MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatrhmval Structured version   Visualization version   GIF version

Theorem scmatrhmval 22558
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
Assertion
Ref Expression
scmatrhmval ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥,
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem scmatrhmval
StepHypRef Expression
1 scmatrhmval.f . 2 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
2 oveq1 7445 . 2 (𝑥 = 𝑋 → (𝑥 1 ) = (𝑋 1 ))
3 simpr 484 . 2 ((𝑅𝑉𝑋𝐾) → 𝑋𝐾)
4 ovexd 7473 . 2 ((𝑅𝑉𝑋𝐾) → (𝑋 1 ) ∈ V)
51, 2, 3, 4fvmptd3 7046 1 ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  Vcvv 3481  cmpt 5234  cfv 6569  (class class class)co 7438  Basecbs 17254   ·𝑠 cvsca 17311  1rcur 20208   Mat cmat 22436
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rab 3437  df-v 3483  df-dif 3969  df-un 3971  df-ss 3983  df-nul 4343  df-if 4535  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-mpt 5235  df-id 5587  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-iota 6522  df-fun 6571  df-fv 6577  df-ov 7441
This theorem is referenced by:  scmatrhmcl  22559  scmatfo  22561  scmatf1  22562  scmatghm  22564  scmatmhm  22565
  Copyright terms: Public domain W3C validator