 2779 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))) = (𝐾0 ))
13 gsumzmhm.g . . . . . . . . 9 (𝜑𝐺 ∈ Mnd)
14 gsumzmhm.b . . . . . . . . . 10 𝐵 = (Base‘𝐺)
1514, 8mndidcl 18571 . . . . . . . . 9 (𝐺 ∈ Mnd → 0𝐵)
1613, 15syl 17 . . . . . . . 8 (𝜑0𝐵)
1716ad2antrr 724 . . . . . . 7 (((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) ∧ 𝑘𝐴) → 0𝐵)
18 gsumzmhm.f . . . . . . . 8 (𝜑𝐹:𝐴𝐵)
198fvexi 6856 . . . . . . . . 9 0 ∈ V
2019a1i 11 . . . . . . . 8 (𝜑0 ∈ V)
2118, 2fexd 7177 . . . . . . . . . 10 (𝜑𝐹 ∈ V)
22 suppimacnv 8105 . . . . . . . . . 10 ((𝐹 ∈ V ∧ 0 ∈ V) → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
2321, 20, 22syl2anc 584 . . . . . . . . 9 (𝜑 → (𝐹 supp 0 ) = (𝐹 “ (V ∖ { 0 })))
24 ssid 3966 . . . . . . . . 9 (𝐹 “ (V ∖ { 0 })) ⊆ (𝐹 “ (V ∖ { 0 }))
2523, 24eqsstrdi 3998 . . . . . . . 8 (𝜑 → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
2618, 2, 20, 25gsumcllem 19685 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐹 = (𝑘𝐴0 ))
27 eqid 2736 . . . . . . . . . . 11 (Base‘𝐻) = (Base‘𝐻)
2814, 27mhmf 18607 . . . . . . . . . 10 (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻))
297, 28syl 17 . . . . . . . . 9 (𝜑𝐾:𝐵⟶(Base‘𝐻))
3029feqmptd 6910 . . . . . . . 8 (𝜑𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
3130adantr 481 . . . . . . 7 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → 𝐾 = (𝑥𝐵 ↦ (𝐾𝑥)))
32 fveq2 6842 . . . . . . 7 (𝑥 = 0 → (𝐾𝑥) = (𝐾0 ))
3317, 26, 31, 32fmptco 7075 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (𝐾0 )))
3410mpteq2dv 5207 . . . . . . 7 (𝜑 → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3534adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝑘𝐴 ↦ (𝐾0 )) = (𝑘𝐴 ↦ (0g𝐻)))
3633, 35eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾𝐹) = (𝑘𝐴 ↦ (0g𝐻)))
3736oveq2d 7373 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐻 Σg (𝑘𝐴 ↦ (0g𝐻))))
3826oveq2d 7373 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = (𝐺 Σg (𝑘𝐴0 )))
398gsumz 18646 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ 𝐴𝑉) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4013, 2, 39syl2anc 584 . . . . . . 7 (𝜑 → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4140adantr 481 . . . . . 6 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg (𝑘𝐴0 )) = 0 )
4238, 41eqtrd 2776 . . . . 5 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐺 Σg 𝐹) = 0 )
4342fveq2d 6846 . . . 4 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾0 ))
4412, 37, 433eqtr4d 2786 . . 3 ((𝜑 ∧ (𝐹 “ (V ∖ { 0 })) = ∅) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
4544ex 413 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
4613adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd)
47 eqid 2736 . . . . . . . . . 10 (+g𝐺) = (+g𝐺)
4814, 47mndcl 18564 . . . . . . . . 9 ((𝐺 ∈ Mnd ∧ 𝑥𝐵𝑦𝐵) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
49483expb 1120 . . . . . . . 8 ((𝐺 ∈ Mnd ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
5046, 49sylan 580 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝑥(+g𝐺)𝑦) ∈ 𝐵)
51 f1of1 6783 . . . . . . . . . . . 12 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
5251ad2antll 727 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })))
53 cnvimass 6033 . . . . . . . . . . . 12 (𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹
5418adantr 481 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴𝐵)
5553, 54fssdm 6688 . . . . . . . . . . 11 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴)
56 f1ss 6744 . . . . . . . . . . 11 ((𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1→(𝐹 “ (V ∖ { 0 })) ∧ (𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
5752, 55, 56syl2anc 584 . . . . . . . . . 10 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴)
58 f1f 6738 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1𝐴𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
5957, 58syl 17 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴)
60 fco 6692 . . . . . . . . 9 ((𝐹:𝐴𝐵𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6118, 59, 60syl2an2r 683 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵)
6261ffvelcdmda 7035 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐹𝑓)‘𝑥) ∈ 𝐵)
63 simprl 769 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
64 nnuz 12806 . . . . . . . 8 ℕ = (ℤ‘1)
6563, 64eleqtrdi 2848 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ (ℤ‘1))
667adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐾 ∈ (𝐺 MndHom 𝐻))
67 eqid 2736 . . . . . . . . . 10 (+g𝐻) = (+g𝐻)
6814, 47, 67mhmlin 18609 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥𝐵𝑦𝐵) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
69683expb 1120 . . . . . . . 8 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
7066, 69sylan 580 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ (𝑥𝐵𝑦𝐵)) → (𝐾‘(𝑥(+g𝐺)𝑦)) = ((𝐾𝑥)(+g𝐻)(𝐾𝑦)))
71 coass 6217 . . . . . . . . 9 ((𝐾𝐹) ∘ 𝑓) = (𝐾 ∘ (𝐹𝑓))
7271fveq1i 6843 . . . . . . . 8 (((𝐾𝐹) ∘ 𝑓)‘𝑥) = ((𝐾 ∘ (𝐹𝑓))‘𝑥)
73 fvco3 6940 . . . . . . . . 9 (((𝐹𝑓):(1...(♯‘(𝐹 “ (V ∖ { 0 }))))⟶𝐵𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7461, 73sylan 580 . . . . . . . 8 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹𝑓))‘𝑥) = (𝐾‘((𝐹𝑓)‘𝑥)))
7572, 74eqtr2id 2789 . . . . . . 7 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (1...(♯‘(𝐹 “ (V ∖ { 0 }))))) → (𝐾‘((𝐹𝑓)‘𝑥)) = (((𝐾𝐹) ∘ 𝑓)‘𝑥))
7650, 62, 65, 70, 75seqhomo 13955 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
77 gsumzmhm.z . . . . . . . 8 𝑍 = (Cntz‘𝐺)
782adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐴𝑉)
79 gsumzmhm.c . . . . . . . . 9 (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8079adantr 481 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹))
8125adantr 481 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (𝐹 “ (V ∖ { 0 })))
82 f1ofo 6791 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })))
83 forn 6759 . . . . . . . . . . 11 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8482, 83syl 17 . . . . . . . . . 10 (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8584ad2antll 727 . . . . . . . . 9 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran 𝑓 = (𝐹 “ (V ∖ { 0 })))
8681, 85sseqtrrd 3985 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓)
87 eqid 2736 . . . . . . . 8 ((𝐹𝑓) supp 0 ) = ((𝐹𝑓) supp 0 )
8814, 8, 47, 77, 46, 78, 54, 80, 63, 57, 86, 87gsumval3 19684 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg 𝐹) = (seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
8988fveq2d 6846 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq1((+g𝐺), (𝐹𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 }))))))
90 eqid 2736 . . . . . . 7 (Cntz‘𝐻) = (Cntz‘𝐻)
911adantr 481 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 𝐻 ∈ Mnd)
92 fco 6692 . . . . . . . 8 ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴𝐵) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9329, 54, 92syl2an2r 683 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾𝐹):𝐴⟶(Base‘𝐻))
9477, 90cntzmhm2 19120 . . . . . . . . 9 ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
957, 80, 94syl2an2r 683 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)))
96 rnco2 6205 . . . . . . . 8 ran (𝐾𝐹) = (𝐾 “ ran 𝐹)
9796fveq2i 6845 . . . . . . . 8 ((Cntz‘𝐻)‘ran (𝐾𝐹)) = ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹))
9895, 96, 973sstr4g 3989 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ran (𝐾𝐹) ⊆ ((Cntz‘𝐻)‘ran (𝐾𝐹)))
99 eldifi 4086 . . . . . . . . . . 11 (𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 }))) → 𝑥𝐴)
100 fvco3 6940 . . . . . . . . . . 11 ((𝐹:𝐴𝐵𝑥𝐴) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10154, 99, 100syl2an 596 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (𝐾‘(𝐹𝑥)))
10219a1i 11 . . . . . . . . . . . 12 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → 0 ∈ V)
10354, 81, 78, 102suppssr 8127 . . . . . . . . . . 11 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐹𝑥) = 0 )
104103fveq2d 6846 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐹𝑥)) = (𝐾0 ))
10510ad2antrr 724 . . . . . . . . . 10 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → (𝐾0 ) = (0g𝐻))
106101, 104, 1053eqtrd 2780 . . . . . . . . 9 (((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹)‘𝑥) = (0g𝐻))
10793, 106suppss 8125 . . . . . . . 8 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ (𝐹 “ (V ∖ { 0 })))
108107, 85sseqtrrd 3985 . . . . . . 7 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → ((𝐾𝐹) supp (0g𝐻)) ⊆ ran 𝑓)
109 eqid 2736 . . . . . . 7 (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻)) = (((𝐾𝐹) ∘ 𝑓) supp (0g𝐻))
11027, 3, 67, 90, 91, 78, 93, 98, 63, 57, 108, 109gsumval3 19684 . . . . . 6 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (seq1((+g𝐻), ((𝐾𝐹) ∘ 𝑓))‘(♯‘(𝐹 “ (V ∖ { 0 })))))
11176, 89, 1103eqtr4rd 2787 . . . . 5 ((𝜑 ∧ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
112111expr 457 . . . 4 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
113112exlimdv 1936 . . 3 ((𝜑 ∧ (♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ) → (∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
114113expimpd 454 . 2 (𝜑 → (((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 }))) → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹))))
115 gsumzmhm.w . . . . 5 (𝜑𝐹 finSupp 0 )
116115fsuppimpd 9312 . . . 4 (𝜑 → (𝐹 supp 0 ) ∈ Fin)
11723, 116eqeltrrd 2839 . . 3 (𝜑 → (𝐹 “ (V ∖ { 0 })) ∈ Fin)
118 fz1f1o 15595 . . 3 ((𝐹 “ (V ∖ { 0 })) ∈ Fin → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
119117, 118syl 17 . 2 (𝜑 → ((𝐹 “ (V ∖ { 0 })) = ∅ ∨ ((♯‘(𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧ ∃𝑓 𝑓:(1...(♯‘(𝐹 “ (V ∖ { 0 }))))–1-1-onto→(𝐹 “ (V ∖ { 0 })))))
12045, 114, 119mpjaod 858 1 (𝜑 → (𝐻 Σg (𝐾𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wo 845   = wceq 1541  wex 1781  wcel 2106  Vcvv 3445  cdif 3907  wss 3910  c0 4282  {csn 4586   class class class wbr 5105  cmpt 5188  ccnv 5632  ran crn 5634  cima 5636  ccom 5637  wf 6492  1-1wf1 6493  ontowfo 6494  1-1-ontowf1o 6495  cfv 6496  (class class class)co 7357   supp csupp 8092  Fincfn 8883   finSupp cfsupp 9305  1c1 11052  cn 12153  cuz 12763  ...cfz 13424  seqcseq 13906  chash 14230  Basecbs 17083  +gcplusg 17133  0gc0g 17321   Σg cgsu 17322  Mndcmnd 18556   MndHom cmhm 18599  Cntzccntz 19095
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-int 4908  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-se 5589  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-isom 6505  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-supp 8093  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-fsupp 9306  df-oi 9446  df-card 9875  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-fz 13425  df-fzo 13568  df-seq 13907  df-hash 14231  df-0g 17323  df-gsum 17324  df-mgm 18497  df-sgrp 18546  df-mnd 18557  df-mhm 18601  df-cntz 19097
This theorem is referenced by:  gsummhm  19715  gsumzinv  19722
  Copyright terms: Public domain W3C validator