Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngoisohom Structured version   Visualization version   GIF version

Theorem rngoisohom 38009
Description: A ring isomorphism is a ring homomorphism. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
rngoisohom ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))

Proof of Theorem rngoisohom
StepHypRef Expression
1 eqid 2736 . . . 4 (1st𝑅) = (1st𝑅)
2 eqid 2736 . . . 4 ran (1st𝑅) = ran (1st𝑅)
3 eqid 2736 . . . 4 (1st𝑆) = (1st𝑆)
4 eqid 2736 . . . 4 ran (1st𝑆) = ran (1st𝑆)
51, 2, 3, 4isrngoiso 38007 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:ran (1st𝑅)–1-1-onto→ran (1st𝑆))))
65simprbda 498 . 2 (((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
763impa 1109 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps ∧ 𝐹 ∈ (𝑅 RingOpsIso 𝑆)) → 𝐹 ∈ (𝑅 RingOpsHom 𝑆))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086  wcel 2109  ran crn 5660  1-1-ontowf1o 6535  cfv 6536  (class class class)co 7410  1st c1st 7991  RingOpscrngo 37923   RingOpsHom crngohom 37989   RingOpsIso crngoiso 37990
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-pw 4582  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-br 5125  df-opab 5187  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-f1 6541  df-fo 6542  df-f1o 6543  df-fv 6544  df-ov 7413  df-oprab 7414  df-mpo 7415  df-rngoiso 38005
This theorem is referenced by:  rngoisoco  38011
  Copyright terms: Public domain W3C validator