MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatrhmval Structured version   Visualization version   GIF version

Theorem scmatrhmval 22556
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
Assertion
Ref Expression
scmatrhmval ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥,
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem scmatrhmval
StepHypRef Expression
1 scmatrhmval.f . 2 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
2 oveq1 7457 . 2 (𝑥 = 𝑋 → (𝑥 1 ) = (𝑋 1 ))
3 simpr 484 . 2 ((𝑅𝑉𝑋𝐾) → 𝑋𝐾)
4 ovexd 7485 . 2 ((𝑅𝑉𝑋𝐾) → (𝑋 1 ) ∈ V)
51, 2, 3, 4fvmptd3 7054 1 ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  Vcvv 3488  cmpt 5249  cfv 6575  (class class class)co 7450  Basecbs 17260   ·𝑠 cvsca 17317  1rcur 20210   Mat cmat 22434
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-ss 3993  df-nul 4353  df-if 4549  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6527  df-fun 6577  df-fv 6583  df-ov 7453
This theorem is referenced by:  scmatrhmcl  22557  scmatfo  22559  scmatf1  22560  scmatghm  22562  scmatmhm  22563
  Copyright terms: Public domain W3C validator