MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  scmatstrbas Structured version   Visualization version   GIF version

Theorem scmatstrbas 21558
Description: The set of scalar matrices is the base set of the ring of corresponding scalar matrices. (Contributed by AV, 26-Dec-2019.)
Hypotheses
Ref Expression
scmatstrbas.a 𝐴 = (𝑁 Mat 𝑅)
scmatstrbas.c 𝐶 = (𝑁 ScMat 𝑅)
scmatstrbas.s 𝑆 = (𝐴s 𝐶)
Assertion
Ref Expression
scmatstrbas ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)

Proof of Theorem scmatstrbas
StepHypRef Expression
1 scmatstrbas.a . . 3 𝐴 = (𝑁 Mat 𝑅)
2 eqid 2739 . . 3 (Base‘𝐴) = (Base‘𝐴)
3 eqid 2739 . . 3 (Base‘𝑅) = (Base‘𝑅)
4 eqid 2739 . . 3 (0g𝑅) = (0g𝑅)
5 scmatstrbas.c . . 3 𝐶 = (𝑁 ScMat 𝑅)
61, 2, 3, 4, 5scmatsrng 21552 . 2 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubRing‘𝐴))
7 scmatstrbas.s . . . 4 𝑆 = (𝐴s 𝐶)
87subrgbas 19923 . . 3 (𝐶 ∈ (SubRing‘𝐴) → 𝐶 = (Base‘𝑆))
98eqcomd 2745 . 2 (𝐶 ∈ (SubRing‘𝐴) → (Base‘𝑆) = 𝐶)
106, 9syl 17 1 ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (Base‘𝑆) = 𝐶)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399   = wceq 1543  wcel 2112  cfv 6415  (class class class)co 7252  Fincfn 8668  Basecbs 16815  s cress 16842  0gc0g 17042  Ringcrg 19673  SubRingcsubrg 19910   Mat cmat 21439   ScMat cscmat 21521
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2160  ax-12 2177  ax-ext 2710  ax-rep 5203  ax-sep 5216  ax-nul 5223  ax-pow 5282  ax-pr 5346  ax-un 7563  ax-cnex 10833  ax-resscn 10834  ax-1cn 10835  ax-icn 10836  ax-addcl 10837  ax-addrcl 10838  ax-mulcl 10839  ax-mulrcl 10840  ax-mulcom 10841  ax-addass 10842  ax-mulass 10843  ax-distr 10844  ax-i2m1 10845  ax-1ne0 10846  ax-1rid 10847  ax-rnegex 10848  ax-rrecex 10849  ax-cnre 10850  ax-pre-lttri 10851  ax-pre-lttrn 10852  ax-pre-ltadd 10853  ax-pre-mulgt0 10854
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2073  df-mo 2541  df-eu 2570  df-clab 2717  df-cleq 2731  df-clel 2818  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3071  df-rmo 3072  df-rab 3073  df-v 3425  df-sbc 3713  df-csb 3830  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4255  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-ot 4567  df-uni 4837  df-int 4877  df-iun 4923  df-iin 4924  df-br 5071  df-opab 5133  df-mpt 5153  df-tr 5186  df-id 5479  df-eprel 5485  df-po 5493  df-so 5494  df-fr 5534  df-se 5535  df-we 5536  df-xp 5585  df-rel 5586  df-cnv 5587  df-co 5588  df-dm 5589  df-rn 5590  df-res 5591  df-ima 5592  df-pred 6189  df-ord 6251  df-on 6252  df-lim 6253  df-suc 6254  df-iota 6373  df-fun 6417  df-fn 6418  df-f 6419  df-f1 6420  df-fo 6421  df-f1o 6422  df-fv 6423  df-isom 6424  df-riota 7209  df-ov 7255  df-oprab 7256  df-mpo 7257  df-of 7508  df-om 7685  df-1st 7801  df-2nd 7802  df-supp 7946  df-wrecs 8089  df-recs 8150  df-rdg 8188  df-1o 8244  df-er 8433  df-map 8552  df-ixp 8621  df-en 8669  df-dom 8670  df-sdom 8671  df-fin 8672  df-fsupp 9034  df-sup 9106  df-oi 9174  df-card 9603  df-pnf 10917  df-mnf 10918  df-xr 10919  df-ltxr 10920  df-le 10921  df-sub 11112  df-neg 11113  df-nn 11879  df-2 11941  df-3 11942  df-4 11943  df-5 11944  df-6 11945  df-7 11946  df-8 11947  df-9 11948  df-n0 12139  df-z 12225  df-dec 12342  df-uz 12487  df-fz 13144  df-fzo 13287  df-seq 13625  df-hash 13948  df-struct 16751  df-sets 16768  df-slot 16786  df-ndx 16798  df-base 16816  df-ress 16843  df-plusg 16876  df-mulr 16877  df-sca 16879  df-vsca 16880  df-ip 16881  df-tset 16882  df-ple 16883  df-ds 16885  df-hom 16887  df-cco 16888  df-0g 17044  df-gsum 17045  df-prds 17050  df-pws 17052  df-mre 17187  df-mrc 17188  df-acs 17190  df-mgm 18216  df-sgrp 18265  df-mnd 18276  df-mhm 18320  df-submnd 18321  df-grp 18470  df-minusg 18471  df-sbg 18472  df-mulg 18591  df-subg 18642  df-ghm 18722  df-cntz 18813  df-cmn 19278  df-abl 19279  df-mgp 19611  df-ur 19628  df-ring 19675  df-subrg 19912  df-lmod 20015  df-lss 20084  df-sra 20324  df-rgmod 20325  df-dsmm 20824  df-frlm 20839  df-mamu 21418  df-mat 21440  df-dmat 21522  df-scmat 21523
This theorem is referenced by:  scmatghm  21565  scmatmhm  21566  scmatrngiso  21568
  Copyright terms: Public domain W3C validator