MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   GIF version

Theorem ovolficcss 25420
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)

Proof of Theorem ovolficcss
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 6242 . . 3 ran ([,] ∘ 𝐹) = ([,] “ ran 𝐹)
2 ffvelcdm 7070 . . . . . . . . . . . 12 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ ( ≤ ∩ (ℝ × ℝ)))
32elin2d 4180 . . . . . . . . . . 11 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) ∈ (ℝ × ℝ))
4 1st2nd2 8025 . . . . . . . . . . 11 ((𝐹𝑦) ∈ (ℝ × ℝ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
53, 4syl 17 . . . . . . . . . 10 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹𝑦) = ⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
65fveq2d 6879 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩))
7 df-ov 7406 . . . . . . . . 9 ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) = ([,]‘⟨(1st ‘(𝐹𝑦)), (2nd ‘(𝐹𝑦))⟩)
86, 7eqtr4di 2788 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) = ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))))
9 xp1st 8018 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
103, 9syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (1st ‘(𝐹𝑦)) ∈ ℝ)
11 xp2nd 8019 . . . . . . . . . 10 ((𝐹𝑦) ∈ (ℝ × ℝ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
123, 11syl 17 . . . . . . . . 9 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (2nd ‘(𝐹𝑦)) ∈ ℝ)
13 iccssre 13444 . . . . . . . . 9 (((1st ‘(𝐹𝑦)) ∈ ℝ ∧ (2nd ‘(𝐹𝑦)) ∈ ℝ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
1410, 12, 13syl2anc 584 . . . . . . . 8 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ((1st ‘(𝐹𝑦))[,](2nd ‘(𝐹𝑦))) ⊆ ℝ)
158, 14eqsstrd 3993 . . . . . . 7 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ⊆ ℝ)
16 reex 11218 . . . . . . . 8 ℝ ∈ V
1716elpw2 5304 . . . . . . 7 (([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ⊆ ℝ)
1815, 17sylibr 234 . . . . . 6 ((𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
1918ralrimiva 3132 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ)
20 ffn 6705 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → 𝐹 Fn ℕ)
21 fveq2 6875 . . . . . . . 8 (𝑥 = (𝐹𝑦) → ([,]‘𝑥) = ([,]‘(𝐹𝑦)))
2221eleq1d 2819 . . . . . . 7 (𝑥 = (𝐹𝑦) → (([,]‘𝑥) ∈ 𝒫 ℝ ↔ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2322ralrn 7077 . . . . . 6 (𝐹 Fn ℕ → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2420, 23syl 17 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔ ∀𝑦 ∈ ℕ ([,]‘(𝐹𝑦)) ∈ 𝒫 ℝ))
2519, 24mpbird 257 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)
26 iccf 13463 . . . . . 6 [,]:(ℝ* × ℝ*)⟶𝒫 ℝ*
27 ffun 6708 . . . . . 6 ([,]:(ℝ* × ℝ*)⟶𝒫 ℝ* → Fun [,])
2826, 27ax-mp 5 . . . . 5 Fun [,]
29 frn 6712 . . . . . 6 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ × ℝ)))
30 inss2 4213 . . . . . . . 8 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ × ℝ)
31 rexpssxrxp 11278 . . . . . . . 8 (ℝ × ℝ) ⊆ (ℝ* × ℝ*)
3230, 31sstri 3968 . . . . . . 7 ( ≤ ∩ (ℝ × ℝ)) ⊆ (ℝ* × ℝ*)
3326fdmi 6716 . . . . . . 7 dom [,] = (ℝ* × ℝ*)
3432, 33sseqtrri 4008 . . . . . 6 ( ≤ ∩ (ℝ × ℝ)) ⊆ dom [,]
3529, 34sstrdi 3971 . . . . 5 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran 𝐹 ⊆ dom [,])
36 funimass4 6942 . . . . 5 ((Fun [,] ∧ ran 𝐹 ⊆ dom [,]) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3728, 35, 36sylancr 587 . . . 4 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔ ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ))
3825, 37mpbird 257 . . 3 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ([,] “ ran 𝐹) ⊆ 𝒫 ℝ)
391, 38eqsstrid 3997 . 2 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ)
40 sspwuni 5076 . 2 (ran ([,] ∘ 𝐹) ⊆ 𝒫 ℝ ↔ ran ([,] ∘ 𝐹) ⊆ ℝ)
4139, 40sylib 218 1 (𝐹:ℕ⟶( ≤ ∩ (ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ ℝ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2108  wral 3051  cin 3925  wss 3926  𝒫 cpw 4575  cop 4607   cuni 4883   × cxp 5652  dom cdm 5654  ran crn 5655  cima 5657  ccom 5658  Fun wfun 6524   Fn wfn 6525  wf 6526  cfv 6530  (class class class)co 7403  1st c1st 7984  2nd c2nd 7985  cr 11126  *cxr 11266  cle 11268  cn 12238  [,]cicc 13363
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7727  ax-cnex 11183  ax-resscn 11184  ax-pre-lttri 11201  ax-pre-lttrn 11202
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-id 5548  df-po 5561  df-so 5562  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-iota 6483  df-fun 6532  df-fn 6533  df-f 6534  df-f1 6535  df-fo 6536  df-f1o 6537  df-fv 6538  df-ov 7406  df-oprab 7407  df-mpo 7408  df-1st 7986  df-2nd 7987  df-er 8717  df-en 8958  df-dom 8959  df-sdom 8960  df-pnf 11269  df-mnf 11270  df-xr 11271  df-ltxr 11272  df-le 11273  df-icc 13367
This theorem is referenced by:  ovollb2lem  25439  ovollb2  25440  uniiccdif  25529  uniiccvol  25531  uniioombllem3  25536  uniioombllem4  25537  uniioombllem5  25538  uniiccmbl  25541
  Copyright terms: Public domain W3C validator