MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatmhm Structured version   Visualization version   GIF version

Theorem scmatmhm 22556
Description: There is a monoid homomorphism from the multiplicative group of a ring to the multiplicative group of the ring of scalar matrices over this ring. (Contributed by AV, 29-Dec-2019.)
Hypotheses
Ref Expression
scmatrhmval.k 𝐾 = (Base‘𝑅)
scmatrhmval.a 𝐴 = (𝑁 Mat 𝑅)
scmatrhmval.o 1 = (1r𝐴)
scmatrhmval.t = ( ·𝑠𝐴)
scmatrhmval.f 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
scmatrhmval.c 𝐶 = (𝑁 ScMat 𝑅)
scmatghm.s 𝑆 = (𝐴s 𝐶)
scmatmhm.m 𝑀 = (mulGrp‘𝑅)
scmatmhm.t 𝑇 = (mulGrp‘𝑆)
Assertion
Ref Expression
scmatmhm ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Distinct variable groups:   𝑥,𝐾   𝑥,𝑅   𝑥, 1   𝑥,   𝑥,𝐶   𝑥,𝑁
Allowed substitution hints:   𝐴(𝑥)   𝑆(𝑥)   𝑇(𝑥)   𝐹(𝑥)   𝑀(𝑥)

Proof of Theorem scmatmhm
Dummy variables 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 scmatmhm.m . . . 4 𝑀 = (mulGrp‘𝑅)
21ringmgp 20257 . . 3 (𝑅 ∈ Ring → 𝑀 ∈ Mnd)
32adantl 481 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑀 ∈ Mnd)
4 scmatrhmval.a . . . 4 𝐴 = (𝑁 Mat 𝑅)
5 eqid 2735 . . . 4 (Base‘𝐴) = (Base‘𝐴)
6 scmatrhmval.k . . . 4 𝐾 = (Base‘𝑅)
7 eqid 2735 . . . 4 (0g𝑅) = (0g𝑅)
8 scmatrhmval.c . . . 4 𝐶 = (𝑁 ScMat 𝑅)
94, 5, 6, 7, 8scmatsrng 22542 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴))
10 scmatghm.s . . . 4 𝑆 = (𝐴s 𝐶)
1110subrgring 20591 . . 3 (𝐶 ∈ (SubRing‘𝐴) → 𝑆 ∈ Ring)
12 scmatmhm.t . . . 4 𝑇 = (mulGrp‘𝑆)
1312ringmgp 20257 . . 3 (𝑆 ∈ Ring → 𝑇 ∈ Mnd)
149, 11, 133syl 18 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑇 ∈ Mnd)
15 scmatrhmval.o . . . . 5 1 = (1r𝐴)
16 scmatrhmval.t . . . . 5 = ( ·𝑠𝐴)
17 scmatrhmval.f . . . . 5 𝐹 = (𝑥𝐾 ↦ (𝑥 1 ))
186, 4, 15, 16, 17, 8scmatf 22551 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾𝐶)
194, 8, 10scmatstrbas 22548 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
2019feq3d 6724 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾𝐶))
2118, 20mpbird 257 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆))
22 eqid 2735 . . . . . . 7 (.r𝑅) = (.r𝑅)
23 eqid 2735 . . . . . . 7 (.r𝐴) = (.r𝐴)
244, 6, 7, 15, 16, 22, 23scmatscmiddistr 22530 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦(.r𝑅)𝑧) 1 ))
2510, 23ressmulr 17353 . . . . . . . . 9 (𝐶 ∈ (SubRing‘𝐴) → (.r𝐴) = (.r𝑆))
269, 25syl 17 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (.r𝐴) = (.r𝑆))
2726adantr 480 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (.r𝐴) = (.r𝑆))
2827oveqd 7448 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦 1 )(.r𝐴)(𝑧 1 )) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
2924, 28eqtr3d 2777 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝑦(.r𝑅)𝑧) 1 ) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
30 simpr 484 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring)
3130adantr 480 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → 𝑅 ∈ Ring)
3230anim1i 615 . . . . . . . 8 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
33 3anass 1094 . . . . . . . 8 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦𝐾𝑧𝐾)))
3432, 33sylibr 234 . . . . . . 7 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾))
356, 22ringcl 20268 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾𝑧𝐾) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
3634, 35syl 17 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝑦(.r𝑅)𝑧) ∈ 𝐾)
376, 4, 15, 16, 17scmatrhmval 22549 . . . . . 6 ((𝑅 ∈ Ring ∧ (𝑦(.r𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
3831, 36, 37syl2anc 584 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝑦(.r𝑅)𝑧) 1 ))
396, 4, 15, 16, 17scmatrhmval 22549 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑦𝐾) → (𝐹𝑦) = (𝑦 1 ))
4039ad2ant2lr 748 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑦) = (𝑦 1 ))
416, 4, 15, 16, 17scmatrhmval 22549 . . . . . . 7 ((𝑅 ∈ Ring ∧ 𝑧𝐾) → (𝐹𝑧) = (𝑧 1 ))
4241ad2ant2l 746 . . . . . 6 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹𝑧) = (𝑧 1 ))
4340, 42oveq12d 7449 . . . . 5 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) = ((𝑦 1 )(.r𝑆)(𝑧 1 )))
4429, 38, 433eqtr4d 2785 . . . 4 (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦𝐾𝑧𝐾)) → (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
4544ralrimivva 3200 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)))
46 eqid 2735 . . . . . . 7 (1r𝑅) = (1r𝑅)
476, 46ringidcl 20280 . . . . . 6 (𝑅 ∈ Ring → (1r𝑅) ∈ 𝐾)
486, 4, 15, 16, 17scmatrhmval 22549 . . . . . 6 ((𝑅 ∈ Ring ∧ (1r𝑅) ∈ 𝐾) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
4930, 47, 48syl2anc2 585 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = ((1r𝑅) 1 ))
504matsca2 22442 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴))
5150fveq2d 6911 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (1r𝑅) = (1r‘(Scalar‘𝐴)))
5251oveq1d 7446 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = ((1r‘(Scalar‘𝐴)) 1 ))
534matlmod 22451 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod)
544matring 22465 . . . . . . . 8 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring)
555, 15ringidcl 20280 . . . . . . . 8 (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴))
5654, 55syl 17 . . . . . . 7 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈ (Base‘𝐴))
57 eqid 2735 . . . . . . . 8 (Scalar‘𝐴) = (Scalar‘𝐴)
58 eqid 2735 . . . . . . . 8 (1r‘(Scalar‘𝐴)) = (1r‘(Scalar‘𝐴))
595, 57, 16, 58lmodvs1 20905 . . . . . . 7 ((𝐴 ∈ LMod ∧ 1 ∈ (Base‘𝐴)) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6053, 56, 59syl2anc 584 . . . . . 6 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r‘(Scalar‘𝐴)) 1 ) = 1 )
6152, 60eqtrd 2775 . . . . 5 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((1r𝑅) 1 ) = 1 )
6249, 61eqtrd 2775 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = 1 )
6310, 15subrg1 20599 . . . . 5 (𝐶 ∈ (SubRing‘𝐴) → 1 = (1r𝑆))
649, 63syl 17 . . . 4 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 = (1r𝑆))
6562, 64eqtrd 2775 . . 3 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹‘(1r𝑅)) = (1r𝑆))
6621, 45, 653jca 1127 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆)))
671, 6mgpbas 20158 . . 3 𝐾 = (Base‘𝑀)
68 eqid 2735 . . . 4 (Base‘𝑆) = (Base‘𝑆)
6912, 68mgpbas 20158 . . 3 (Base‘𝑆) = (Base‘𝑇)
701, 22mgpplusg 20156 . . 3 (.r𝑅) = (+g𝑀)
71 eqid 2735 . . . 4 (.r𝑆) = (.r𝑆)
7212, 71mgpplusg 20156 . . 3 (.r𝑆) = (+g𝑇)
731, 46ringidval 20201 . . 3 (1r𝑅) = (0g𝑀)
74 eqid 2735 . . . 4 (1r𝑆) = (1r𝑆)
7512, 74ringidval 20201 . . 3 (1r𝑆) = (0g𝑇)
7667, 69, 70, 72, 73, 75ismhm 18811 . 2 (𝐹 ∈ (𝑀 MndHom 𝑇) ↔ ((𝑀 ∈ Mnd ∧ 𝑇 ∈ Mnd) ∧ (𝐹:𝐾⟶(Base‘𝑆) ∧ ∀𝑦𝐾𝑧𝐾 (𝐹‘(𝑦(.r𝑅)𝑧)) = ((𝐹𝑦)(.r𝑆)(𝐹𝑧)) ∧ (𝐹‘(1r𝑅)) = (1r𝑆))))
773, 14, 66, 76syl21anbrc 1343 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑀 MndHom 𝑇))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1537  wcel 2106  wral 3059  cmpt 5231  wf 6559  cfv 6563  (class class class)co 7431  Fincfn 8984  Basecbs 17245  s cress 17274  .rcmulr 17299  Scalarcsca 17301   ·𝑠 cvsca 17302  0gc0g 17486  Mndcmnd 18760   MndHom cmhm 18807  mulGrpcmgp 20152  1rcur 20199  Ringcrg 20251  SubRingcsubrg 20586  LModclmod 20875   Mat cmat 22427   ScMat cscmat 22511
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1792  ax-4 1806  ax-5 1908  ax-6 1965  ax-7 2005  ax-8 2108  ax-9 2116  ax-10 2139  ax-11 2155  ax-12 2175  ax-ext 2706  ax-rep 5285  ax-sep 5302  ax-nul 5312  ax-pow 5371  ax-pr 5438  ax-un 7754  ax-cnex 11209  ax-resscn 11210  ax-1cn 11211  ax-icn 11212  ax-addcl 11213  ax-addrcl 11214  ax-mulcl 11215  ax-mulrcl 11216  ax-mulcom 11217  ax-addass 11218  ax-mulass 11219  ax-distr 11220  ax-i2m1 11221  ax-1ne0 11222  ax-1rid 11223  ax-rnegex 11224  ax-rrecex 11225  ax-cnre 11226  ax-pre-lttri 11227  ax-pre-lttrn 11228  ax-pre-ltadd 11229  ax-pre-mulgt0 11230
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1540  df-fal 1550  df-ex 1777  df-nf 1781  df-sb 2063  df-mo 2538  df-eu 2567  df-clab 2713  df-cleq 2727  df-clel 2814  df-nfc 2890  df-ne 2939  df-nel 3045  df-ral 3060  df-rex 3069  df-rmo 3378  df-reu 3379  df-rab 3434  df-v 3480  df-sbc 3792  df-csb 3909  df-dif 3966  df-un 3968  df-in 3970  df-ss 3980  df-pss 3983  df-nul 4340  df-if 4532  df-pw 4607  df-sn 4632  df-pr 4634  df-tp 4636  df-op 4638  df-ot 4640  df-uni 4913  df-int 4952  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-tr 5266  df-id 5583  df-eprel 5589  df-po 5597  df-so 5598  df-fr 5641  df-se 5642  df-we 5643  df-xp 5695  df-rel 5696  df-cnv 5697  df-co 5698  df-dm 5699  df-rn 5700  df-res 5701  df-ima 5702  df-pred 6323  df-ord 6389  df-on 6390  df-lim 6391  df-suc 6392  df-iota 6516  df-fun 6565  df-fn 6566  df-f 6567  df-f1 6568  df-fo 6569  df-f1o 6570  df-fv 6571  df-isom 6572  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-of 7697  df-om 7888  df-1st 8013  df-2nd 8014  df-supp 8185  df-frecs 8305  df-wrecs 8336  df-recs 8410  df-rdg 8449  df-1o 8505  df-2o 8506  df-er 8744  df-map 8867  df-ixp 8937  df-en 8985  df-dom 8986  df-sdom 8987  df-fin 8988  df-fsupp 9400  df-sup 9480  df-oi 9548  df-card 9977  df-pnf 11295  df-mnf 11296  df-xr 11297  df-ltxr 11298  df-le 11299  df-sub 11492  df-neg 11493  df-nn 12265  df-2 12327  df-3 12328  df-4 12329  df-5 12330  df-6 12331  df-7 12332  df-8 12333  df-9 12334  df-n0 12525  df-z 12612  df-dec 12732  df-uz 12877  df-fz 13545  df-fzo 13692  df-seq 14040  df-hash 14367  df-struct 17181  df-sets 17198  df-slot 17216  df-ndx 17228  df-base 17246  df-ress 17275  df-plusg 17311  df-mulr 17312  df-sca 17314  df-vsca 17315  df-ip 17316  df-tset 17317  df-ple 17318  df-ds 17320  df-hom 17322  df-cco 17323  df-0g 17488  df-gsum 17489  df-prds 17494  df-pws 17496  df-mre 17631  df-mrc 17632  df-acs 17634  df-mgm 18666  df-sgrp 18745  df-mnd 18761  df-mhm 18809  df-submnd 18810  df-grp 18967  df-minusg 18968  df-sbg 18969  df-mulg 19099  df-subg 19154  df-ghm 19244  df-cntz 19348  df-cmn 19815  df-abl 19816  df-mgp 20153  df-rng 20171  df-ur 20200  df-ring 20253  df-subrng 20563  df-subrg 20587  df-lmod 20877  df-lss 20948  df-sra 21190  df-rgmod 21191  df-dsmm 21770  df-frlm 21785  df-mamu 22411  df-mat 22428  df-dmat 22512  df-scmat 22513
This theorem is referenced by:  scmatrhm  22557
  Copyright terms: Public domain W3C validator