Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > isrngoiso | Structured version Visualization version GIF version |
Description: The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.) |
Ref | Expression |
---|---|
rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
Ref | Expression |
---|---|
isrngoiso | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rngisoval.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | rngisoval.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
3 | rngisoval.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
4 | rngisoval.4 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
5 | 1, 2, 3, 4 | rngoisoval 36062 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
6 | 5 | eleq2d 2824 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌})) |
7 | f1oeq1 6688 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→𝑌)) | |
8 | 7 | elrab 3617 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌)) |
9 | 6, 8 | bitrdi 286 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {crab 3067 ran crn 5581 –1-1-onto→wf1o 6417 ‘cfv 6418 (class class class)co 7255 1st c1st 7802 RingOpscrngo 35979 RngHom crnghom 36045 RngIso crngiso 36046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-rngoiso 36061 |
This theorem is referenced by: rngoiso1o 36064 rngoisohom 36065 rngoisocnv 36066 rngoisoco 36067 |
Copyright terms: Public domain | W3C validator |