Step | Hyp | Ref
| Expression |
1 | | rnco2 5896 |
. . 3
⊢ ran ([,]
∘ 𝐹) = ([,] “
ran 𝐹) |
2 | | inss2 4053 |
. . . . . . . . . . . 12
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ ×
ℝ) |
3 | | ffvelrn 6621 |
. . . . . . . . . . . 12
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ ( ≤ ∩ (ℝ ×
ℝ))) |
4 | 2, 3 | sseldi 3818 |
. . . . . . . . . . 11
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) ∈ (ℝ ×
ℝ)) |
5 | | 1st2nd2 7484 |
. . . . . . . . . . 11
⊢ ((𝐹‘𝑦) ∈ (ℝ × ℝ) →
(𝐹‘𝑦) = 〈(1st ‘(𝐹‘𝑦)), (2nd ‘(𝐹‘𝑦))〉) |
6 | 4, 5 | syl 17 |
. . . . . . . . . 10
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (𝐹‘𝑦) = 〈(1st ‘(𝐹‘𝑦)), (2nd ‘(𝐹‘𝑦))〉) |
7 | 6 | fveq2d 6450 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹‘𝑦)) = ([,]‘〈(1st
‘(𝐹‘𝑦)), (2nd
‘(𝐹‘𝑦))〉)) |
8 | | df-ov 6925 |
. . . . . . . . 9
⊢
((1st ‘(𝐹‘𝑦))[,](2nd ‘(𝐹‘𝑦))) = ([,]‘〈(1st
‘(𝐹‘𝑦)), (2nd
‘(𝐹‘𝑦))〉) |
9 | 7, 8 | syl6eqr 2831 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹‘𝑦)) = ((1st ‘(𝐹‘𝑦))[,](2nd ‘(𝐹‘𝑦)))) |
10 | | xp1st 7477 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑦) ∈ (ℝ × ℝ) →
(1st ‘(𝐹‘𝑦)) ∈ ℝ) |
11 | 4, 10 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (1st
‘(𝐹‘𝑦)) ∈
ℝ) |
12 | | xp2nd 7478 |
. . . . . . . . . 10
⊢ ((𝐹‘𝑦) ∈ (ℝ × ℝ) →
(2nd ‘(𝐹‘𝑦)) ∈ ℝ) |
13 | 4, 12 | syl 17 |
. . . . . . . . 9
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → (2nd
‘(𝐹‘𝑦)) ∈
ℝ) |
14 | | iccssre 12567 |
. . . . . . . . 9
⊢
(((1st ‘(𝐹‘𝑦)) ∈ ℝ ∧ (2nd
‘(𝐹‘𝑦)) ∈ ℝ) →
((1st ‘(𝐹‘𝑦))[,](2nd ‘(𝐹‘𝑦))) ⊆ ℝ) |
15 | 11, 13, 14 | syl2anc 579 |
. . . . . . . 8
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ((1st
‘(𝐹‘𝑦))[,](2nd
‘(𝐹‘𝑦))) ⊆
ℝ) |
16 | 9, 15 | eqsstrd 3857 |
. . . . . . 7
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹‘𝑦)) ⊆ ℝ) |
17 | | reex 10363 |
. . . . . . . 8
⊢ ℝ
∈ V |
18 | 17 | elpw2 5062 |
. . . . . . 7
⊢
(([,]‘(𝐹‘𝑦)) ∈ 𝒫 ℝ ↔
([,]‘(𝐹‘𝑦)) ⊆
ℝ) |
19 | 16, 18 | sylibr 226 |
. . . . . 6
⊢ ((𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) ∧ 𝑦 ∈ ℕ) → ([,]‘(𝐹‘𝑦)) ∈ 𝒫 ℝ) |
20 | 19 | ralrimiva 3147 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∀𝑦 ∈ ℕ ([,]‘(𝐹‘𝑦)) ∈ 𝒫 ℝ) |
21 | | ffn 6291 |
. . . . . 6
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → 𝐹 Fn ℕ) |
22 | | fveq2 6446 |
. . . . . . . 8
⊢ (𝑥 = (𝐹‘𝑦) → ([,]‘𝑥) = ([,]‘(𝐹‘𝑦))) |
23 | 22 | eleq1d 2843 |
. . . . . . 7
⊢ (𝑥 = (𝐹‘𝑦) → (([,]‘𝑥) ∈ 𝒫 ℝ ↔
([,]‘(𝐹‘𝑦)) ∈ 𝒫
ℝ)) |
24 | 23 | ralrn 6626 |
. . . . . 6
⊢ (𝐹 Fn ℕ →
(∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔
∀𝑦 ∈ ℕ
([,]‘(𝐹‘𝑦)) ∈ 𝒫
ℝ)) |
25 | 21, 24 | syl 17 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ ↔
∀𝑦 ∈ ℕ
([,]‘(𝐹‘𝑦)) ∈ 𝒫
ℝ)) |
26 | 20, 25 | mpbird 249 |
. . . 4
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ) |
27 | | iccf 12585 |
. . . . . 6
⊢
[,]:(ℝ* × ℝ*)⟶𝒫
ℝ* |
28 | | ffun 6294 |
. . . . . 6
⊢
([,]:(ℝ* × ℝ*)⟶𝒫
ℝ* → Fun [,]) |
29 | 27, 28 | ax-mp 5 |
. . . . 5
⊢ Fun
[,] |
30 | | frn 6297 |
. . . . . 6
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ran 𝐹 ⊆ ( ≤ ∩ (ℝ ×
ℝ))) |
31 | | rexpssxrxp 10421 |
. . . . . . . 8
⊢ (ℝ
× ℝ) ⊆ (ℝ* ×
ℝ*) |
32 | 2, 31 | sstri 3829 |
. . . . . . 7
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ (ℝ* ×
ℝ*) |
33 | 27 | fdmi 6301 |
. . . . . . 7
⊢ dom [,] =
(ℝ* × ℝ*) |
34 | 32, 33 | sseqtr4i 3856 |
. . . . . 6
⊢ ( ≤
∩ (ℝ × ℝ)) ⊆ dom [,] |
35 | 30, 34 | syl6ss 3832 |
. . . . 5
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ran 𝐹 ⊆ dom [,]) |
36 | | funimass4 6507 |
. . . . 5
⊢ ((Fun [,]
∧ ran 𝐹 ⊆ dom
[,]) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔
∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)) |
37 | 29, 35, 36 | sylancr 581 |
. . . 4
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → (([,] “ ran 𝐹) ⊆ 𝒫 ℝ ↔
∀𝑥 ∈ ran 𝐹([,]‘𝑥) ∈ 𝒫 ℝ)) |
38 | 26, 37 | mpbird 249 |
. . 3
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ([,] “ ran 𝐹) ⊆ 𝒫
ℝ) |
39 | 1, 38 | syl5eqss 3867 |
. 2
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ran ([,] ∘ 𝐹) ⊆ 𝒫
ℝ) |
40 | | sspwuni 4845 |
. 2
⊢ (ran ([,]
∘ 𝐹) ⊆
𝒫 ℝ ↔ ∪ ran ([,] ∘ 𝐹) ⊆
ℝ) |
41 | 39, 40 | sylib 210 |
1
⊢ (𝐹:ℕ⟶( ≤ ∩
(ℝ × ℝ)) → ∪ ran ([,] ∘
𝐹) ⊆
ℝ) |