MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  rnmptcOLD Structured version   Visualization version   GIF version

Theorem rnmptcOLD 7209
Description: Obsolete version of rnmptc 7208 as of 17-Apr-2024. (Contributed by Glauco Siliprandi, 11-Dec-2019.) (New usage is discouraged.) (Proof modification is discouraged.)
Hypotheses
Ref Expression
rnmptcOLD.f 𝐹 = (𝑥𝐴𝐵)
rnmptcOLD.b ((𝜑𝑥𝐴) → 𝐵𝐶)
rnmptcOLD.a (𝜑𝐴 ≠ ∅)
Assertion
Ref Expression
rnmptcOLD (𝜑 → ran 𝐹 = {𝐵})
Distinct variable groups:   𝑥,𝐴   𝑥,𝐵   𝑥,𝐶   𝜑,𝑥
Allowed substitution hint:   𝐹(𝑥)

Proof of Theorem rnmptcOLD
StepHypRef Expression
1 rnmptcOLD.f . . 3 𝐹 = (𝑥𝐴𝐵)
2 fconstmpt 5739 . . 3 (𝐴 × {𝐵}) = (𝑥𝐴𝐵)
31, 2eqtr4i 2764 . 2 𝐹 = (𝐴 × {𝐵})
4 rnmptcOLD.b . . . . 5 ((𝜑𝑥𝐴) → 𝐵𝐶)
54, 1fmptd 7114 . . . 4 (𝜑𝐹:𝐴𝐶)
65ffnd 6719 . . 3 (𝜑𝐹 Fn 𝐴)
7 rnmptcOLD.a . . 3 (𝜑𝐴 ≠ ∅)
8 fconst5 7207 . . 3 ((𝐹 Fn 𝐴𝐴 ≠ ∅) → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
96, 7, 8syl2anc 585 . 2 (𝜑 → (𝐹 = (𝐴 × {𝐵}) ↔ ran 𝐹 = {𝐵}))
103, 9mpbii 232 1 (𝜑 → ran 𝐹 = {𝐵})
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 397   = wceq 1542  wcel 2107  wne 2941  c0 4323  {csn 4629  cmpt 5232   × cxp 5675  ran crn 5678   Fn wfn 6539
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-nul 4324  df-if 4530  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-br 5150  df-opab 5212  df-mpt 5233  df-id 5575  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-fo 6550  df-fv 6552
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator