Step | Hyp | Ref
| Expression |
1 | | eqid 2739 |
. . 3
⊢
(Cntz‘𝐺) =
(Cntz‘𝐺) |
2 | | eqid 2739 |
. . 3
⊢
(0g‘𝐺) = (0g‘𝐺) |
3 | | eqid 2739 |
. . 3
⊢
(mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺)) |
4 | | dprdf1o.1 |
. . . 4
⊢ (𝜑 → 𝐺dom DProd 𝑆) |
5 | | dprdgrp 19617 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → 𝐺 ∈ Grp) |
6 | 4, 5 | syl 17 |
. . 3
⊢ (𝜑 → 𝐺 ∈ Grp) |
7 | | dprdf1o.3 |
. . . . 5
⊢ (𝜑 → 𝐹:𝐽–1-1-onto→𝐼) |
8 | | f1of1 6724 |
. . . . 5
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽–1-1→𝐼) |
9 | 7, 8 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝐽–1-1→𝐼) |
10 | | dprdf1o.2 |
. . . . 5
⊢ (𝜑 → dom 𝑆 = 𝐼) |
11 | 4, 10 | dprddomcld 19613 |
. . . 4
⊢ (𝜑 → 𝐼 ∈ V) |
12 | | f1dmex 7808 |
. . . 4
⊢ ((𝐹:𝐽–1-1→𝐼 ∧ 𝐼 ∈ V) → 𝐽 ∈ V) |
13 | 9, 11, 12 | syl2anc 584 |
. . 3
⊢ (𝜑 → 𝐽 ∈ V) |
14 | 4, 10 | dprdf2 19619 |
. . . 4
⊢ (𝜑 → 𝑆:𝐼⟶(SubGrp‘𝐺)) |
15 | | f1of 6725 |
. . . . 5
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽⟶𝐼) |
16 | 7, 15 | syl 17 |
. . . 4
⊢ (𝜑 → 𝐹:𝐽⟶𝐼) |
17 | | fco 6633 |
. . . 4
⊢ ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽⟶𝐼) → (𝑆 ∘ 𝐹):𝐽⟶(SubGrp‘𝐺)) |
18 | 14, 16, 17 | syl2anc 584 |
. . 3
⊢ (𝜑 → (𝑆 ∘ 𝐹):𝐽⟶(SubGrp‘𝐺)) |
19 | 4 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐺dom DProd 𝑆) |
20 | 10 | adantr 481 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → dom 𝑆 = 𝐼) |
21 | 16 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝐽⟶𝐼) |
22 | | simpr1 1193 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ∈ 𝐽) |
23 | 21, 22 | ffvelrnd 6971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ∈ 𝐼) |
24 | | simpr2 1194 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑦 ∈ 𝐽) |
25 | 21, 24 | ffvelrnd 6971 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑦) ∈ 𝐼) |
26 | | simpr3 1195 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝑥 ≠ 𝑦) |
27 | 9 | adantr 481 |
. . . . . . . 8
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → 𝐹:𝐽–1-1→𝐼) |
28 | | f1fveq 7144 |
. . . . . . . 8
⊢ ((𝐹:𝐽–1-1→𝐼 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
29 | 27, 22, 24, 28 | syl12anc 834 |
. . . . . . 7
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) = (𝐹‘𝑦) ↔ 𝑥 = 𝑦)) |
30 | 29 | necon3bid 2989 |
. . . . . 6
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝐹‘𝑥) ≠ (𝐹‘𝑦) ↔ 𝑥 ≠ 𝑦)) |
31 | 26, 30 | mpbird 256 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝐹‘𝑥) ≠ (𝐹‘𝑦)) |
32 | 19, 20, 23, 25, 31, 1 | dprdcntz 19620 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → (𝑆‘(𝐹‘𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹‘𝑦)))) |
33 | | fvco3 6876 |
. . . . 5
⊢ ((𝐹:𝐽⟶𝐼 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
34 | 21, 22, 33 | syl2anc 584 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
35 | | fvco3 6876 |
. . . . . 6
⊢ ((𝐹:𝐽⟶𝐼 ∧ 𝑦 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑦) = (𝑆‘(𝐹‘𝑦))) |
36 | 21, 24, 35 | syl2anc 584 |
. . . . 5
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑦) = (𝑆‘(𝐹‘𝑦))) |
37 | 36 | fveq2d 6787 |
. . . 4
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((Cntz‘𝐺)‘((𝑆 ∘ 𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹‘𝑦)))) |
38 | 32, 34, 37 | 3sstr4d 3969 |
. . 3
⊢ ((𝜑 ∧ (𝑥 ∈ 𝐽 ∧ 𝑦 ∈ 𝐽 ∧ 𝑥 ≠ 𝑦)) → ((𝑆 ∘ 𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆 ∘ 𝐹)‘𝑦))) |
39 | 16, 33 | sylan 580 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹)‘𝑥) = (𝑆‘(𝐹‘𝑥))) |
40 | | imaco 6159 |
. . . . . . . . 9
⊢ ((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) |
41 | 7 | adantr 481 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐹:𝐽–1-1-onto→𝐼) |
42 | | dff1o3 6731 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–1-1-onto→𝐼 ↔ (𝐹:𝐽–onto→𝐼 ∧ Fun ◡𝐹)) |
43 | 42 | simprbi 497 |
. . . . . . . . . . . 12
⊢ (𝐹:𝐽–1-1-onto→𝐼 → Fun ◡𝐹) |
44 | | imadif 6525 |
. . . . . . . . . . . 12
⊢ (Fun
◡𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥}))) |
45 | 41, 43, 44 | 3syl 18 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥}))) |
46 | | f1ofo 6732 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹:𝐽–onto→𝐼) |
47 | | foima 6702 |
. . . . . . . . . . . . 13
⊢ (𝐹:𝐽–onto→𝐼 → (𝐹 “ 𝐽) = 𝐼) |
48 | 41, 46, 47 | 3syl 18 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ 𝐽) = 𝐼) |
49 | | f1ofn 6726 |
. . . . . . . . . . . . . . 15
⊢ (𝐹:𝐽–1-1-onto→𝐼 → 𝐹 Fn 𝐽) |
50 | 7, 49 | syl 17 |
. . . . . . . . . . . . . 14
⊢ (𝜑 → 𝐹 Fn 𝐽) |
51 | | fnsnfv 6856 |
. . . . . . . . . . . . . 14
⊢ ((𝐹 Fn 𝐽 ∧ 𝑥 ∈ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
52 | 50, 51 | sylan 580 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → {(𝐹‘𝑥)} = (𝐹 “ {𝑥})) |
53 | 52 | eqcomd 2745 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ {𝑥}) = {(𝐹‘𝑥)}) |
54 | 48, 53 | difeq12d 4059 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝐹 “ 𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹‘𝑥)})) |
55 | 45, 54 | eqtrd 2779 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹‘𝑥)})) |
56 | 55 | imaeq2d 5972 |
. . . . . . . . 9
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
57 | 40, 56 | eqtrid 2791 |
. . . . . . . 8
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
58 | 57 | unieqd 4854 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ∪
((𝑆 ∘ 𝐹) “ (𝐽 ∖ {𝑥})) = ∪ (𝑆 “ (𝐼 ∖ {(𝐹‘𝑥)}))) |
59 | 58 | fveq2d 6787 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)})))) |
60 | 39, 59 | ineq12d 4148 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹‘𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)}))))) |
61 | 4 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → 𝐺dom DProd 𝑆) |
62 | 10 | adantr 481 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → dom 𝑆 = 𝐼) |
63 | 16 | ffvelrnda 6970 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (𝐹‘𝑥) ∈ 𝐼) |
64 | 61, 62, 63, 2, 3 | dprddisj 19621 |
. . . . 5
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → ((𝑆‘(𝐹‘𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ (𝑆
“ (𝐼 ∖ {(𝐹‘𝑥)})))) = {(0g‘𝐺)}) |
65 | 60, 64 | eqtrd 2779 |
. . . 4
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g‘𝐺)}) |
66 | | eqimss 3978 |
. . . 4
⊢ ((((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g‘𝐺)} → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g‘𝐺)}) |
67 | 65, 66 | syl 17 |
. . 3
⊢ ((𝜑 ∧ 𝑥 ∈ 𝐽) → (((𝑆 ∘ 𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘∪ ((𝑆
∘ 𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g‘𝐺)}) |
68 | 1, 2, 3, 6, 13, 18, 38, 67 | dmdprdd 19611 |
. 2
⊢ (𝜑 → 𝐺dom DProd (𝑆 ∘ 𝐹)) |
69 | | rnco2 6161 |
. . . . . 6
⊢ ran
(𝑆 ∘ 𝐹) = (𝑆 “ ran 𝐹) |
70 | | forn 6700 |
. . . . . . . . 9
⊢ (𝐹:𝐽–onto→𝐼 → ran 𝐹 = 𝐼) |
71 | 7, 46, 70 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ran 𝐹 = 𝐼) |
72 | 71 | imaeq2d 5972 |
. . . . . . 7
⊢ (𝜑 → (𝑆 “ ran 𝐹) = (𝑆 “ 𝐼)) |
73 | | ffn 6609 |
. . . . . . . 8
⊢ (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼) |
74 | | fnima 6572 |
. . . . . . . 8
⊢ (𝑆 Fn 𝐼 → (𝑆 “ 𝐼) = ran 𝑆) |
75 | 14, 73, 74 | 3syl 18 |
. . . . . . 7
⊢ (𝜑 → (𝑆 “ 𝐼) = ran 𝑆) |
76 | 72, 75 | eqtrd 2779 |
. . . . . 6
⊢ (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆) |
77 | 69, 76 | eqtrid 2791 |
. . . . 5
⊢ (𝜑 → ran (𝑆 ∘ 𝐹) = ran 𝑆) |
78 | 77 | unieqd 4854 |
. . . 4
⊢ (𝜑 → ∪ ran (𝑆 ∘ 𝐹) = ∪ ran 𝑆) |
79 | 78 | fveq2d 6787 |
. . 3
⊢ (𝜑 →
((mrCls‘(SubGrp‘𝐺))‘∪ ran
(𝑆 ∘ 𝐹)) =
((mrCls‘(SubGrp‘𝐺))‘∪ ran
𝑆)) |
80 | 3 | dprdspan 19639 |
. . . 4
⊢ (𝐺dom DProd (𝑆 ∘ 𝐹) → (𝐺 DProd (𝑆 ∘ 𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran (𝑆 ∘ 𝐹))) |
81 | 68, 80 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran (𝑆 ∘ 𝐹))) |
82 | 3 | dprdspan 19639 |
. . . 4
⊢ (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
83 | 4, 82 | syl 17 |
. . 3
⊢ (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘∪ ran 𝑆)) |
84 | 79, 81, 83 | 3eqtr4d 2789 |
. 2
⊢ (𝜑 → (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆)) |
85 | 68, 84 | jca 512 |
1
⊢ (𝜑 → (𝐺dom DProd (𝑆 ∘ 𝐹) ∧ (𝐺 DProd (𝑆 ∘ 𝐹)) = (𝐺 DProd 𝑆))) |