MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptcOLD Structured version   Visualization version   GIF version

Theorem rnmptcOLD 7083
Description: Obsolete version of rnmptc 7082 as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rnmptcOLD.f 𝐹 = (𝑥𝐴𝐵)
rnmptcOLD.b ((𝜑𝑥𝐴) → 𝐵𝐶)
rnmptcOLD.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptcOLD (𝜑 → ran 𝐹 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem rnmptcOLD
StepHypRef Expression
1 rnmptcOLD.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 fconstmpt 5649 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2eqtr4i 2769 . 2 𝐹 = (𝐴 × {𝐵})
4 rnmptcOLD.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
54, 1fmptd 6988 . . . 4 (𝜑𝐹:𝐴𝐶)
65ffnd 6601 . . 3 (𝜑𝐹 Fn 𝐴)
7 rnmptcOLD.a . . 3 (𝜑𝐴 ≠ ∅)
8 fconst5 7081 . . 3 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
96, 7, 8syl2anc 584 . 2 (𝜑 → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
103, 9mpbii 232 1 (𝜑 → ran 𝐹 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  c0 4256  {csn 4561  cmpt 5157   × cxp 5587  ran crn 5590   Fn wfn 6428
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-fo 6439  df-fv 6441
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator