| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2736 |
. . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
| 2 | | eqid 2736 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
| 3 | | eqid 2736 |
. . 3
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
| 4 | | dprdf1o.1 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
| 5 | | dprdgrp 19993 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
| 6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
| 7 | | dprdf1o.3 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) |
| 8 | | f1of1 6822 |
. . . . 5
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽–1-1→𝐼) |
| 9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) |
| 10 | | dprdf1o.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
| 11 | 4, 10 | dprddomcld 19989 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
| 12 | | f1dmex 7960 |
. . . 4
⊢ ((𝐹:𝐽–1-1→𝐼 ∧ 𝐼 ∈ V) → 𝐽 ∈ V) |
| 13 | 9, 11, 12 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐽 ∈ V) |
| 14 | 4, 10 | dprdf2 19995 |
. . . 4
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
| 15 | | f1of 6823 |
. . . . 5
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽⟶𝐼) |
| 16 | 7, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝐽⟶𝐼) |
| 17 | | fco 6735 |
. . . 4
⊢ ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽⟶𝐼) → (𝑆 ∘ 𝐹):𝐽⟶(SubGrp‘𝐺)) |
| 18 | 14, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑆 ∘ 𝐹):𝐽⟶(SubGrp‘𝐺)) |
| 19 | 4 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐺dom DProd 𝑆) |
| 20 | 10 | adantr 480 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → dom 𝑆 = 𝐼) |
| 21 | 16 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝐽⟶𝐼) |
| 22 | | simpr1 1195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐽) |
| 23 | 21, 22 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ 𝐼) |
| 24 | | simpr2 1196 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐽) |
| 25 | 21, 24 | ffvelcdmd 7080 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑦) ∈ 𝐼) |
| 26 | | simpr3 1197 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
| 27 | 9 | adantr 480 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝐽–1-1→𝐼) |
| 28 | | f1fveq 7260 |
. . . . . . . 8
⊢ ((𝐹:𝐽–1-1→𝐼 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
| 29 | 27, 22, 24, 28 | syl12anc 836 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
| 30 | 29 | necon3bid 2977 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ 𝑦)) |
| 31 | 26, 30 | mpbird 257 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
| 32 | 19, 20, 23, 25, 31, 1 | dprdcntz 19996 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘(𝐹‘𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹‘𝑦)))) |
| 33 | | fvco3 6983 |
. . . . 5
⊢ ((𝐹:𝐽⟶𝐼 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
| 34 | 21, 22, 33 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
| 35 | | fvco3 6983 |
. . . . . 6
⊢ ((𝐹:𝐽⟶𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑦) = (𝑆‘(𝐹‘𝑦))) |
| 36 | 21, 24, 35 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑦) = (𝑆‘(𝐹‘𝑦))) |
| 37 | 36 | fveq2d 6885 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((Cntz‘𝐺)‘((𝑆 ∘ 𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹‘𝑦)))) |
| 38 | 32, 34, 37 | 3sstr4d 4019 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆 ∘ 𝐹)‘𝑦))) |
| 39 | 16, 33 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
| 40 | | imaco 6245 |
. . . . . . . . 9
⊢ ((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) |
| 41 | 7 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐹:𝐽–1-1-onto→𝐼) |
| 42 | | dff1o3 6829 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–1-1-onto→𝐼 ↔ (𝐹:𝐽–onto→𝐼 ∧ Fun ◡𝐹)) |
| 43 | 42 | simprbi 496 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐽–1-1-onto→𝐼 → Fun ◡𝐹) |
| 44 | | imadif 6625 |
. . . . . . . . . . . 12
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥}))) |
| 45 | 41, 43, 44 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥}))) |
| 46 | | f1ofo 6830 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽–onto→𝐼) |
| 47 | | foima 6800 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–onto→𝐼 → (𝐹 “ 𝐽) = 𝐼) |
| 48 | 41, 46, 47 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝐽) = 𝐼) |
| 49 | | f1ofn 6824 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹 Fn 𝐽) |
| 50 | 7, 49 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐽) |
| 51 | | fnsnfv 6963 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐽 ∧ 𝑥 ∈ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
| 52 | 50, 51 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
| 53 | 52 | eqcomd 2742 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ {𝑥}) = {(𝐹‘𝑥)}) |
| 54 | 48, 53 | difeq12d 4107 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹‘𝑥)})) |
| 55 | 45, 54 | eqtrd 2771 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹‘𝑥)})) |
| 56 | 55 | imaeq2d 6052 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
| 57 | 40, 56 | eqtrid 2783 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
| 58 | 57 | unieqd 4901 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∪
((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
| 59 | 58 | fveq2d 6885 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)})))) |
| 60 | 39, 59 | ineq12d 4201 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹‘𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)}))))) |
| 61 | 4 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐺dom DProd 𝑆) |
| 62 | 10 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → dom 𝑆 = 𝐼) |
| 63 | 16 | ffvelcdmda 7079 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹‘𝑥) ∈ 𝐼) |
| 64 | 61, 62, 63, 2, 3 | dprddisj 19997 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆‘(𝐹‘𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)})))) = {(0g‘𝐺)}) |
| 65 | 60, 64 | eqtrd 2771 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g‘𝐺)}) |
| 66 | | eqimss 4022 |
. . . 4
⊢ ((((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g‘𝐺)} → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g‘𝐺)}) |
| 67 | 65, 66 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g‘𝐺)}) |
| 68 | 1, 2, 3, 6, 13, 18, 38, 67 | dmdprdd 19987 |
. 2
⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) |
| 69 | | rnco2 6247 |
. . . . . 6
⊢ ran
(𝑆 ∘ 𝐹) = (𝑆 “ ran 𝐹) |
| 70 | | forn 6798 |
. . . . . . . . 9
⊢ (𝐹:𝐽–onto→𝐼 → ran 𝐹 = 𝐼) |
| 71 | 7, 46, 70 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐼) |
| 72 | 71 | imaeq2d 6052 |
. . . . . . 7
⊢ (𝜑 → (𝑆 “ ran 𝐹) = (𝑆 “ 𝐼)) |
| 73 | | ffn 6711 |
. . . . . . . 8
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼) |
| 74 | | fnima 6673 |
. . . . . . . 8
⊢ (𝑆 Fn 𝐼 → (𝑆 “ 𝐼) = ran 𝑆) |
| 75 | 14, 73, 74 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑆 “ 𝐼) = ran 𝑆) |
| 76 | 72, 75 | eqtrd 2771 |
. . . . . 6
⊢ (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆) |
| 77 | 69, 76 | eqtrid 2783 |
. . . . 5
⊢ (𝜑 → ran (𝑆 ∘ 𝐹) = ran 𝑆) |
| 78 | 77 | unieqd 4901 |
. . . 4
⊢ (𝜑 → ∪ ran (𝑆 ∘ 𝐹) = ∪ ran 𝑆) |
| 79 | 78 | fveq2d 6885 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
(𝑆 ∘ 𝐹)) =
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆)) |
| 80 | 3 | dprdspan 20015 |
. . . 4
⊢ (𝐺dom DProd (𝑆 ∘ 𝐹) → (𝐺 DProd (𝑆 ∘ 𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran (𝑆 ∘ 𝐹))) |
| 81 | 68, 80 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran (𝑆 ∘ 𝐹))) |
| 82 | 3 | dprdspan 20015 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
| 83 | 4, 82 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
| 84 | 79, 81, 83 | 3eqtr4d 2781 |
. 2
⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆)) |
| 85 | 68, 84 | jca 511 |
1
⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) |