![]() |
Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrngoiso | Structured version Visualization version GIF version |
Description: The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
isrngoiso | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngisoval.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | rngisoval.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | rngisoval.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
4 | rngisoval.4 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
5 | 1, 2, 3, 4 | rngoisoval 36845 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
6 | 5 | eleq2d 2820 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌})) |
7 | f1oeq1 6822 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→𝑌)) | |
8 | 7 | elrab 3684 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌)) |
9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 = wceq 1542 ∈ wcel 2107 {crab 3433 ran crn 5678 –1-1-onto→wf1o 6543 ‘cfv 6544 (class class class)co 7409 1st c1st 7973 RingOpscrngo 36762 RngHom crnghom 36828 RngIso crngiso 36829 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-nul 4324 df-if 4530 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-id 5575 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-rngoiso 36844 |
This theorem is referenced by: rngoiso1o 36847 rngoisohom 36848 rngoisocnv 36849 rngoisoco 36850 |
Copyright terms: Public domain | W3C validator |