Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  isrngoiso Structured version   Visualization version   GIF version

Theorem isrngoiso 37336
Description: The predicate "is a ring isomorphism between 𝑅 and 𝑆". (Contributed by Jeff Madsen, 16-Jun-2011.)
Hypotheses
Ref Expression
rngisoval.1 𝐺 = (1st𝑅)
rngisoval.2 𝑋 = ran 𝐺
rngisoval.3 𝐽 = (1st𝑆)
rngisoval.4 𝑌 = ran 𝐽
Assertion
Ref Expression
isrngoiso ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌)))

Proof of Theorem isrngoiso
Dummy variable 𝑓 is distinct from all other variables.
StepHypRef Expression
1 rngisoval.1 . . . 4 𝐺 = (1st𝑅)
2 rngisoval.2 . . . 4 𝑋 = ran 𝐺
3 rngisoval.3 . . . 4 𝐽 = (1st𝑆)
4 rngisoval.4 . . . 4 𝑌 = ran 𝐽
51, 2, 3, 4rngoisoval 37335 . . 3 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝑅 RingOpsIso 𝑆) = {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌})
65eleq2d 2811 . 2 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ 𝐹 ∈ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌}))
7 f1oeq1 6811 . . 3 (𝑓 = 𝐹 → (𝑓:𝑋1-1-onto𝑌𝐹:𝑋1-1-onto𝑌))
87elrab 3675 . 2 (𝐹 ∈ {𝑓 ∈ (𝑅 RingOpsHom 𝑆) ∣ 𝑓:𝑋1-1-onto𝑌} ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌))
96, 8bitrdi 287 1 ((𝑅 ∈ RingOps ∧ 𝑆 ∈ RingOps) → (𝐹 ∈ (𝑅 RingOpsIso 𝑆) ↔ (𝐹 ∈ (𝑅 RingOpsHom 𝑆) ∧ 𝐹:𝑋1-1-onto𝑌)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395   = wceq 1533  wcel 2098  {crab 3424  ran crn 5667  1-1-ontowf1o 6532  cfv 6533  (class class class)co 7401  1st c1st 7966  RingOpscrngo 37252   RingOpsHom crngohom 37318   RingOpsIso crngoiso 37319
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-rngoiso 37334
This theorem is referenced by:  rngoiso1o  37337  rngoisohom  37338  rngoisocnv  37339  rngoisoco  37340
  Copyright terms: Public domain W3C validator