Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisohom Structured version   Visualization version   GIF version

Theorem rngoisohom 38019
Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))

Proof of Theorem rngoisohom
StepHypRef Expression
1 eqid 2731 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2731 . . . 4 ran (1st𝑅) = ran (1st𝑅)
3 eqid 2731 . . . 4 (1st𝑆) = (1st𝑆)
4 eqid 2731 . . . 4 ran (1st𝑆) = ran (1st𝑆)
51, 2, 3, 4isrngoiso 38017 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))))
65simprbda 498 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
763impa 1109 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2111  ran crn 5615  1-1-ontowf1o 6480  cfv 6481  (class class class)co 7346  1st c1st 7919  RingOpscrngo 37933   RingOpsHom crngohom 37999   RingOpsIso crngoiso 38000
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-sep 5232  ax-nul 5242  ax-pr 5368
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-ral 3048  df-rex 3057  df-rab 3396  df-v 3438  df-sbc 3737  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-br 5090  df-opab 5152  df-id 5509  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-ov 7349  df-oprab 7350  df-mpo 7351  df-rngoiso 38015
This theorem is referenced by:  rngoisoco  38021
  Copyright terms: Public domain W3C validator