Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoiso1o | Structured version Visualization version GIF version |
Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
rngoiso1o | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngisoval.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | rngisoval.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | rngisoval.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
4 | rngisoval.4 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
5 | 1, 2, 3, 4 | isrngoiso 35873 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
6 | 5 | simplbda 503 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
7 | 6 | 3impa 1112 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2110 ran crn 5552 –1-1-onto→wf1o 6379 ‘cfv 6380 (class class class)co 7213 1st c1st 7759 RingOpscrngo 35789 RngHom crnghom 35855 RngIso crngiso 35856 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2708 ax-sep 5192 ax-nul 5199 ax-pr 5322 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2071 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2886 df-ral 3066 df-rex 3067 df-rab 3070 df-v 3410 df-sbc 3695 df-dif 3869 df-un 3871 df-in 3873 df-ss 3883 df-nul 4238 df-if 4440 df-sn 4542 df-pr 4544 df-op 4548 df-uni 4820 df-br 5054 df-opab 5116 df-id 5455 df-xp 5557 df-rel 5558 df-cnv 5559 df-co 5560 df-dm 5561 df-rn 5562 df-iota 6338 df-fun 6382 df-fn 6383 df-f 6384 df-f1 6385 df-fo 6386 df-f1o 6387 df-fv 6388 df-ov 7216 df-oprab 7217 df-mpo 7218 df-rngoiso 35871 |
This theorem is referenced by: rngoisoco 35877 |
Copyright terms: Public domain | W3C validator |