MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmhm Structured version   Visualization version   GIF version

Theorem scmatmhm 20617
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
scmatghm.s 𝑆 = (𝐴s 𝐶)
scmatmhm.m 𝑀 = (mulGrp‘𝑅)
scmatmhm.t 𝑇 = (mulGrp‘𝑆)
Assertion
Ref Expression
scmatmhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem scmatmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmhm.m . . . . 5 𝑀 = (mulGrp‘𝑅)
21ringmgp 18820 . . . 4 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantl 473 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ Mnd)
4 scmatrhmval.a . . . . 5 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2765 . . . . 5 (Base‘𝐴) = (Base‘𝐴)
6 scmatrhmval.k . . . . 5 𝐾 = (Base‘𝑅)
7 eqid 2765 . . . . 5 (0g𝑅) = (0g𝑅)
8 scmatrhmval.c . . . . 5 𝐶 = (𝑁 ScMat 𝑅)
94, 5, 6, 7, 8scmatsrng 20603 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴))
10 scmatghm.s . . . . 5 𝑆 = (𝐴s 𝐶)
1110subrgring 19052 . . . 4 (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring)
12 scmatmhm.t . . . . 5 𝑇 = (mulGrp‘𝑆)
1312ringmgp 18820 . . . 4 (𝑆 ∈ Ring → 𝑇 ∈ Mnd)
149, 11, 133syl 18 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ Mnd)
15 scmatrhmval.o . . . . . 6 1 = (1r𝐴)
16 scmatrhmval.t . . . . . 6 = ( ·𝑠𝐴)
17 scmatrhmval.f . . . . . 6 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
186, 4, 15, 16, 17, 8scmatf 20612 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
194, 8, 10scmatstrbas 20609 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
2019feq3d 6210 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾𝐶))
2118, 20mpbird 248 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆))
22 eqid 2765 . . . . . . . 8 (.r𝑅) = (.r𝑅)
23 eqid 2765 . . . . . . . 8 (.r𝐴) = (.r𝐴)
244, 6, 7, 15, 16, 22, 23scmatscmiddistr 20591 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦(.r𝑅)𝑧) 1 ))
2510, 23ressmulr 16280 . . . . . . . . . 10 (𝐶 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝑆))
269, 25syl 17 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝑆))
2726adantr 472 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (.r𝐴) = (.r𝑆))
2827oveqd 6859 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
2924, 28eqtr3d 2801 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(.r𝑅)𝑧) 1 ) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
30 simpr 477 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3130adantr 472 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑅 ∈ Ring)
3230anim1i 608 . . . . . . . . 9 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
33 3anass 1116 . . . . . . . . 9 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
3432, 33sylibr 225 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾))
356, 22ringcl 18828 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
3634, 35syl 17 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
376, 4, 15, 16, 17scmatrhmval 20610 . . . . . . 7 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
3831, 36, 37syl2anc 579 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
396, 4, 15, 16, 17scmatrhmval 20610 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
4039ad2ant2lr 754 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
416, 4, 15, 16, 17scmatrhmval 20610 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
4241ad2ant2l 752 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
4340, 42oveq12d 6860 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
4429, 38, 433eqtr4d 2809 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
4544ralrimivva 3118 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
46 eqid 2765 . . . . . . . . 9 (1r𝑅) = (1r𝑅)
476, 46ringidcl 18835 . . . . . . . 8 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
4847adantl 473 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) ∈ 𝐾)
496, 4, 15, 16, 17scmatrhmval 20610 . . . . . . 7 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
5030, 48, 49syl2anc 579 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
514matsca2 20502 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
5251fveq2d 6379 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) = (1r‘(Scalar‘𝐴)))
5352oveq1d 6857 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = ((1r‘(Scalar‘𝐴)) 1 ))
544matlmod 20511 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
554matring 20525 . . . . . . . . 9 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
565, 15ringidcl 18835 . . . . . . . . 9 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
5755, 56syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
58 eqid 2765 . . . . . . . . 9 (Scalar‘𝐴) = (Scalar‘𝐴)
59 eqid 2765 . . . . . . . . 9 (1r‘(Scalar‘𝐴)) = (1r‘(Scalar‘𝐴))
605, 58, 16, 59lmodvs1 19160 . . . . . . . 8 ((𝐴 ∈ LMod ∧ 1 ∈ (Base‘𝐴)) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6154, 57, 60syl2anc 579 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6253, 61eqtrd 2799 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = 1 )
6350, 62eqtrd 2799 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = 1 )
6410, 15subrg1 19059 . . . . . 6 (𝐶 ∈ (SubRing‘𝐴) → 1 = (1r𝑆))
659, 64syl 17 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (1r𝑆))
6663, 65eqtrd 2799 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = (1r𝑆))
6721, 45, 663jca 1158 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆)))
683, 14, 67jca31 510 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
691, 6mgpbas 18762 . . 3 𝐾 = (Base‘𝑀)
70 eqid 2765 . . . 4 (Base‘𝑆) = (Base‘𝑆)
7112, 70mgpbas 18762 . . 3 (Base‘𝑆) = (Base‘𝑇)
721, 22mgpplusg 18760 . . 3 (.r𝑅) = (+g𝑀)
73 eqid 2765 . . . 4 (.r𝑆) = (.r𝑆)
7412, 73mgpplusg 18760 . . 3 (.r𝑆) = (+g𝑇)
751, 46ringidval 18770 . . 3 (1r𝑅) = (0g𝑀)
76 eqid 2765 . . . 4 (1r𝑆) = (1r𝑆)
7712, 76ringidval 18770 . . 3 (1r𝑆) = (0g𝑇)
7869, 71, 72, 74, 75, 77ismhm 17605 . 2 (𝐹 ∈ (𝑀 MndHom 𝑇) ↔ ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
7968, 78sylibr 225 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 384  w3a 1107   = wceq 1652  wcel 2155  wral 3055  cmpt 4888  wf 6064  cfv 6068  (class class class)co 6842  Fincfn 8160  Basecbs 16132  s cress 16133  .rcmulr 16217  Scalarcsca 16219   ·𝑠 cvsca 16220  0gc0g 16368  Mndcmnd 17562   MndHom cmhm 17601  mulGrpcmgp 18756  1rcur 18768  Ringcrg 18814  SubRingcsubrg 19045  LModclmod 19132   Mat cmat 20489   ScMat cscmat 20572
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-ot 4343  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-oadd 7768  df-er 7947  df-map 8062  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-sup 8555  df-oi 8622  df-card 9016  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-fz 12534  df-fzo 12674  df-seq 13009  df-hash 13322  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-hom 16240  df-cco 16241  df-0g 16370  df-gsum 16371  df-prds 16376  df-pws 16378  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-mhm 17603  df-submnd 17604  df-grp 17694  df-minusg 17695  df-sbg 17696  df-mulg 17810  df-subg 17857  df-ghm 17924  df-cntz 18015  df-cmn 18461  df-abl 18462  df-mgp 18757  df-ur 18769  df-ring 18816  df-subrg 19047  df-lmod 19134  df-lss 19202  df-sra 19446  df-rgmod 19447  df-dsmm 20352  df-frlm 20367  df-mamu 20466  df-mat 20490  df-dmat 20573  df-scmat 20574
This theorem is referenced by:  scmatrhm  20618
  Copyright terms: Public domain W3C validator