| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatfo | Structured version Visualization version GIF version | ||
| Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
| scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
| scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatfo | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatrhmval.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | scmatrhmval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatrhmval.o | . . 3 ⊢ 1 = (1r‘𝐴) | |
| 4 | scmatrhmval.t | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 5 | scmatrhmval.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
| 6 | scmatrhmval.c | . . 3 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatf 22535 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
| 8 | eqid 2737 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 9 | 1, 2, 8, 3, 4, 6 | scmatscmid 22512 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
| 10 | 9 | 3expa 1119 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
| 11 | 1, 2, 3, 4, 5 | scmatrhmval 22533 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
| 12 | 11 | adantll 714 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
| 13 | 12 | eqcomd 2743 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∗ 1 ) = (𝐹‘𝑐)) |
| 14 | 13 | eqeq2d 2748 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) ↔ 𝑦 = (𝐹‘𝑐))) |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) → 𝑦 = (𝐹‘𝑐))) |
| 16 | 15 | reximdva 3168 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
| 18 | 10, 17 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
| 19 | 18 | ralrimiva 3146 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
| 20 | dffo3 7122 | . 2 ⊢ (𝐹:𝐾–onto→𝐶 ↔ (𝐹:𝐾⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) | |
| 21 | 7, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2108 ∀wral 3061 ∃wrex 3070 ↦ cmpt 5225 ⟶wf 6557 –onto→wfo 6559 ‘cfv 6561 (class class class)co 7431 Fincfn 8985 Basecbs 17247 ·𝑠 cvsca 17301 1rcur 20178 Ringcrg 20230 Mat cmat 22411 ScMat cscmat 22495 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-rep 5279 ax-sep 5296 ax-nul 5306 ax-pow 5365 ax-pr 5432 ax-un 7755 ax-cnex 11211 ax-resscn 11212 ax-1cn 11213 ax-icn 11214 ax-addcl 11215 ax-addrcl 11216 ax-mulcl 11217 ax-mulrcl 11218 ax-mulcom 11219 ax-addass 11220 ax-mulass 11221 ax-distr 11222 ax-i2m1 11223 ax-1ne0 11224 ax-1rid 11225 ax-rnegex 11226 ax-rrecex 11227 ax-cnre 11228 ax-pre-lttri 11229 ax-pre-lttrn 11230 ax-pre-ltadd 11231 ax-pre-mulgt0 11232 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3380 df-reu 3381 df-rab 3437 df-v 3482 df-sbc 3789 df-csb 3900 df-dif 3954 df-un 3956 df-in 3958 df-ss 3968 df-pss 3971 df-nul 4334 df-if 4526 df-pw 4602 df-sn 4627 df-pr 4629 df-tp 4631 df-op 4633 df-ot 4635 df-uni 4908 df-int 4947 df-iun 4993 df-iin 4994 df-br 5144 df-opab 5206 df-mpt 5226 df-tr 5260 df-id 5578 df-eprel 5584 df-po 5592 df-so 5593 df-fr 5637 df-se 5638 df-we 5639 df-xp 5691 df-rel 5692 df-cnv 5693 df-co 5694 df-dm 5695 df-rn 5696 df-res 5697 df-ima 5698 df-pred 6321 df-ord 6387 df-on 6388 df-lim 6389 df-suc 6390 df-iota 6514 df-fun 6563 df-fn 6564 df-f 6565 df-f1 6566 df-fo 6567 df-f1o 6568 df-fv 6569 df-isom 6570 df-riota 7388 df-ov 7434 df-oprab 7435 df-mpo 7436 df-of 7697 df-om 7888 df-1st 8014 df-2nd 8015 df-supp 8186 df-frecs 8306 df-wrecs 8337 df-recs 8411 df-rdg 8450 df-1o 8506 df-2o 8507 df-er 8745 df-map 8868 df-ixp 8938 df-en 8986 df-dom 8987 df-sdom 8988 df-fin 8989 df-fsupp 9402 df-sup 9482 df-oi 9550 df-card 9979 df-pnf 11297 df-mnf 11298 df-xr 11299 df-ltxr 11300 df-le 11301 df-sub 11494 df-neg 11495 df-nn 12267 df-2 12329 df-3 12330 df-4 12331 df-5 12332 df-6 12333 df-7 12334 df-8 12335 df-9 12336 df-n0 12527 df-z 12614 df-dec 12734 df-uz 12879 df-fz 13548 df-fzo 13695 df-seq 14043 df-hash 14370 df-struct 17184 df-sets 17201 df-slot 17219 df-ndx 17231 df-base 17248 df-ress 17275 df-plusg 17310 df-mulr 17311 df-sca 17313 df-vsca 17314 df-ip 17315 df-tset 17316 df-ple 17317 df-ds 17319 df-hom 17321 df-cco 17322 df-0g 17486 df-gsum 17487 df-prds 17492 df-pws 17494 df-mre 17629 df-mrc 17630 df-acs 17632 df-mgm 18653 df-sgrp 18732 df-mnd 18748 df-mhm 18796 df-submnd 18797 df-grp 18954 df-minusg 18955 df-sbg 18956 df-mulg 19086 df-subg 19141 df-ghm 19231 df-cntz 19335 df-cmn 19800 df-abl 19801 df-mgp 20138 df-rng 20150 df-ur 20179 df-ring 20232 df-subrg 20570 df-lmod 20860 df-lss 20930 df-sra 21172 df-rgmod 21173 df-dsmm 21752 df-frlm 21767 df-mamu 22395 df-mat 22412 df-scmat 22497 |
| This theorem is referenced by: scmatf1o 22538 |
| Copyright terms: Public domain | W3C validator |