MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  dprdf1o Structured version   Visualization version   GIF version

Theorem dprdf1o 20053
Description: Rearrange the index set of a direct product family. (Contributed by Mario Carneiro, 25-Apr-2016.)
Hypotheses
Ref Expression
dprdf1o.1 (𝜑𝐺dom DProd 𝑆)
dprdf1o.2 (𝜑 → dom 𝑆 = 𝐼)
dprdf1o.3 (𝜑𝐹:𝐽1-1-onto𝐼)
Assertion
Ref Expression
dprdf1o (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))

Proof of Theorem dprdf1o
Dummy variables 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2736 . . 3 (Cntz‘𝐺) = (Cntz‘𝐺)
2 eqid 2736 . . 3 (0g𝐺) = (0g𝐺)
3 eqid 2736 . . 3 (mrCls‘(SubGrp‘𝐺)) = (mrCls‘(SubGrp‘𝐺))
4 dprdf1o.1 . . . 4 (𝜑𝐺dom DProd 𝑆)
5 dprdgrp 20026 . . . 4 (𝐺dom DProd 𝑆𝐺 ∈ Grp)
64, 5syl 17 . . 3 (𝜑𝐺 ∈ Grp)
7 dprdf1o.3 . . . . 5 (𝜑𝐹:𝐽1-1-onto𝐼)
8 f1of1 6846 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽1-1𝐼)
97, 8syl 17 . . . 4 (𝜑𝐹:𝐽1-1𝐼)
10 dprdf1o.2 . . . . 5 (𝜑 → dom 𝑆 = 𝐼)
114, 10dprddomcld 20022 . . . 4 (𝜑𝐼 ∈ V)
12 f1dmex 7982 . . . 4 ((𝐹:𝐽1-1𝐼𝐼 ∈ V) → 𝐽 ∈ V)
139, 11, 12syl2anc 584 . . 3 (𝜑𝐽 ∈ V)
144, 10dprdf2 20028 . . . 4 (𝜑𝑆:𝐼⟶(SubGrp‘𝐺))
15 f1of 6847 . . . . 5 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽𝐼)
167, 15syl 17 . . . 4 (𝜑𝐹:𝐽𝐼)
17 fco 6759 . . . 4 ((𝑆:𝐼⟶(SubGrp‘𝐺) ∧ 𝐹:𝐽𝐼) → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
1814, 16, 17syl2anc 584 . . 3 (𝜑 → (𝑆𝐹):𝐽⟶(SubGrp‘𝐺))
194adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐺dom DProd 𝑆)
2010adantr 480 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → dom 𝑆 = 𝐼)
2116adantr 480 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽𝐼)
22 simpr1 1194 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝐽)
2321, 22ffvelcdmd 7104 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ∈ 𝐼)
24 simpr2 1195 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑦𝐽)
2521, 24ffvelcdmd 7104 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑦) ∈ 𝐼)
26 simpr3 1196 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝑥𝑦)
279adantr 480 . . . . . . . 8 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → 𝐹:𝐽1-1𝐼)
28 f1fveq 7283 . . . . . . . 8 ((𝐹:𝐽1-1𝐼 ∧ (𝑥𝐽𝑦𝐽)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
2927, 22, 24, 28syl12anc 836 . . . . . . 7 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) = (𝐹𝑦) ↔ 𝑥 = 𝑦))
3029necon3bid 2984 . . . . . 6 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝐹𝑥) ≠ (𝐹𝑦) ↔ 𝑥𝑦))
3126, 30mpbird 257 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝐹𝑥) ≠ (𝐹𝑦))
3219, 20, 23, 25, 31, 1dprdcntz 20029 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → (𝑆‘(𝐹𝑥)) ⊆ ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
33 fvco3 7007 . . . . 5 ((𝐹:𝐽𝐼𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
3421, 22, 33syl2anc 584 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
35 fvco3 7007 . . . . . 6 ((𝐹:𝐽𝐼𝑦𝐽) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3621, 24, 35syl2anc 584 . . . . 5 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑦) = (𝑆‘(𝐹𝑦)))
3736fveq2d 6909 . . . 4 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)) = ((Cntz‘𝐺)‘(𝑆‘(𝐹𝑦))))
3832, 34, 373sstr4d 4038 . . 3 ((𝜑 ∧ (𝑥𝐽𝑦𝐽𝑥𝑦)) → ((𝑆𝐹)‘𝑥) ⊆ ((Cntz‘𝐺)‘((𝑆𝐹)‘𝑦)))
3916, 33sylan 580 . . . . . 6 ((𝜑𝑥𝐽) → ((𝑆𝐹)‘𝑥) = (𝑆‘(𝐹𝑥)))
40 imaco 6270 . . . . . . . . 9 ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥})))
417adantr 480 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → 𝐹:𝐽1-1-onto𝐼)
42 dff1o3 6853 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼 ↔ (𝐹:𝐽onto𝐼 ∧ Fun 𝐹))
4342simprbi 496 . . . . . . . . . . . 12 (𝐹:𝐽1-1-onto𝐼 → Fun 𝐹)
44 imadif 6649 . . . . . . . . . . . 12 (Fun 𝐹 → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
4541, 43, 443syl 18 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = ((𝐹𝐽) ∖ (𝐹 “ {𝑥})))
46 f1ofo 6854 . . . . . . . . . . . . 13 (𝐹:𝐽1-1-onto𝐼𝐹:𝐽onto𝐼)
47 foima 6824 . . . . . . . . . . . . 13 (𝐹:𝐽onto𝐼 → (𝐹𝐽) = 𝐼)
4841, 46, 473syl 18 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹𝐽) = 𝐼)
49 f1ofn 6848 . . . . . . . . . . . . . . 15 (𝐹:𝐽1-1-onto𝐼𝐹 Fn 𝐽)
507, 49syl 17 . . . . . . . . . . . . . 14 (𝜑𝐹 Fn 𝐽)
51 fnsnfv 6987 . . . . . . . . . . . . . 14 ((𝐹 Fn 𝐽𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5250, 51sylan 580 . . . . . . . . . . . . 13 ((𝜑𝑥𝐽) → {(𝐹𝑥)} = (𝐹 “ {𝑥}))
5352eqcomd 2742 . . . . . . . . . . . 12 ((𝜑𝑥𝐽) → (𝐹 “ {𝑥}) = {(𝐹𝑥)})
5448, 53difeq12d 4126 . . . . . . . . . . 11 ((𝜑𝑥𝐽) → ((𝐹𝐽) ∖ (𝐹 “ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5545, 54eqtrd 2776 . . . . . . . . . 10 ((𝜑𝑥𝐽) → (𝐹 “ (𝐽 ∖ {𝑥})) = (𝐼 ∖ {(𝐹𝑥)}))
5655imaeq2d 6077 . . . . . . . . 9 ((𝜑𝑥𝐽) → (𝑆 “ (𝐹 “ (𝐽 ∖ {𝑥}))) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5740, 56eqtrid 2788 . . . . . . . 8 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5857unieqd 4919 . . . . . . 7 ((𝜑𝑥𝐽) → ((𝑆𝐹) “ (𝐽 ∖ {𝑥})) = (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))
5958fveq2d 6909 . . . . . 6 ((𝜑𝑥𝐽) → ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥}))) = ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)}))))
6039, 59ineq12d 4220 . . . . 5 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))))
614adantr 480 . . . . . 6 ((𝜑𝑥𝐽) → 𝐺dom DProd 𝑆)
6210adantr 480 . . . . . 6 ((𝜑𝑥𝐽) → dom 𝑆 = 𝐼)
6316ffvelcdmda 7103 . . . . . 6 ((𝜑𝑥𝐽) → (𝐹𝑥) ∈ 𝐼)
6461, 62, 63, 2, 3dprddisj 20030 . . . . 5 ((𝜑𝑥𝐽) → ((𝑆‘(𝐹𝑥)) ∩ ((mrCls‘(SubGrp‘𝐺))‘ (𝑆 “ (𝐼 ∖ {(𝐹𝑥)})))) = {(0g𝐺)})
6560, 64eqtrd 2776 . . . 4 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)})
66 eqimss 4041 . . . 4 ((((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) = {(0g𝐺)} → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
6765, 66syl 17 . . 3 ((𝜑𝑥𝐽) → (((𝑆𝐹)‘𝑥) ∩ ((mrCls‘(SubGrp‘𝐺))‘ ((𝑆𝐹) “ (𝐽 ∖ {𝑥})))) ⊆ {(0g𝐺)})
681, 2, 3, 6, 13, 18, 38, 67dmdprdd 20020 . 2 (𝜑𝐺dom DProd (𝑆𝐹))
69 rnco2 6272 . . . . . 6 ran (𝑆𝐹) = (𝑆 “ ran 𝐹)
70 forn 6822 . . . . . . . . 9 (𝐹:𝐽onto𝐼 → ran 𝐹 = 𝐼)
717, 46, 703syl 18 . . . . . . . 8 (𝜑 → ran 𝐹 = 𝐼)
7271imaeq2d 6077 . . . . . . 7 (𝜑 → (𝑆 “ ran 𝐹) = (𝑆𝐼))
73 ffn 6735 . . . . . . . 8 (𝑆:𝐼⟶(SubGrp‘𝐺) → 𝑆 Fn 𝐼)
74 fnima 6697 . . . . . . . 8 (𝑆 Fn 𝐼 → (𝑆𝐼) = ran 𝑆)
7514, 73, 743syl 18 . . . . . . 7 (𝜑 → (𝑆𝐼) = ran 𝑆)
7672, 75eqtrd 2776 . . . . . 6 (𝜑 → (𝑆 “ ran 𝐹) = ran 𝑆)
7769, 76eqtrid 2788 . . . . 5 (𝜑 → ran (𝑆𝐹) = ran 𝑆)
7877unieqd 4919 . . . 4 (𝜑 ran (𝑆𝐹) = ran 𝑆)
7978fveq2d 6909 . . 3 (𝜑 → ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
803dprdspan 20048 . . . 4 (𝐺dom DProd (𝑆𝐹) → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
8168, 80syl 17 . . 3 (𝜑 → (𝐺 DProd (𝑆𝐹)) = ((mrCls‘(SubGrp‘𝐺))‘ ran (𝑆𝐹)))
823dprdspan 20048 . . . 4 (𝐺dom DProd 𝑆 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
834, 82syl 17 . . 3 (𝜑 → (𝐺 DProd 𝑆) = ((mrCls‘(SubGrp‘𝐺))‘ ran 𝑆))
8479, 81, 833eqtr4d 2786 . 2 (𝜑 → (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆))
8568, 84jca 511 1 (𝜑 → (𝐺dom DProd (𝑆𝐹) ∧ (𝐺 DProd (𝑆𝐹)) = (𝐺 DProd 𝑆)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1086   = wceq 1539  wcel 2107  wne 2939  Vcvv 3479  cdif 3947  cin 3949  wss 3950  {csn 4625   cuni 4906   class class class wbr 5142  ccnv 5683  dom cdm 5684  ran crn 5685  cima 5687  ccom 5688  Fun wfun 6554   Fn wfn 6555  wf 6556  1-1wf1 6557  ontowfo 6558  1-1-ontowf1o 6559  cfv 6560  (class class class)co 7432  0gc0g 17485  mrClscmrc 17627  Grpcgrp 18952  SubGrpcsubg 19139  Cntzccntz 19334   DProd cdprd 20014
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-rep 5278  ax-sep 5295  ax-nul 5305  ax-pow 5364  ax-pr 5431  ax-un 7756  ax-cnex 11212  ax-resscn 11213  ax-1cn 11214  ax-icn 11215  ax-addcl 11216  ax-addrcl 11217  ax-mulcl 11218  ax-mulrcl 11219  ax-mulcom 11220  ax-addass 11221  ax-mulass 11222  ax-distr 11223  ax-i2m1 11224  ax-1ne0 11225  ax-1rid 11226  ax-rnegex 11227  ax-rrecex 11228  ax-cnre 11229  ax-pre-lttri 11230  ax-pre-lttrn 11231  ax-pre-ltadd 11232  ax-pre-mulgt0 11233
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-nel 3046  df-ral 3061  df-rex 3070  df-rmo 3379  df-reu 3380  df-rab 3436  df-v 3481  df-sbc 3788  df-csb 3899  df-dif 3953  df-un 3955  df-in 3957  df-ss 3967  df-pss 3970  df-nul 4333  df-if 4525  df-pw 4601  df-sn 4626  df-pr 4628  df-op 4632  df-uni 4907  df-int 4946  df-iun 4992  df-iin 4993  df-br 5143  df-opab 5205  df-mpt 5225  df-tr 5259  df-id 5577  df-eprel 5583  df-po 5591  df-so 5592  df-fr 5636  df-se 5637  df-we 5638  df-xp 5690  df-rel 5691  df-cnv 5692  df-co 5693  df-dm 5694  df-rn 5695  df-res 5696  df-ima 5697  df-pred 6320  df-ord 6386  df-on 6387  df-lim 6388  df-suc 6389  df-iota 6513  df-fun 6562  df-fn 6563  df-f 6564  df-f1 6565  df-fo 6566  df-f1o 6567  df-fv 6568  df-isom 6569  df-riota 7389  df-ov 7435  df-oprab 7436  df-mpo 7437  df-of 7698  df-om 7889  df-1st 8015  df-2nd 8016  df-supp 8187  df-tpos 8252  df-frecs 8307  df-wrecs 8338  df-recs 8412  df-rdg 8451  df-1o 8507  df-2o 8508  df-er 8746  df-map 8869  df-ixp 8939  df-en 8987  df-dom 8988  df-sdom 8989  df-fin 8990  df-fsupp 9403  df-oi 9551  df-card 9980  df-pnf 11298  df-mnf 11299  df-xr 11300  df-ltxr 11301  df-le 11302  df-sub 11495  df-neg 11496  df-nn 12268  df-2 12330  df-n0 12529  df-z 12616  df-uz 12880  df-fz 13549  df-fzo 13696  df-seq 14044  df-hash 14371  df-sets 17202  df-slot 17220  df-ndx 17232  df-base 17249  df-ress 17276  df-plusg 17311  df-0g 17487  df-gsum 17488  df-mre 17630  df-mrc 17631  df-acs 17633  df-mgm 18654  df-sgrp 18733  df-mnd 18749  df-mhm 18797  df-submnd 18798  df-grp 18955  df-minusg 18956  df-sbg 18957  df-mulg 19087  df-subg 19142  df-ghm 19232  df-gim 19278  df-cntz 19336  df-oppg 19365  df-cmn 19801  df-dprd 20016
This theorem is referenced by:  dprdf1  20054  ablfaclem2  20107
  Copyright terms: Public domain W3C validator