MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Visualization version   GIF version

Theorem dprdf1o 19148
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1 (𝜑𝐺dom DProd 𝑆)
dprdf1o.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1o.3 (𝜑𝐹:𝐽1-1-onto𝐼)
Assertion
Ref Expression
dprdf1o (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2821 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2821 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2821 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdf1o.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
5 dprdgrp 19121 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdf1o.3 . . . . 5 (𝜑𝐹:𝐽1-1-onto𝐼)
8 f1of1 6608 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽1-1𝐼)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐽1-1𝐼)
10 dprdf1o.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
114, 10dprddomcld 19117 . . . 4 (𝜑𝐼 ∈ V)
12 f1dmex 7652 . . . 4 ((𝐹:𝐽1-1𝐼𝐼 ∈ V) → 𝐽 ∈ V)
139, 11, 12syl2anc 586 . . 3 (𝜑𝐽 ∈ V)
144, 10dprdf2 19123 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
15 f1of 6609 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽𝐼)
167, 15syl 17 . . . 4 (𝜑𝐹:𝐽𝐼)
17 fco 6525 . . . 4 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽𝐼) → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
1814, 16, 17syl2anc 586 . . 3 (𝜑 → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
194adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐺dom DProd 𝑆)
2010adantr 483 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → dom 𝑆 = 𝐼)
2116adantr 483 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽𝐼)
22 simpr1 1190 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝐽)
2321, 22ffvelrnd 6846 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ∈ 𝐼)
24 simpr2 1191 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
2521, 24ffvelrnd 6846 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑦) ∈ 𝐼)
26 simpr3 1192 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝑦)
279adantr 483 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽1-1𝐼)
28 f1fveq 7014 . . . . . . . 8 ((𝐹:𝐽1-1𝐼 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2927, 22, 24, 28syl12anc 834 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3029necon3bid 3060 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
3126, 30mpbird 259 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3219, 20, 23, 25, 31, 1dprdcntz 19124 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝑆‘(𝐹𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
33 fvco3 6754 . . . . 5 ((𝐹:𝐽𝐼𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
3421, 22, 33syl2anc 586 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
35 fvco3 6754 . . . . . 6 ((𝐹:𝐽𝐼𝑦𝐽) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3621, 24, 35syl2anc 586 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3736fveq2d 6668 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
3832, 34, 373sstr4d 4013 . . 3 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)))
3916, 33sylan 582 . . . . . 6 ((𝜑𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
40 imaco 6098 . . . . . . . . 9 ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥})))
417adantr 483 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝐹:𝐽1-1-onto𝐼)
42 dff1o3 6615 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼 ↔ (𝐹:𝐽onto𝐼 ∧ Fun 𝐹))
4342simprbi 499 . . . . . . . . . . . 12 (𝐹:𝐽1-1-onto𝐼 → Fun 𝐹)
44 imadif 6432 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
4541, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
46 f1ofo 6616 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽onto𝐼)
47 foima 6589 . . . . . . . . . . . . 13 (𝐹:𝐽onto𝐼 → (𝐹𝐽) = 𝐼)
4841, 46, 473syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹𝐽) = 𝐼)
49 f1ofn 6610 . . . . . . . . . . . . . . 15 (𝐹:𝐽1-1-onto𝐼𝐹 Fn 𝐽)
507, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐽)
51 fnsnfv 6737 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐽𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5250, 51sylan 582 . . . . . . . . . . . . 13 ((𝜑𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5352eqcomd 2827 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹 “ {𝑥}) = {(𝐹𝑥)})
5448, 53difeq12d 4099 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ((𝐹𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5545, 54eqtrd 2856 . . . . . . . . . 10 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5655imaeq2d 5923 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5740, 56syl5eq 2868 . . . . . . . 8 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5857unieqd 4841 . . . . . . 7 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5958fveq2d 6668 . . . . . 6 ((𝜑𝑥𝐽) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)}))))
6039, 59ineq12d 4189 . . . . 5 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))))
614adantr 483 . . . . . 6 ((𝜑𝑥𝐽) → 𝐺dom DProd 𝑆)
6210adantr 483 . . . . . 6 ((𝜑𝑥𝐽) → dom 𝑆 = 𝐼)
6316ffvelrnda 6845 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐼)
6461, 62, 63, 2, 3dprddisj 19125 . . . . 5 ((𝜑𝑥𝐽) → ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))) = {(0g𝐺)})
6560, 64eqtrd 2856 . . . 4 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)})
66 eqimss 4022 . . . 4 ((((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)} → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
6765, 66syl 17 . . 3 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 19115 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
69 rnco2 6100 . . . . . 6 ran (𝑆𝐹) = (𝑆 “ ran 𝐹)
70 forn 6587 . . . . . . . . 9 (𝐹:𝐽onto𝐼 → ran 𝐹 = 𝐼)
717, 46, 703syl 18 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐼)
7271imaeq2d 5923 . . . . . . 7 (𝜑 → (𝑆 “ ran 𝐹) = (𝑆𝐼))
73 ffn 6508 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
74 fnima 6472 . . . . . . . 8 (𝑆 Fn 𝐼 → (𝑆𝐼) = ran 𝑆)
7514, 73, 743syl 18 . . . . . . 7 (𝜑 → (𝑆𝐼) = ran 𝑆)
7672, 75eqtrd 2856 . . . . . 6 (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆)
7769, 76syl5eq 2868 . . . . 5 (𝜑 → ran (𝑆𝐹) = ran 𝑆)
7877unieqd 4841 . . . 4 (𝜑 ran (𝑆𝐹) = ran 𝑆)
7978fveq2d 6668 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
803dprdspan 19143 . . . 4 (𝐺dom DProd (𝑆𝐹) → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
8168, 80syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
823dprdspan 19143 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
834, 82syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
8479, 81, 833eqtr4d 2866 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆))
8568, 84jca 514 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 208  wa 398  w3a 1083   = wceq 1533  wcel 2110  wne 3016  Vcvv 3494  cdif 3932  cin 3934  wss 3935  {csn 4560   cuni 4831   class class class wbr 5058  ccnv 5548  dom cdm 5549  ran crn 5550  cima 5552  ccom 5553  Fun wfun 6343   Fn wfn 6344  wf 6345  1-1wf1 6346  ontowfo 6347  1-1-ontowf1o 6348  cfv 6349  (class class class)co 7150  0gc0g 16707  mrClscmrc 16848  Grpcgrp 18097  SubGrpcsubg 18267  Cntzccntz 18439   DProd cdprd 19109
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1907  ax-6 1966  ax-7 2011  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2157  ax-12 2173  ax-ext 2793  ax-rep 5182  ax-sep 5195  ax-nul 5202  ax-pow 5258  ax-pr 5321  ax-un 7455  ax-cnex 10587  ax-resscn 10588  ax-1cn 10589  ax-icn 10590  ax-addcl 10591  ax-addrcl 10592  ax-mulcl 10593  ax-mulrcl 10594  ax-mulcom 10595  ax-addass 10596  ax-mulass 10597  ax-distr 10598  ax-i2m1 10599  ax-1ne0 10600  ax-1rid 10601  ax-rnegex 10602  ax-rrecex 10603  ax-cnre 10604  ax-pre-lttri 10605  ax-pre-lttrn 10606  ax-pre-ltadd 10607  ax-pre-mulgt0 10608
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1536  df-ex 1777  df-nf 1781  df-sb 2066  df-mo 2618  df-eu 2650  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-nel 3124  df-ral 3143  df-rex 3144  df-reu 3145  df-rmo 3146  df-rab 3147  df-v 3496  df-sbc 3772  df-csb 3883  df-dif 3938  df-un 3940  df-in 3942  df-ss 3951  df-pss 3953  df-nul 4291  df-if 4467  df-pw 4540  df-sn 4561  df-pr 4563  df-tp 4565  df-op 4567  df-uni 4832  df-int 4869  df-iun 4913  df-iin 4914  df-br 5059  df-opab 5121  df-mpt 5139  df-tr 5165  df-id 5454  df-eprel 5459  df-po 5468  df-so 5469  df-fr 5508  df-se 5509  df-we 5510  df-xp 5555  df-rel 5556  df-cnv 5557  df-co 5558  df-dm 5559  df-rn 5560  df-res 5561  df-ima 5562  df-pred 6142  df-ord 6188  df-on 6189  df-lim 6190  df-suc 6191  df-iota 6308  df-fun 6351  df-fn 6352  df-f 6353  df-f1 6354  df-fo 6355  df-f1o 6356  df-fv 6357  df-isom 6358  df-riota 7108  df-ov 7153  df-oprab 7154  df-mpo 7155  df-of 7403  df-om 7575  df-1st 7683  df-2nd 7684  df-supp 7825  df-tpos 7886  df-wrecs 7941  df-recs 8002  df-rdg 8040  df-1o 8096  df-oadd 8100  df-er 8283  df-map 8402  df-ixp 8456  df-en 8504  df-dom 8505  df-sdom 8506  df-fin 8507  df-fsupp 8828  df-oi 8968  df-card 9362  df-pnf 10671  df-mnf 10672  df-xr 10673  df-ltxr 10674  df-le 10675  df-sub 10866  df-neg 10867  df-nn 11633  df-2 11694  df-n0 11892  df-z 11976  df-uz 12238  df-fz 12887  df-fzo 13028  df-seq 13364  df-hash 13685  df-ndx 16480  df-slot 16481  df-base 16483  df-sets 16484  df-ress 16485  df-plusg 16572  df-0g 16709  df-gsum 16710  df-mre 16851  df-mrc 16852  df-acs 16854  df-mgm 17846  df-sgrp 17895  df-mnd 17906  df-mhm 17950  df-submnd 17951  df-grp 18100  df-minusg 18101  df-sbg 18102  df-mulg 18219  df-subg 18270  df-ghm 18350  df-gim 18393  df-cntz 18441  df-oppg 18468  df-cmn 18902  df-dprd 19111
This theorem is referenced by:  dprdf1  19149  ablfaclem2  19202
  Copyright terms: Public domain W3C validator