| Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > isrngoiso | Structured version Visualization version GIF version | ||
| Description: The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.) |
| Ref | Expression |
|---|---|
| rngisoval.1 | ⊢ 𝐺 = (1st ‘𝑅) |
| rngisoval.2 | ⊢ 𝑋 = ran 𝐺 |
| rngisoval.3 | ⊢ 𝐽 = (1st ‘𝑆) |
| rngisoval.4 | ⊢ 𝑌 = ran 𝐽 |
| Ref | Expression |
|---|---|
| isrngoiso | ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngisoval.1 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
| 2 | rngisoval.2 | . . . 4 ⊢ 𝑋 = ran 𝐺 | |
| 3 | rngisoval.3 | . . . 4 ⊢ 𝐽 = (1st ‘𝑆) | |
| 4 | rngisoval.4 | . . . 4 ⊢ 𝑌 = ran 𝐽 | |
| 5 | 1, 2, 3, 4 | rngoisoval 37971 | . . 3 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌}) |
| 6 | 5 | eleq2d 2814 | . 2 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌})) |
| 7 | f1oeq1 6788 | . . 3 ⊢ (𝑓 = 𝐹 → (𝑓:𝑋–1-1-onto→𝑌 ↔ 𝐹:𝑋–1-1-onto→𝑌)) | |
| 8 | 7 | elrab 3659 | . 2 ⊢ (𝐹 ∈ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋–1-1-onto→𝑌} ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌)) |
| 9 | 6, 8 | bitrdi 287 | 1 ⊢ ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋–1-1-onto→𝑌))) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1540 ∈ wcel 2109 {crab 3405 ran crn 5639 –1-1-onto→wf1o 6510 ‘cfv 6511 (class class class)co 7387 1st c1st 7966 RingOpscrngo 37888 RingOpsHom crngohom 37954 RingOpsIso crngoiso 37955 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-rngoiso 37970 |
| This theorem is referenced by: rngoiso1o 37973 rngoisohom 37974 rngoisocnv 37975 rngoisoco 37976 |
| Copyright terms: Public domain | W3C validator |