Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatfo | Structured version Visualization version GIF version |
Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatfo | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatrhmval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatrhmval.o | . . 3 ⊢ 1 = (1r‘𝐴) | |
4 | scmatrhmval.t | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
5 | scmatrhmval.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
6 | scmatrhmval.c | . . 3 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatf 21586 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
9 | 1, 2, 8, 3, 4, 6 | scmatscmid 21563 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
10 | 9 | 3expa 1116 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
11 | 1, 2, 3, 4, 5 | scmatrhmval 21584 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
12 | 11 | adantll 710 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
13 | 12 | eqcomd 2744 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∗ 1 ) = (𝐹‘𝑐)) |
14 | 13 | eqeq2d 2749 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) ↔ 𝑦 = (𝐹‘𝑐))) |
15 | 14 | biimpd 228 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) → 𝑦 = (𝐹‘𝑐))) |
16 | 15 | reximdva 3202 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
18 | 10, 17 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
19 | 18 | ralrimiva 3107 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
20 | dffo3 6960 | . 2 ⊢ (𝐹:𝐾–onto→𝐶 ↔ (𝐹:𝐾⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) | |
21 | 7, 19, 20 | sylanbrc 582 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 ∀wral 3063 ∃wrex 3064 ↦ cmpt 5153 ⟶wf 6414 –onto→wfo 6416 ‘cfv 6418 (class class class)co 7255 Fincfn 8691 Basecbs 16840 ·𝑠 cvsca 16892 1rcur 19652 Ringcrg 19698 Mat cmat 21464 ScMat cscmat 21546 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-ot 4567 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-ring 19700 df-subrg 19937 df-lmod 20040 df-lss 20109 df-sra 20349 df-rgmod 20350 df-dsmm 20849 df-frlm 20864 df-mamu 21443 df-mat 21465 df-scmat 21548 |
This theorem is referenced by: scmatf1o 21589 |
Copyright terms: Public domain | W3C validator |