| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > rngoiso1o | Structured version Visualization version GIF version | ||
| Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
| rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
| Ref | Expression |
|---|---|
| rngoiso1o | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | rngisoval.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 3 | rngisoval.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
| 4 | rngisoval.4 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
| 5 | 1, 2, 3, 4 | isrngoiso 37968 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
| 6 | 5 | simplbda 499 | . 2 ⊢ (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
| 7 | 6 | 3impa 1109 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹:𝑋–1-1-onto→𝑌) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1540 ∈ wcel 2109 ran crn 5620 –1-1-onto→wf1o 6481 ‘cfv 6482 (class class class)co 7349 1st c1st 7922 RingOpscrngo 37884 RingOpsHom crngohom 37950 RingOpsIso crngoiso 37951 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-iota 6438 df-fun 6484 df-fn 6485 df-f 6486 df-f1 6487 df-fo 6488 df-f1o 6489 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-rngoiso 37966 |
| This theorem is referenced by: rngoisoco 37972 |
| Copyright terms: Public domain | W3C validator |