MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   GIF version

Theorem ovolficcss 24073
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)

Proof of Theorem ovolficcss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 6073 . . 3 ran ([,] ∘ 𝐹) = ([,] “ ran 𝐹)
2 ffvelrn 6826 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ ( ≤ ∩ (ℝ × ℝ)))
32elin2d 4126 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ (ℝ × ℝ))
4 1st2nd2 7710 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (ℝ × ℝ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
53, 4syl 17 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
65fveq2d 6649 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩))
7 df-ov 7138 . . . . . . . . 9 ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
86, 7eqtr4di 2851 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))))
9 xp1st 7703 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
103, 9syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
11 xp2nd 7704 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
123, 11syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
13 iccssre 12807 . . . . . . . . 9 (((1st ‘(𝐹𝑦)) ∈ ℝ ∧ (2nd ‘(𝐹𝑦)) ∈ ℝ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
1410, 12, 13syl2anc 587 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
158, 14eqsstrd 3953 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ⊆ ℝ)
16 reex 10617 . . . . . . . 8 ℝ ∈ V
1716elpw2 5212 . . . . . . 7 (([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ⊆ ℝ)
1815, 17sylibr 237 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
1918ralrimiva 3149 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
20 ffn 6487 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn ℕ)
21 fveq2 6645 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ([,]‘𝑥) = ([,]‘(𝐹𝑦)))
2221eleq1d 2874 . . . . . . 7 (𝑥 = (𝐹𝑦) → (([,]‘𝑥) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2322ralrn 6831 . . . . . 6 (𝐹 Fn ℕ → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2420, 23syl 17 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2519, 24mpbird 260 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)
26 iccf 12826 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
27 ffun 6490 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
2826, 27ax-mp 5 . . . . 5 Fun [,]
29 frn 6493 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
30 inss2 4156 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
31 rexpssxrxp 10675 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3230, 31sstri 3924 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
3326fdmi 6498 . . . . . . 7 dom [,] = (ℝ* × ℝ*)
3432, 33sseqtrri 3952 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ dom [,]
3529, 34sstrdi 3927 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ dom [,])
36 funimass4 6705 . . . . 5 ((Fun [,] ∧ ran 𝐹 ⊆ dom [,]) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3728, 35, 36sylancr 590 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3825, 37mpbird 260 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] “ ran 𝐹) ⊆ 𝒫 ℝ)
391, 38eqsstrid 3963 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ)
40 sspwuni 4985 . 2 (ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ([,] ∘ 𝐹) ⊆ ℝ)
4139, 40sylib 221 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  wral 3106  cin 3880  wss 3881  𝒫 cpw 4497  cop 4531   cuni 4800   × cxp 5517  dom cdm 5519  ran crn 5520  cima 5522  ccom 5523  Fun wfun 6318   Fn wfn 6319  wf 6320  cfv 6324  (class class class)co 7135  1st c1st 7669  2nd c2nd 7670  cr 10525  *cxr 10663  cle 10665  cn 11625  [,]cicc 12729
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441  ax-cnex 10582  ax-resscn 10583  ax-pre-lttri 10600  ax-pre-lttrn 10601
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-nel 3092  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-po 5438  df-so 5439  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-er 8272  df-en 8493  df-dom 8494  df-sdom 8495  df-pnf 10666  df-mnf 10667  df-xr 10668  df-ltxr 10669  df-le 10670  df-icc 12733
This theorem is referenced by:  ovollb2lem  24092  ovollb2  24093  uniiccdif  24182  uniiccvol  24184  uniioombllem3  24189  uniioombllem4  24190  uniioombllem5  24191  uniiccmbl  24194
  Copyright terms: Public domain W3C validator