Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngoiso Structured version   Visualization version   GIF version

Theorem isrngoiso 36136
Description: The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st𝑅)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st𝑆)
rngisoval.4 𝑌 = ran 𝐽
Assertion
Ref Expression
isrngoiso ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌)))

Proof of Theorem isrngoiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rngisoval.1 . . . 4 𝐺 = (1st𝑅)
2 rngisoval.2 . . . 4 𝑋 = ran 𝐺
3 rngisoval.3 . . . 4 𝐽 = (1st𝑆)
4 rngisoval.4 . . . 4 𝑌 = ran 𝐽
51, 2, 3, 4rngoisoval 36135 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RngIso 𝑆) = {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
65eleq2d 2824 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌}))
7 f1oeq1 6704 . . 3 (𝑓 = 𝐹 → (𝑓:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto𝑌))
87elrab 3624 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RngHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌} ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌))
96, 8bitrdi 287 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RngIso 𝑆) ↔ (𝐹 ∈ (𝑅 RngHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  {crab 3068  ran crn 5590  1-1-ontowf1o 6432  cfv 6433  (class class class)co 7275  1st c1st 7829  RingOpscrngo 36052   RngHom crnghom 36118   RngIso crngiso 36119
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-rngoiso 36134
This theorem is referenced by:  rngoiso1o  36137  rngoisohom  36138  rngoisocnv  36139  rngoisoco  36140
  Copyright terms: Public domain W3C validator