| Step | Hyp | Ref
| Expression |
| 1 | | gsumzmhm.h |
. . . . . . 7
⊢ (𝜑 → 𝐻 ∈ Mnd) |
| 2 | | gsumzmhm.a |
. . . . . . 7
⊢ (𝜑 → 𝐴 ∈ 𝑉) |
| 3 | | eqid 2737 |
. . . . . . . 8
⊢
(0g‘𝐻) = (0g‘𝐻) |
| 4 | 3 | gsumz 18849 |
. . . . . . 7
⊢ ((𝐻 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 5 | 1, 2, 4 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → (𝐻 Σg (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 6 | 5 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐻
Σg (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) = (0g‘𝐻)) |
| 7 | | gsumzmhm.k |
. . . . . . 7
⊢ (𝜑 → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| 8 | | gsumzmhm.0 |
. . . . . . . 8
⊢ 0 =
(0g‘𝐺) |
| 9 | 8, 3 | mhm0 18807 |
. . . . . . 7
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 10 | 7, 9 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 11 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐾‘ 0 ) =
(0g‘𝐻)) |
| 12 | 6, 11 | eqtr4d 2780 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐻
Σg (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) = (𝐾‘ 0 )) |
| 13 | | gsumzmhm.g |
. . . . . . . . 9
⊢ (𝜑 → 𝐺 ∈ Mnd) |
| 14 | | gsumzmhm.b |
. . . . . . . . . 10
⊢ 𝐵 = (Base‘𝐺) |
| 15 | 14, 8 | mndidcl 18762 |
. . . . . . . . 9
⊢ (𝐺 ∈ Mnd → 0 ∈ 𝐵) |
| 16 | 13, 15 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ 𝐵) |
| 17 | 16 | ad2antrr 726 |
. . . . . . 7
⊢ (((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) ∧ 𝑘 ∈ 𝐴) → 0 ∈ 𝐵) |
| 18 | | gsumzmhm.f |
. . . . . . . 8
⊢ (𝜑 → 𝐹:𝐴⟶𝐵) |
| 19 | 8 | fvexi 6920 |
. . . . . . . . 9
⊢ 0 ∈
V |
| 20 | 19 | a1i 11 |
. . . . . . . 8
⊢ (𝜑 → 0 ∈ V) |
| 21 | 18, 2 | fexd 7247 |
. . . . . . . . . 10
⊢ (𝜑 → 𝐹 ∈ V) |
| 22 | | suppimacnv 8199 |
. . . . . . . . . 10
⊢ ((𝐹 ∈ V ∧ 0 ∈ V)
→ (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 23 | 21, 20, 22 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 → (𝐹 supp 0 ) = (◡𝐹 “ (V ∖ { 0 }))) |
| 24 | | ssid 4006 |
. . . . . . . . 9
⊢ (◡𝐹 “ (V ∖ { 0 })) ⊆ (◡𝐹 “ (V ∖ { 0 })) |
| 25 | 23, 24 | eqsstrdi 4028 |
. . . . . . . 8
⊢ (𝜑 → (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 26 | 18, 2, 20, 25 | gsumcllem 19926 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
𝐹 = (𝑘 ∈ 𝐴 ↦ 0 )) |
| 27 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Base‘𝐻) =
(Base‘𝐻) |
| 28 | 14, 27 | mhmf 18802 |
. . . . . . . . . 10
⊢ (𝐾 ∈ (𝐺 MndHom 𝐻) → 𝐾:𝐵⟶(Base‘𝐻)) |
| 29 | 7, 28 | syl 17 |
. . . . . . . . 9
⊢ (𝜑 → 𝐾:𝐵⟶(Base‘𝐻)) |
| 30 | 29 | feqmptd 6977 |
. . . . . . . 8
⊢ (𝜑 → 𝐾 = (𝑥 ∈ 𝐵 ↦ (𝐾‘𝑥))) |
| 31 | 30 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
𝐾 = (𝑥 ∈ 𝐵 ↦ (𝐾‘𝑥))) |
| 32 | | fveq2 6906 |
. . . . . . 7
⊢ (𝑥 = 0 → (𝐾‘𝑥) = (𝐾‘ 0 )) |
| 33 | 17, 26, 31, 32 | fmptco 7149 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐾 ∘ 𝐹) = (𝑘 ∈ 𝐴 ↦ (𝐾‘ 0 ))) |
| 34 | 10 | mpteq2dv 5244 |
. . . . . . 7
⊢ (𝜑 → (𝑘 ∈ 𝐴 ↦ (𝐾‘ 0 )) = (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) |
| 35 | 34 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝑘 ∈ 𝐴 ↦ (𝐾‘ 0 )) = (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) |
| 36 | 33, 35 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐾 ∘ 𝐹) = (𝑘 ∈ 𝐴 ↦ (0g‘𝐻))) |
| 37 | 36 | oveq2d 7447 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐻
Σg (𝐾 ∘ 𝐹)) = (𝐻 Σg (𝑘 ∈ 𝐴 ↦ (0g‘𝐻)))) |
| 38 | 26 | oveq2d 7447 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐺
Σg 𝐹) = (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 ))) |
| 39 | 8 | gsumz 18849 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ 𝐴 ∈ 𝑉) → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 40 | 13, 2, 39 | syl2anc 584 |
. . . . . . 7
⊢ (𝜑 → (𝐺 Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 41 | 40 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐺
Σg (𝑘 ∈ 𝐴 ↦ 0 )) = 0 ) |
| 42 | 38, 41 | eqtrd 2777 |
. . . . 5
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐺
Σg 𝐹) = 0 ) |
| 43 | 42 | fveq2d 6910 |
. . . 4
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘ 0 )) |
| 44 | 12, 37, 43 | 3eqtr4d 2787 |
. . 3
⊢ ((𝜑 ∧ (◡𝐹 “ (V ∖ { 0 })) = ∅) →
(𝐻
Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| 45 | 44 | ex 412 |
. 2
⊢ (𝜑 → ((◡𝐹 “ (V ∖ { 0 })) = ∅ →
(𝐻
Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))) |
| 46 | 13 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐺 ∈ Mnd) |
| 47 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝐺) = (+g‘𝐺) |
| 48 | 14, 47 | mndcl 18755 |
. . . . . . . . 9
⊢ ((𝐺 ∈ Mnd ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 49 | 48 | 3expb 1121 |
. . . . . . . 8
⊢ ((𝐺 ∈ Mnd ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 50 | 46, 49 | sylan 580 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝑥(+g‘𝐺)𝑦) ∈ 𝐵) |
| 51 | | f1of1 6847 |
. . . . . . . . . . . 12
⊢ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0
}))) |
| 52 | 51 | ad2antll 729 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0
}))) |
| 53 | | cnvimass 6100 |
. . . . . . . . . . . 12
⊢ (◡𝐹 “ (V ∖ { 0 })) ⊆ dom 𝐹 |
| 54 | 18 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐹:𝐴⟶𝐵) |
| 55 | 53, 54 | fssdm 6755 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) |
| 56 | | f1ss 6809 |
. . . . . . . . . . 11
⊢ ((𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→(◡𝐹 “ (V ∖ { 0 })) ∧
(◡𝐹 “ (V ∖ { 0 })) ⊆ 𝐴) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴) |
| 57 | 52, 55, 56 | syl2anc 584 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴) |
| 58 | | f1f 6804 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1→𝐴 → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) |
| 59 | 57, 58 | syl 17 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) |
| 60 | | fco 6760 |
. . . . . . . . 9
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐴) → (𝐹 ∘ 𝑓):(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐵) |
| 61 | 18, 59, 60 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 ∘ 𝑓):(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐵) |
| 62 | 61 | ffvelcdmda 7104 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))) → ((𝐹 ∘ 𝑓)‘𝑥) ∈ 𝐵) |
| 63 | | simprl 771 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈
ℕ) |
| 64 | | nnuz 12921 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
| 65 | 63, 64 | eleqtrdi 2851 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) →
(♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈
(ℤ≥‘1)) |
| 66 | 7 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐾 ∈ (𝐺 MndHom 𝐻)) |
| 67 | | eqid 2737 |
. . . . . . . . . 10
⊢
(+g‘𝐻) = (+g‘𝐻) |
| 68 | 14, 47, 67 | mhmlin 18806 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
| 69 | 68 | 3expb 1121 |
. . . . . . . 8
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
| 70 | 66, 69 | sylan 580 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ (𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵)) → (𝐾‘(𝑥(+g‘𝐺)𝑦)) = ((𝐾‘𝑥)(+g‘𝐻)(𝐾‘𝑦))) |
| 71 | | coass 6285 |
. . . . . . . . 9
⊢ ((𝐾 ∘ 𝐹) ∘ 𝑓) = (𝐾 ∘ (𝐹 ∘ 𝑓)) |
| 72 | 71 | fveq1i 6907 |
. . . . . . . 8
⊢ (((𝐾 ∘ 𝐹) ∘ 𝑓)‘𝑥) = ((𝐾 ∘ (𝐹 ∘ 𝑓))‘𝑥) |
| 73 | | fvco3 7008 |
. . . . . . . . 9
⊢ (((𝐹 ∘ 𝑓):(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))⟶𝐵 ∧ 𝑥 ∈ (1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹 ∘ 𝑓))‘𝑥) = (𝐾‘((𝐹 ∘ 𝑓)‘𝑥))) |
| 74 | 61, 73 | sylan 580 |
. . . . . . . 8
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))) → ((𝐾 ∘ (𝐹 ∘ 𝑓))‘𝑥) = (𝐾‘((𝐹 ∘ 𝑓)‘𝑥))) |
| 75 | 72, 74 | eqtr2id 2790 |
. . . . . . 7
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈
(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))) → (𝐾‘((𝐹 ∘ 𝑓)‘𝑥)) = (((𝐾 ∘ 𝐹) ∘ 𝑓)‘𝑥)) |
| 76 | 50, 62, 65, 70, 75 | seqhomo 14090 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐾‘(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ { 0 }))))) =
(seq1((+g‘𝐻), ((𝐾 ∘ 𝐹) ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 77 | | gsumzmhm.z |
. . . . . . . 8
⊢ 𝑍 = (Cntz‘𝐺) |
| 78 | 2 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐴 ∈ 𝑉) |
| 79 | | gsumzmhm.c |
. . . . . . . . 9
⊢ (𝜑 → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 80 | 79 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝐹 ⊆ (𝑍‘ran 𝐹)) |
| 81 | 25 | adantr 480 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 82 | | f1ofo 6855 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–onto→(◡𝐹 “ (V ∖ { 0 }))) |
| 83 | | forn 6823 |
. . . . . . . . . . 11
⊢ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–onto→(◡𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (◡𝐹 “ (V ∖ { 0 }))) |
| 84 | 82, 83 | syl 17 |
. . . . . . . . . 10
⊢ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → ran 𝑓 = (◡𝐹 “ (V ∖ { 0 }))) |
| 85 | 84 | ad2antll 729 |
. . . . . . . . 9
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran 𝑓 = (◡𝐹 “ (V ∖ { 0 }))) |
| 86 | 81, 85 | sseqtrrd 4021 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐹 supp 0 ) ⊆ ran 𝑓) |
| 87 | | eqid 2737 |
. . . . . . . 8
⊢ ((𝐹 ∘ 𝑓) supp 0 ) = ((𝐹 ∘ 𝑓) supp 0 ) |
| 88 | 14, 8, 47, 77, 46, 78, 54, 80, 63, 57, 86, 87 | gsumval3 19925 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐺 Σg
𝐹) =
(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 89 | 88 | fveq2d 6910 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐺 Σg 𝐹)) = (𝐾‘(seq1((+g‘𝐺), (𝐹 ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ { 0 })))))) |
| 90 | | eqid 2737 |
. . . . . . 7
⊢
(Cntz‘𝐻) =
(Cntz‘𝐻) |
| 91 | 1 | adantr 480 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 𝐻 ∈ Mnd) |
| 92 | | fco 6760 |
. . . . . . . 8
⊢ ((𝐾:𝐵⟶(Base‘𝐻) ∧ 𝐹:𝐴⟶𝐵) → (𝐾 ∘ 𝐹):𝐴⟶(Base‘𝐻)) |
| 93 | 29, 54, 92 | syl2an2r 685 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐾 ∘ 𝐹):𝐴⟶(Base‘𝐻)) |
| 94 | 77, 90 | cntzmhm2 19360 |
. . . . . . . . 9
⊢ ((𝐾 ∈ (𝐺 MndHom 𝐻) ∧ ran 𝐹 ⊆ (𝑍‘ran 𝐹)) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹))) |
| 95 | 7, 80, 94 | syl2an2r 685 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐾 “ ran 𝐹) ⊆ ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹))) |
| 96 | | rnco2 6273 |
. . . . . . . 8
⊢ ran
(𝐾 ∘ 𝐹) = (𝐾 “ ran 𝐹) |
| 97 | 96 | fveq2i 6909 |
. . . . . . . 8
⊢
((Cntz‘𝐻)‘ran (𝐾 ∘ 𝐹)) = ((Cntz‘𝐻)‘(𝐾 “ ran 𝐹)) |
| 98 | 95, 96, 97 | 3sstr4g 4037 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ran (𝐾 ∘ 𝐹) ⊆ ((Cntz‘𝐻)‘ran (𝐾 ∘ 𝐹))) |
| 99 | | eldifi 4131 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 }))) → 𝑥 ∈ 𝐴) |
| 100 | | fvco3 7008 |
. . . . . . . . . . 11
⊢ ((𝐹:𝐴⟶𝐵 ∧ 𝑥 ∈ 𝐴) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
| 101 | 54, 99, 100 | syl2an 596 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 })))) → ((𝐾 ∘ 𝐹)‘𝑥) = (𝐾‘(𝐹‘𝑥))) |
| 102 | 19 | a1i 11 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → 0 ∈
V) |
| 103 | 54, 81, 78, 102 | suppssr 8220 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 })))) → (𝐹‘𝑥) = 0 ) |
| 104 | 103 | fveq2d 6910 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 })))) → (𝐾‘(𝐹‘𝑥)) = (𝐾‘ 0 )) |
| 105 | 10 | ad2antrr 726 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 })))) → (𝐾‘ 0 ) =
(0g‘𝐻)) |
| 106 | 101, 104,
105 | 3eqtrd 2781 |
. . . . . . . . 9
⊢ (((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) ∧ 𝑥 ∈ (𝐴 ∖ (◡𝐹 “ (V ∖ { 0 })))) → ((𝐾 ∘ 𝐹)‘𝑥) = (0g‘𝐻)) |
| 107 | 93, 106 | suppss 8219 |
. . . . . . . 8
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ((𝐾 ∘ 𝐹) supp (0g‘𝐻)) ⊆ (◡𝐹 “ (V ∖ { 0 }))) |
| 108 | 107, 85 | sseqtrrd 4021 |
. . . . . . 7
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → ((𝐾 ∘ 𝐹) supp (0g‘𝐻)) ⊆ ran 𝑓) |
| 109 | | eqid 2737 |
. . . . . . 7
⊢ (((𝐾 ∘ 𝐹) ∘ 𝑓) supp (0g‘𝐻)) = (((𝐾 ∘ 𝐹) ∘ 𝑓) supp (0g‘𝐻)) |
| 110 | 27, 3, 67, 90, 91, 78, 93, 98, 63, 57, 108, 109 | gsumval3 19925 |
. . . . . 6
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg
(𝐾 ∘ 𝐹)) =
(seq1((+g‘𝐻), ((𝐾 ∘ 𝐹) ∘ 𝑓))‘(♯‘(◡𝐹 “ (V ∖ { 0 }))))) |
| 111 | 76, 89, 110 | 3eqtr4rd 2788 |
. . . . 5
⊢ ((𝜑 ∧ ((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })))) → (𝐻 Σg
(𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |
| 112 | 111 | expr 456 |
. . . 4
⊢ ((𝜑 ∧ (♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
→ (𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → (𝐻 Σg
(𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))) |
| 113 | 112 | exlimdv 1933 |
. . 3
⊢ ((𝜑 ∧ (♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ)
→ (∃𝑓 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 })) → (𝐻 Σg
(𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))) |
| 114 | 113 | expimpd 453 |
. 2
⊢ (𝜑 → (((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))) → (𝐻 Σg
(𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹)))) |
| 115 | | gsumzmhm.w |
. . . . 5
⊢ (𝜑 → 𝐹 finSupp 0 ) |
| 116 | 115 | fsuppimpd 9409 |
. . . 4
⊢ (𝜑 → (𝐹 supp 0 ) ∈
Fin) |
| 117 | 23, 116 | eqeltrrd 2842 |
. . 3
⊢ (𝜑 → (◡𝐹 “ (V ∖ { 0 })) ∈
Fin) |
| 118 | | fz1f1o 15746 |
. . 3
⊢ ((◡𝐹 “ (V ∖ { 0 })) ∈ Fin →
((◡𝐹 “ (V ∖ { 0 })) = ∅ ∨
((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))))) |
| 119 | 117, 118 | syl 17 |
. 2
⊢ (𝜑 → ((◡𝐹 “ (V ∖ { 0 })) = ∅ ∨
((♯‘(◡𝐹 “ (V ∖ { 0 }))) ∈ ℕ ∧
∃𝑓 𝑓:(1...(♯‘(◡𝐹 “ (V ∖ { 0 }))))–1-1-onto→(◡𝐹 “ (V ∖ { 0 }))))) |
| 120 | 45, 114, 119 | mpjaod 861 |
1
⊢ (𝜑 → (𝐻 Σg (𝐾 ∘ 𝐹)) = (𝐾‘(𝐺 Σg 𝐹))) |