MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmhm Structured version   Visualization version   GIF version

Theorem scmatmhm 22428
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
scmatghm.s 𝑆 = (𝐴s 𝐶)
scmatmhm.m 𝑀 = (mulGrp‘𝑅)
scmatmhm.t 𝑇 = (mulGrp‘𝑆)
Assertion
Ref Expression
scmatmhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem scmatmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmhm.m . . . 4 𝑀 = (mulGrp‘𝑅)
21ringmgp 20155 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantl 481 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ Mnd)
4 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2730 . . . 4 (Base‘𝐴) = (Base‘𝐴)
6 scmatrhmval.k . . . 4 𝐾 = (Base‘𝑅)
7 eqid 2730 . . . 4 (0g𝑅) = (0g𝑅)
8 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
94, 5, 6, 7, 8scmatsrng 22414 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴))
10 scmatghm.s . . . 4 𝑆 = (𝐴s 𝐶)
1110subrgring 20490 . . 3 (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring)
12 scmatmhm.t . . . 4 𝑇 = (mulGrp‘𝑆)
1312ringmgp 20155 . . 3 (𝑆 ∈ Ring → 𝑇 ∈ Mnd)
149, 11, 133syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ Mnd)
15 scmatrhmval.o . . . . 5 1 = (1r𝐴)
16 scmatrhmval.t . . . . 5 = ( ·𝑠𝐴)
17 scmatrhmval.f . . . . 5 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
186, 4, 15, 16, 17, 8scmatf 22423 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
194, 8, 10scmatstrbas 22420 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
2019feq3d 6676 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾𝐶))
2118, 20mpbird 257 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆))
22 eqid 2730 . . . . . . 7 (.r𝑅) = (.r𝑅)
23 eqid 2730 . . . . . . 7 (.r𝐴) = (.r𝐴)
244, 6, 7, 15, 16, 22, 23scmatscmiddistr 22402 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦(.r𝑅)𝑧) 1 ))
2510, 23ressmulr 17277 . . . . . . . . 9 (𝐶 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝑆))
269, 25syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝑆))
2726adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (.r𝐴) = (.r𝑆))
2827oveqd 7407 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
2924, 28eqtr3d 2767 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(.r𝑅)𝑧) 1 ) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
30 simpr 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3130adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑅 ∈ Ring)
3230anim1i 615 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
33 3anass 1094 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
3432, 33sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾))
356, 22ringcl 20166 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
3634, 35syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
376, 4, 15, 16, 17scmatrhmval 22421 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
3831, 36, 37syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
396, 4, 15, 16, 17scmatrhmval 22421 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
4039ad2ant2lr 748 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
416, 4, 15, 16, 17scmatrhmval 22421 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
4241ad2ant2l 746 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
4340, 42oveq12d 7408 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
4429, 38, 433eqtr4d 2775 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
4544ralrimivva 3181 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
46 eqid 2730 . . . . . . 7 (1r𝑅) = (1r𝑅)
476, 46ringidcl 20181 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
486, 4, 15, 16, 17scmatrhmval 22421 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
4930, 47, 48syl2anc2 585 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
504matsca2 22314 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
5150fveq2d 6865 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) = (1r‘(Scalar‘𝐴)))
5251oveq1d 7405 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = ((1r‘(Scalar‘𝐴)) 1 ))
534matlmod 22323 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
544matring 22337 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
555, 15ringidcl 20181 . . . . . . . 8 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
5654, 55syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
57 eqid 2730 . . . . . . . 8 (Scalar‘𝐴) = (Scalar‘𝐴)
58 eqid 2730 . . . . . . . 8 (1r‘(Scalar‘𝐴)) = (1r‘(Scalar‘𝐴))
595, 57, 16, 58lmodvs1 20803 . . . . . . 7 ((𝐴 ∈ LMod ∧ 1 ∈ (Base‘𝐴)) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6053, 56, 59syl2anc 584 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6152, 60eqtrd 2765 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = 1 )
6249, 61eqtrd 2765 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = 1 )
6310, 15subrg1 20498 . . . . 5 (𝐶 ∈ (SubRing‘𝐴) → 1 = (1r𝑆))
649, 63syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (1r𝑆))
6562, 64eqtrd 2765 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = (1r𝑆))
6621, 45, 653jca 1128 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆)))
671, 6mgpbas 20061 . . 3 𝐾 = (Base‘𝑀)
68 eqid 2730 . . . 4 (Base‘𝑆) = (Base‘𝑆)
6912, 68mgpbas 20061 . . 3 (Base‘𝑆) = (Base‘𝑇)
701, 22mgpplusg 20060 . . 3 (.r𝑅) = (+g𝑀)
71 eqid 2730 . . . 4 (.r𝑆) = (.r𝑆)
7212, 71mgpplusg 20060 . . 3 (.r𝑆) = (+g𝑇)
731, 46ringidval 20099 . . 3 (1r𝑅) = (0g𝑀)
74 eqid 2730 . . . 4 (1r𝑆) = (1r𝑆)
7512, 74ringidval 20099 . . 3 (1r𝑆) = (0g𝑇)
7667, 69, 70, 72, 73, 75ismhm 18719 . 2 (𝐹 ∈ (𝑀 MndHom 𝑇) ↔ ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
773, 14, 66, 76syl21anbrc 1345 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3045  cmpt 5191  wf 6510  cfv 6514  (class class class)co 7390  Fincfn 8921  Basecbs 17186  s cress 17207  .rcmulr 17228  Scalarcsca 17230   ·𝑠 cvsca 17231  0gc0g 17409  Mndcmnd 18668   MndHom cmhm 18715  mulGrpcmgp 20056  1rcur 20097  Ringcrg 20149  SubRingcsubrg 20485  LModclmod 20773   Mat cmat 22301   ScMat cscmat 22383
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-cnex 11131  ax-resscn 11132  ax-1cn 11133  ax-icn 11134  ax-addcl 11135  ax-addrcl 11136  ax-mulcl 11137  ax-mulrcl 11138  ax-mulcom 11139  ax-addass 11140  ax-mulass 11141  ax-distr 11142  ax-i2m1 11143  ax-1ne0 11144  ax-1rid 11145  ax-rnegex 11146  ax-rrecex 11147  ax-cnre 11148  ax-pre-lttri 11149  ax-pre-lttrn 11150  ax-pre-ltadd 11151  ax-pre-mulgt0 11152
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-nel 3031  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-tp 4597  df-op 4599  df-ot 4601  df-uni 4875  df-int 4914  df-iun 4960  df-iin 4961  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-of 7656  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-1o 8437  df-2o 8438  df-er 8674  df-map 8804  df-ixp 8874  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-sup 9400  df-oi 9470  df-card 9899  df-pnf 11217  df-mnf 11218  df-xr 11219  df-ltxr 11220  df-le 11221  df-sub 11414  df-neg 11415  df-nn 12194  df-2 12256  df-3 12257  df-4 12258  df-5 12259  df-6 12260  df-7 12261  df-8 12262  df-9 12263  df-n0 12450  df-z 12537  df-dec 12657  df-uz 12801  df-fz 13476  df-fzo 13623  df-seq 13974  df-hash 14303  df-struct 17124  df-sets 17141  df-slot 17159  df-ndx 17171  df-base 17187  df-ress 17208  df-plusg 17240  df-mulr 17241  df-sca 17243  df-vsca 17244  df-ip 17245  df-tset 17246  df-ple 17247  df-ds 17249  df-hom 17251  df-cco 17252  df-0g 17411  df-gsum 17412  df-prds 17417  df-pws 17419  df-mre 17554  df-mrc 17555  df-acs 17557  df-mgm 18574  df-sgrp 18653  df-mnd 18669  df-mhm 18717  df-submnd 18718  df-grp 18875  df-minusg 18876  df-sbg 18877  df-mulg 19007  df-subg 19062  df-ghm 19152  df-cntz 19256  df-cmn 19719  df-abl 19720  df-mgp 20057  df-rng 20069  df-ur 20098  df-ring 20151  df-subrng 20462  df-subrg 20486  df-lmod 20775  df-lss 20845  df-sra 21087  df-rgmod 21088  df-dsmm 21648  df-frlm 21663  df-mamu 22285  df-mat 22302  df-dmat 22384  df-scmat 22385
This theorem is referenced by:  scmatrhm  22429
  Copyright terms: Public domain W3C validator