| Step | Hyp | Ref
| Expression |
| 1 | | scmatmhm.m |
. . . 4
⊢ 𝑀 = (mulGrp‘𝑅) |
| 2 | 1 | ringmgp 20204 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑀 ∈ Mnd) |
| 3 | 2 | adantl 481 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ Mnd) |
| 4 | | scmatrhmval.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 5 | | eqid 2736 |
. . . 4
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 6 | | scmatrhmval.k |
. . . 4
⊢ 𝐾 = (Base‘𝑅) |
| 7 | | eqid 2736 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 8 | | scmatrhmval.c |
. . . 4
⊢ 𝐶 = (𝑁 ScMat 𝑅) |
| 9 | 4, 5, 6, 7, 8 | scmatsrng 22463 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴)) |
| 10 | | scmatghm.s |
. . . 4
⊢ 𝑆 = (𝐴 ↾s 𝐶) |
| 11 | 10 | subrgring 20539 |
. . 3
⊢ (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring) |
| 12 | | scmatmhm.t |
. . . 4
⊢ 𝑇 = (mulGrp‘𝑆) |
| 13 | 12 | ringmgp 20204 |
. . 3
⊢ (𝑆 ∈ Ring → 𝑇 ∈ Mnd) |
| 14 | 9, 11, 13 | 3syl 18 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ Mnd) |
| 15 | | scmatrhmval.o |
. . . . 5
⊢ 1 =
(1r‘𝐴) |
| 16 | | scmatrhmval.t |
. . . . 5
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 17 | | scmatrhmval.f |
. . . . 5
⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
| 18 | 6, 4, 15, 16, 17, 8 | scmatf 22472 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
| 19 | 4, 8, 10 | scmatstrbas 22469 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑆) = 𝐶) |
| 20 | 19 | feq3d 6698 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾⟶𝐶)) |
| 21 | 18, 20 | mpbird 257 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆)) |
| 22 | | eqid 2736 |
. . . . . . 7
⊢
(.r‘𝑅) = (.r‘𝑅) |
| 23 | | eqid 2736 |
. . . . . . 7
⊢
(.r‘𝐴) = (.r‘𝐴) |
| 24 | 4, 6, 7, 15, 16, 22, 23 | scmatscmiddistr 22451 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1
)(.r‘𝐴)(𝑧 ∗ 1 )) = ((𝑦(.r‘𝑅)𝑧) ∗ 1 )) |
| 25 | 10, 23 | ressmulr 17326 |
. . . . . . . . 9
⊢ (𝐶 ∈ (SubRing‘𝐴) →
(.r‘𝐴) =
(.r‘𝑆)) |
| 26 | 9, 25 | syl 17 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(.r‘𝐴) =
(.r‘𝑆)) |
| 27 | 26 | adantr 480 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (.r‘𝐴) = (.r‘𝑆)) |
| 28 | 27 | oveqd 7427 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦 ∗ 1
)(.r‘𝐴)(𝑧 ∗ 1 )) = ((𝑦 ∗ 1
)(.r‘𝑆)(𝑧 ∗ 1 ))) |
| 29 | 24, 28 | eqtr3d 2773 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦(.r‘𝑅)𝑧) ∗ 1 ) = ((𝑦 ∗ 1
)(.r‘𝑆)(𝑧 ∗ 1 ))) |
| 30 | | simpr 484 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
| 31 | 30 | adantr 480 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑅 ∈ Ring) |
| 32 | 30 | anim1i 615 |
. . . . . . . 8
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾))) |
| 33 | | 3anass 1094 |
. . . . . . . 8
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾))) |
| 34 | 32, 33 | sylibr 234 |
. . . . . . 7
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) |
| 35 | 6, 22 | ringcl 20215 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐾) |
| 36 | 34, 35 | syl 17 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑦(.r‘𝑅)𝑧) ∈ 𝐾) |
| 37 | 6, 4, 15, 16, 17 | scmatrhmval 22470 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ (𝑦(.r‘𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝑦(.r‘𝑅)𝑧) ∗ 1 )) |
| 38 | 31, 36, 37 | syl2anc 584 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝑦(.r‘𝑅)𝑧) ∗ 1 )) |
| 39 | 6, 4, 15, 16, 17 | scmatrhmval 22470 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
| 40 | 39 | ad2ant2lr 748 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
| 41 | 6, 4, 15, 16, 17 | scmatrhmval 22470 |
. . . . . . 7
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
| 42 | 41 | ad2ant2l 746 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
| 43 | 40, 42 | oveq12d 7428 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑧)) = ((𝑦 ∗ 1
)(.r‘𝑆)(𝑧 ∗ 1 ))) |
| 44 | 29, 38, 43 | 3eqtr4d 2781 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑧))) |
| 45 | 44 | ralrimivva 3188 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐾 (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑧))) |
| 46 | | eqid 2736 |
. . . . . . 7
⊢
(1r‘𝑅) = (1r‘𝑅) |
| 47 | 6, 46 | ringidcl 20230 |
. . . . . 6
⊢ (𝑅 ∈ Ring →
(1r‘𝑅)
∈ 𝐾) |
| 48 | 6, 4, 15, 16, 17 | scmatrhmval 22470 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧
(1r‘𝑅)
∈ 𝐾) → (𝐹‘(1r‘𝑅)) = ((1r‘𝑅) ∗ 1 )) |
| 49 | 30, 47, 48 | syl2anc2 585 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r‘𝑅)) = ((1r‘𝑅) ∗ 1 )) |
| 50 | 4 | matsca2 22363 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 51 | 50 | fveq2d 6885 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝑅) =
(1r‘(Scalar‘𝐴))) |
| 52 | 51 | oveq1d 7425 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((1r‘𝑅)
∗
1 ) =
((1r‘(Scalar‘𝐴)) ∗ 1 )) |
| 53 | 4 | matlmod 22372 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 54 | 4 | matring 22386 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
| 55 | 5, 15 | ringidcl 20230 |
. . . . . . . 8
⊢ (𝐴 ∈ Ring → 1 ∈
(Base‘𝐴)) |
| 56 | 54, 55 | syl 17 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈
(Base‘𝐴)) |
| 57 | | eqid 2736 |
. . . . . . . 8
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
| 58 | | eqid 2736 |
. . . . . . . 8
⊢
(1r‘(Scalar‘𝐴)) =
(1r‘(Scalar‘𝐴)) |
| 59 | 5, 57, 16, 58 | lmodvs1 20852 |
. . . . . . 7
⊢ ((𝐴 ∈ LMod ∧ 1 ∈
(Base‘𝐴)) →
((1r‘(Scalar‘𝐴)) ∗ 1 ) = 1 ) |
| 60 | 53, 56, 59 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((1r‘(Scalar‘𝐴)) ∗ 1 ) = 1 ) |
| 61 | 52, 60 | eqtrd 2771 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
((1r‘𝑅)
∗
1 ) =
1
) |
| 62 | 49, 61 | eqtrd 2771 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r‘𝑅)) = 1 ) |
| 63 | 10, 15 | subrg1 20547 |
. . . . 5
⊢ (𝐶 ∈ (SubRing‘𝐴) → 1 =
(1r‘𝑆)) |
| 64 | 9, 63 | syl 17 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 =
(1r‘𝑆)) |
| 65 | 62, 64 | eqtrd 2771 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r‘𝑅)) = (1r‘𝑆)) |
| 66 | 21, 45, 65 | 3jca 1128 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐾 (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑧)) ∧ (𝐹‘(1r‘𝑅)) = (1r‘𝑆))) |
| 67 | 1, 6 | mgpbas 20110 |
. . 3
⊢ 𝐾 = (Base‘𝑀) |
| 68 | | eqid 2736 |
. . . 4
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 69 | 12, 68 | mgpbas 20110 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑇) |
| 70 | 1, 22 | mgpplusg 20109 |
. . 3
⊢
(.r‘𝑅) = (+g‘𝑀) |
| 71 | | eqid 2736 |
. . . 4
⊢
(.r‘𝑆) = (.r‘𝑆) |
| 72 | 12, 71 | mgpplusg 20109 |
. . 3
⊢
(.r‘𝑆) = (+g‘𝑇) |
| 73 | 1, 46 | ringidval 20148 |
. . 3
⊢
(1r‘𝑅) = (0g‘𝑀) |
| 74 | | eqid 2736 |
. . . 4
⊢
(1r‘𝑆) = (1r‘𝑆) |
| 75 | 12, 74 | ringidval 20148 |
. . 3
⊢
(1r‘𝑆) = (0g‘𝑇) |
| 76 | 67, 69, 70, 72, 73, 75 | ismhm 18768 |
. 2
⊢ (𝐹 ∈ (𝑀 MndHom 𝑇) ↔ ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦 ∈ 𝐾 ∀𝑧 ∈ 𝐾 (𝐹‘(𝑦(.r‘𝑅)𝑧)) = ((𝐹‘𝑦)(.r‘𝑆)(𝐹‘𝑧)) ∧ (𝐹‘(1r‘𝑅)) = (1r‘𝑆)))) |
| 77 | 3, 14, 66, 76 | syl21anbrc 1345 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇)) |