| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatrhmval | Structured version Visualization version GIF version | ||
| Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
| scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
| Ref | Expression |
|---|---|
| scmatrhmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatrhmval.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
| 2 | oveq1 7359 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 ∗ 1 ) = (𝑋 ∗ 1 )) | |
| 3 | simpr 484 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
| 4 | ovexd 7387 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝑋 ∗ 1 ) ∈ V) | |
| 5 | 1, 2, 3, 4 | fvmptd3 6958 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ↦ cmpt 5174 ‘cfv 6486 (class class class)co 7352 Basecbs 17122 ·𝑠 cvsca 17167 1rcur 20101 Mat cmat 22323 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5236 ax-nul 5246 ax-pr 5372 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-dif 3901 df-un 3903 df-ss 3915 df-nul 4283 df-if 4475 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-br 5094 df-opab 5156 df-mpt 5175 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-iota 6442 df-fun 6488 df-fv 6494 df-ov 7355 |
| This theorem is referenced by: scmatrhmcl 22444 scmatfo 22446 scmatf1 22447 scmatghm 22449 scmatmhm 22450 |
| Copyright terms: Public domain | W3C validator |