Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoiso1o Structured version   Visualization version   GIF version

Theorem rngoiso1o 36842
Description: A ring isomorphism is a bijection. (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st𝑅)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st𝑆)
rngisoval.4 𝑌 = ran 𝐽
Assertion
Ref Expression
rngoiso1o ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋1-1-onto𝑌)

Proof of Theorem rngoiso1o
StepHypRef Expression
1 rngisoval.1 . . . 4 𝐺 = (1st𝑅)
2 rngisoval.2 . . . 4 𝑋 = ran 𝐺
3 rngisoval.3 . . . 4 𝐽 = (1st𝑆)
4 rngisoval.4 . . . 4 𝑌 = ran 𝐽
51, 2, 3, 4isrngoiso 36841 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌)))
65simplbda 500 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
763impa 1110 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) → 𝐹:𝑋1-1-onto𝑌)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wcel 2106  ran crn 5677  1-1-ontowf1o 6542  cfv 6543  (class class class)co 7408  1st c1st 7972  RingOpscrngo 36757   RngHom crnghom 36823   RngIso crngiso 36824
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-sep 5299  ax-nul 5306  ax-pr 5427
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3433  df-v 3476  df-sbc 3778  df-dif 3951  df-un 3953  df-in 3955  df-ss 3965  df-nul 4323  df-if 4529  df-sn 4629  df-pr 4631  df-op 4635  df-uni 4909  df-br 5149  df-opab 5211  df-id 5574  df-xp 5682  df-rel 5683  df-cnv 5684  df-co 5685  df-dm 5686  df-rn 5687  df-iota 6495  df-fun 6545  df-fn 6546  df-f 6547  df-f1 6548  df-fo 6549  df-f1o 6550  df-fv 6551  df-ov 7411  df-oprab 7412  df-mpo 7413  df-rngoiso 36839
This theorem is referenced by:  rngoisoco  36845
  Copyright terms: Public domain W3C validator