Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatrhmval | Structured version Visualization version GIF version |
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
Ref | Expression |
---|---|
scmatrhmval | ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.f | . 2 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
2 | oveq1 7262 | . 2 ⊢ (𝑥 = 𝑋 → (𝑥 ∗ 1 ) = (𝑋 ∗ 1 )) | |
3 | simpr 484 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
4 | ovexd 7290 | . 2 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝑋 ∗ 1 ) ∈ V) | |
5 | 1, 2, 3, 4 | fvmptd3 6880 | 1 ⊢ ((𝑅 ∈ 𝑉 ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 Vcvv 3422 ↦ cmpt 5153 ‘cfv 6418 (class class class)co 7255 Basecbs 16840 ·𝑠 cvsca 16892 1rcur 19652 Mat cmat 21464 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-mpt 5154 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 |
This theorem is referenced by: scmatrhmcl 21585 scmatfo 21587 scmatf1 21588 scmatghm 21590 scmatmhm 21591 |
Copyright terms: Public domain | W3C validator |