Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisohom Structured version   Visualization version   GIF version

Theorem rngoisohom 36848
Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) β†’ 𝐹 ∈ (𝑅 RngHom 𝑆))

Proof of Theorem rngoisohom
StepHypRef Expression
1 eqid 2733 . . . 4 (1st β€˜π‘…) = (1st β€˜π‘…)
2 eqid 2733 . . . 4 ran (1st β€˜π‘…) = ran (1st β€˜π‘…)
3 eqid 2733 . . . 4 (1st β€˜π‘†) = (1st β€˜π‘†)
4 eqid 2733 . . . 4 ran (1st β€˜π‘†) = ran (1st β€˜π‘†)
51, 2, 3, 4isrngoiso 36846 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) β†’ (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:ran (1st β€˜π‘…)–1-1-ontoβ†’ran (1st β€˜π‘†))))
65simprbda 500 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) β†’ 𝐹 ∈ (𝑅 RngHom 𝑆))
763impa 1111 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RngIso 𝑆)) β†’ 𝐹 ∈ (𝑅 RngHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:   β†’ wi 4   ∧ wa 397   ∧ w3a 1088   ∈ wcel 2107  ran crn 5678  β€“1-1-ontoβ†’wf1o 6543  β€˜cfv 6544  (class class class)co 7409  1st c1st 7973  RingOpscrngo 36762   RngHom crnghom 36828   RngIso crngiso 36829
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-rngoiso 36844
This theorem is referenced by:  rngoisoco  36850
  Copyright terms: Public domain W3C validator