MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ovolficcss Structured version   Visualization version   GIF version

Theorem ovolficcss 25428
Description: Any (closed) interval covering is a subset of the reals. (Contributed by Mario Carneiro, 24-Mar-2015.)
Assertion
Ref Expression
ovolficcss (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ βˆͺ ran ([,] ∘ 𝐹) βŠ† ℝ)

Proof of Theorem ovolficcss
Dummy variables π‘₯ 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnco2 6257 . . 3 ran ([,] ∘ 𝐹) = ([,] β€œ ran 𝐹)
2 ffvelcdm 7088 . . . . . . . . . . . 12 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ (πΉβ€˜π‘¦) ∈ ( ≀ ∩ (ℝ Γ— ℝ)))
32elin2d 4198 . . . . . . . . . . 11 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ (πΉβ€˜π‘¦) ∈ (ℝ Γ— ℝ))
4 1st2nd2 8031 . . . . . . . . . . 11 ((πΉβ€˜π‘¦) ∈ (ℝ Γ— ℝ) β†’ (πΉβ€˜π‘¦) = ⟨(1st β€˜(πΉβ€˜π‘¦)), (2nd β€˜(πΉβ€˜π‘¦))⟩)
53, 4syl 17 . . . . . . . . . 10 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ (πΉβ€˜π‘¦) = ⟨(1st β€˜(πΉβ€˜π‘¦)), (2nd β€˜(πΉβ€˜π‘¦))⟩)
65fveq2d 6898 . . . . . . . . 9 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘¦)) = ([,]β€˜βŸ¨(1st β€˜(πΉβ€˜π‘¦)), (2nd β€˜(πΉβ€˜π‘¦))⟩))
7 df-ov 7420 . . . . . . . . 9 ((1st β€˜(πΉβ€˜π‘¦))[,](2nd β€˜(πΉβ€˜π‘¦))) = ([,]β€˜βŸ¨(1st β€˜(πΉβ€˜π‘¦)), (2nd β€˜(πΉβ€˜π‘¦))⟩)
86, 7eqtr4di 2783 . . . . . . . 8 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘¦)) = ((1st β€˜(πΉβ€˜π‘¦))[,](2nd β€˜(πΉβ€˜π‘¦))))
9 xp1st 8024 . . . . . . . . . 10 ((πΉβ€˜π‘¦) ∈ (ℝ Γ— ℝ) β†’ (1st β€˜(πΉβ€˜π‘¦)) ∈ ℝ)
103, 9syl 17 . . . . . . . . 9 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ (1st β€˜(πΉβ€˜π‘¦)) ∈ ℝ)
11 xp2nd 8025 . . . . . . . . . 10 ((πΉβ€˜π‘¦) ∈ (ℝ Γ— ℝ) β†’ (2nd β€˜(πΉβ€˜π‘¦)) ∈ ℝ)
123, 11syl 17 . . . . . . . . 9 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ (2nd β€˜(πΉβ€˜π‘¦)) ∈ ℝ)
13 iccssre 13438 . . . . . . . . 9 (((1st β€˜(πΉβ€˜π‘¦)) ∈ ℝ ∧ (2nd β€˜(πΉβ€˜π‘¦)) ∈ ℝ) β†’ ((1st β€˜(πΉβ€˜π‘¦))[,](2nd β€˜(πΉβ€˜π‘¦))) βŠ† ℝ)
1410, 12, 13syl2anc 582 . . . . . . . 8 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ ((1st β€˜(πΉβ€˜π‘¦))[,](2nd β€˜(πΉβ€˜π‘¦))) βŠ† ℝ)
158, 14eqsstrd 4016 . . . . . . 7 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘¦)) βŠ† ℝ)
16 reex 11229 . . . . . . . 8 ℝ ∈ V
1716elpw2 5347 . . . . . . 7 (([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ ↔ ([,]β€˜(πΉβ€˜π‘¦)) βŠ† ℝ)
1815, 17sylibr 233 . . . . . 6 ((𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) ∧ 𝑦 ∈ β„•) β†’ ([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ)
1918ralrimiva 3136 . . . . 5 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ βˆ€π‘¦ ∈ β„• ([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ)
20 ffn 6721 . . . . . 6 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ 𝐹 Fn β„•)
21 fveq2 6894 . . . . . . . 8 (π‘₯ = (πΉβ€˜π‘¦) β†’ ([,]β€˜π‘₯) = ([,]β€˜(πΉβ€˜π‘¦)))
2221eleq1d 2810 . . . . . . 7 (π‘₯ = (πΉβ€˜π‘¦) β†’ (([,]β€˜π‘₯) ∈ 𝒫 ℝ ↔ ([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ))
2322ralrn 7095 . . . . . 6 (𝐹 Fn β„• β†’ (βˆ€π‘₯ ∈ ran 𝐹([,]β€˜π‘₯) ∈ 𝒫 ℝ ↔ βˆ€π‘¦ ∈ β„• ([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ))
2420, 23syl 17 . . . . 5 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ (βˆ€π‘₯ ∈ ran 𝐹([,]β€˜π‘₯) ∈ 𝒫 ℝ ↔ βˆ€π‘¦ ∈ β„• ([,]β€˜(πΉβ€˜π‘¦)) ∈ 𝒫 ℝ))
2519, 24mpbird 256 . . . 4 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ βˆ€π‘₯ ∈ ran 𝐹([,]β€˜π‘₯) ∈ 𝒫 ℝ)
26 iccf 13457 . . . . . 6 [,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ*
27 ffun 6724 . . . . . 6 ([,]:(ℝ* Γ— ℝ*)βŸΆπ’« ℝ* β†’ Fun [,])
2826, 27ax-mp 5 . . . . 5 Fun [,]
29 frn 6728 . . . . . 6 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ ran 𝐹 βŠ† ( ≀ ∩ (ℝ Γ— ℝ)))
30 inss2 4229 . . . . . . . 8 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ Γ— ℝ)
31 rexpssxrxp 11289 . . . . . . . 8 (ℝ Γ— ℝ) βŠ† (ℝ* Γ— ℝ*)
3230, 31sstri 3987 . . . . . . 7 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† (ℝ* Γ— ℝ*)
3326fdmi 6732 . . . . . . 7 dom [,] = (ℝ* Γ— ℝ*)
3432, 33sseqtrri 4015 . . . . . 6 ( ≀ ∩ (ℝ Γ— ℝ)) βŠ† dom [,]
3529, 34sstrdi 3990 . . . . 5 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ ran 𝐹 βŠ† dom [,])
36 funimass4 6960 . . . . 5 ((Fun [,] ∧ ran 𝐹 βŠ† dom [,]) β†’ (([,] β€œ ran 𝐹) βŠ† 𝒫 ℝ ↔ βˆ€π‘₯ ∈ ran 𝐹([,]β€˜π‘₯) ∈ 𝒫 ℝ))
3728, 35, 36sylancr 585 . . . 4 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ (([,] β€œ ran 𝐹) βŠ† 𝒫 ℝ ↔ βˆ€π‘₯ ∈ ran 𝐹([,]β€˜π‘₯) ∈ 𝒫 ℝ))
3825, 37mpbird 256 . . 3 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ ([,] β€œ ran 𝐹) βŠ† 𝒫 ℝ)
391, 38eqsstrid 4026 . 2 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ ran ([,] ∘ 𝐹) βŠ† 𝒫 ℝ)
40 sspwuni 5103 . 2 (ran ([,] ∘ 𝐹) βŠ† 𝒫 ℝ ↔ βˆͺ ran ([,] ∘ 𝐹) βŠ† ℝ)
4139, 40sylib 217 1 (𝐹:β„•βŸΆ( ≀ ∩ (ℝ Γ— ℝ)) β†’ βˆͺ ran ([,] ∘ 𝐹) βŠ† ℝ)
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ↔ wb 205   ∧ wa 394   = wceq 1533   ∈ wcel 2098  βˆ€wral 3051   ∩ cin 3944   βŠ† wss 3945  π’« cpw 4603  βŸ¨cop 4635  βˆͺ cuni 4908   Γ— cxp 5675  dom cdm 5677  ran crn 5678   β€œ cima 5680   ∘ ccom 5681  Fun wfun 6541   Fn wfn 6542  βŸΆwf 6543  β€˜cfv 6547  (class class class)co 7417  1st c1st 7990  2nd c2nd 7991  β„cr 11137  β„*cxr 11277   ≀ cle 11279  β„•cn 12242  [,]cicc 13359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2696  ax-sep 5299  ax-nul 5306  ax-pow 5364  ax-pr 5428  ax-un 7739  ax-cnex 11194  ax-resscn 11195  ax-pre-lttri 11212  ax-pre-lttrn 11213
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2528  df-eu 2557  df-clab 2703  df-cleq 2717  df-clel 2802  df-nfc 2877  df-ne 2931  df-nel 3037  df-ral 3052  df-rex 3061  df-rab 3420  df-v 3465  df-sbc 3775  df-csb 3891  df-dif 3948  df-un 3950  df-in 3952  df-ss 3962  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5575  df-po 5589  df-so 5590  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6499  df-fun 6549  df-fn 6550  df-f 6551  df-f1 6552  df-fo 6553  df-f1o 6554  df-fv 6555  df-ov 7420  df-oprab 7421  df-mpo 7422  df-1st 7992  df-2nd 7993  df-er 8723  df-en 8963  df-dom 8964  df-sdom 8965  df-pnf 11280  df-mnf 11281  df-xr 11282  df-ltxr 11283  df-le 11284  df-icc 13363
This theorem is referenced by:  ovollb2lem  25447  ovollb2  25448  uniiccdif  25537  uniiccvol  25539  uniioombllem3  25544  uniioombllem4  25545  uniioombllem5  25546  uniiccmbl  25549
  Copyright terms: Public domain W3C validator