MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatrhmval Structured version   Visualization version   GIF version

Theorem scmatrhmval 22443
Description: The value of the ring homomorphism 𝐹. (Contributed by AV, 22-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
Assertion
Ref Expression
scmatrhmval ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥,𝑉   𝑥,𝑋   𝑥, 1   𝑥,
Allowed substitution hints:   𝐴(𝑥)   𝐹(𝑥)   𝑁(𝑥)

Proof of Theorem scmatrhmval
StepHypRef Expression
1 scmatrhmval.f . 2 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
2 oveq1 7359 . 2 (𝑥 = 𝑋 → (𝑥 1 ) = (𝑋 1 ))
3 simpr 484 . 2 ((𝑅𝑉𝑋𝐾) → 𝑋𝐾)
4 ovexd 7387 . 2 ((𝑅𝑉𝑋𝐾) → (𝑋 1 ) ∈ V)
51, 2, 3, 4fvmptd3 6958 1 ((𝑅𝑉𝑋𝐾) → (𝐹𝑋) = (𝑋 1 ))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cmpt 5174  cfv 6486  (class class class)co 7352  Basecbs 17122   ·𝑠 cvsca 17167  1rcur 20101   Mat cmat 22323
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5236  ax-nul 5246  ax-pr 5372
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-dif 3901  df-un 3903  df-ss 3915  df-nul 4283  df-if 4475  df-sn 4576  df-pr 4578  df-op 4582  df-uni 4859  df-br 5094  df-opab 5156  df-mpt 5175  df-id 5514  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-iota 6442  df-fun 6488  df-fv 6494  df-ov 7355
This theorem is referenced by:  scmatrhmcl  22444  scmatfo  22446  scmatf1  22447  scmatghm  22449  scmatmhm  22450
  Copyright terms: Public domain W3C validator