| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > scmatfo | Structured version Visualization version GIF version | ||
| Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
| Ref | Expression |
|---|---|
| scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
| scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
| scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
| scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
| scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
| scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
| Ref | Expression |
|---|---|
| scmatfo | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | scmatrhmval.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
| 2 | scmatrhmval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
| 3 | scmatrhmval.o | . . 3 ⊢ 1 = (1r‘𝐴) | |
| 4 | scmatrhmval.t | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
| 5 | scmatrhmval.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
| 6 | scmatrhmval.c | . . 3 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
| 7 | 1, 2, 3, 4, 5, 6 | scmatf 22432 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
| 8 | eqid 2729 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
| 9 | 1, 2, 8, 3, 4, 6 | scmatscmid 22409 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
| 10 | 9 | 3expa 1118 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
| 11 | 1, 2, 3, 4, 5 | scmatrhmval 22430 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
| 12 | 11 | adantll 714 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
| 13 | 12 | eqcomd 2735 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∗ 1 ) = (𝐹‘𝑐)) |
| 14 | 13 | eqeq2d 2740 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) ↔ 𝑦 = (𝐹‘𝑐))) |
| 15 | 14 | biimpd 229 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) → 𝑦 = (𝐹‘𝑐))) |
| 16 | 15 | reximdva 3142 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
| 17 | 16 | adantr 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
| 18 | 10, 17 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
| 19 | 18 | ralrimiva 3121 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
| 20 | dffo3 7040 | . 2 ⊢ (𝐹:𝐾–onto→𝐶 ↔ (𝐹:𝐾⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) | |
| 21 | 7, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3044 ∃wrex 3053 ↦ cmpt 5176 ⟶wf 6482 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7353 Fincfn 8879 Basecbs 17138 ·𝑠 cvsca 17183 1rcur 20084 Ringcrg 20136 Mat cmat 22310 ScMat cscmat 22392 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7675 ax-cnex 11084 ax-resscn 11085 ax-1cn 11086 ax-icn 11087 ax-addcl 11088 ax-addrcl 11089 ax-mulcl 11090 ax-mulrcl 11091 ax-mulcom 11092 ax-addass 11093 ax-mulass 11094 ax-distr 11095 ax-i2m1 11096 ax-1ne0 11097 ax-1rid 11098 ax-rnegex 11099 ax-rrecex 11100 ax-cnre 11101 ax-pre-lttri 11102 ax-pre-lttrn 11103 ax-pre-ltadd 11104 ax-pre-mulgt0 11105 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-rmo 3345 df-reu 3346 df-rab 3397 df-v 3440 df-sbc 3745 df-csb 3854 df-dif 3908 df-un 3910 df-in 3912 df-ss 3922 df-pss 3925 df-nul 4287 df-if 4479 df-pw 4555 df-sn 4580 df-pr 4582 df-tp 4584 df-op 4586 df-ot 4588 df-uni 4862 df-int 4900 df-iun 4946 df-iin 4947 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5518 df-eprel 5523 df-po 5531 df-so 5532 df-fr 5576 df-se 5577 df-we 5578 df-xp 5629 df-rel 5630 df-cnv 5631 df-co 5632 df-dm 5633 df-rn 5634 df-res 5635 df-ima 5636 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-isom 6495 df-riota 7310 df-ov 7356 df-oprab 7357 df-mpo 7358 df-of 7617 df-om 7807 df-1st 7931 df-2nd 7932 df-supp 8101 df-frecs 8221 df-wrecs 8252 df-recs 8301 df-rdg 8339 df-1o 8395 df-2o 8396 df-er 8632 df-map 8762 df-ixp 8832 df-en 8880 df-dom 8881 df-sdom 8882 df-fin 8883 df-fsupp 9271 df-sup 9351 df-oi 9421 df-card 9854 df-pnf 11170 df-mnf 11171 df-xr 11172 df-ltxr 11173 df-le 11174 df-sub 11367 df-neg 11368 df-nn 12147 df-2 12209 df-3 12210 df-4 12211 df-5 12212 df-6 12213 df-7 12214 df-8 12215 df-9 12216 df-n0 12403 df-z 12490 df-dec 12610 df-uz 12754 df-fz 13429 df-fzo 13576 df-seq 13927 df-hash 14256 df-struct 17076 df-sets 17093 df-slot 17111 df-ndx 17123 df-base 17139 df-ress 17160 df-plusg 17192 df-mulr 17193 df-sca 17195 df-vsca 17196 df-ip 17197 df-tset 17198 df-ple 17199 df-ds 17201 df-hom 17203 df-cco 17204 df-0g 17363 df-gsum 17364 df-prds 17369 df-pws 17371 df-mre 17506 df-mrc 17507 df-acs 17509 df-mgm 18532 df-sgrp 18611 df-mnd 18627 df-mhm 18675 df-submnd 18676 df-grp 18833 df-minusg 18834 df-sbg 18835 df-mulg 18965 df-subg 19020 df-ghm 19110 df-cntz 19214 df-cmn 19679 df-abl 19680 df-mgp 20044 df-rng 20056 df-ur 20085 df-ring 20138 df-subrg 20473 df-lmod 20783 df-lss 20853 df-sra 21095 df-rgmod 21096 df-dsmm 21657 df-frlm 21672 df-mamu 22294 df-mat 22311 df-scmat 22394 |
| This theorem is referenced by: scmatf1o 22435 |
| Copyright terms: Public domain | W3C validator |