MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatrhmval Structured version   Visualization version   GIF version

Theorem scmatrhmval 22430
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
Assertion
Ref Expression
scmatrhmval ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥,
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem scmatrhmval
StepHypRef Expression
1 scmatrhmval.f . 2 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
2 oveq1 7360 . 2 (𝑥 = 𝑋 → (𝑥 1 ) = (𝑋 1 ))
3 simpr 484 . 2 ((𝑅𝑉𝑋𝐾) → 𝑋𝐾)
4 ovexd 7388 . 2 ((𝑅𝑉𝑋𝐾) → (𝑋 1 ) ∈ V)
51, 2, 3, 4fvmptd3 6957 1 ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  Vcvv 3438  cmpt 5176  cfv 6486  (class class class)co 7353  Basecbs 17138   ·𝑠 cvsca 17183  1rcur 20084   Mat cmat 22310
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5238  ax-nul 5248  ax-pr 5374
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rab 3397  df-v 3440  df-dif 3908  df-un 3910  df-ss 3922  df-nul 4287  df-if 4479  df-sn 4580  df-pr 4582  df-op 4586  df-uni 4862  df-br 5096  df-opab 5158  df-mpt 5177  df-id 5518  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7356
This theorem is referenced by:  scmatrhmcl  22431  scmatfo  22433  scmatf1  22434  scmatghm  22436  scmatmhm  22437
  Copyright terms: Public domain W3C validator