Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > scmatfo | Structured version Visualization version GIF version |
Description: There is a function from a ring onto any ring of scalar matrices over this ring. (Contributed by AV, 26-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatfo | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | . . 3 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatrhmval.a | . . 3 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatrhmval.o | . . 3 ⊢ 1 = (1r‘𝐴) | |
4 | scmatrhmval.t | . . 3 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
5 | scmatrhmval.f | . . 3 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
6 | scmatrhmval.c | . . 3 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
7 | 1, 2, 3, 4, 5, 6 | scmatf 21678 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
8 | eqid 2738 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
9 | 1, 2, 8, 3, 4, 6 | scmatscmid 21655 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
10 | 9 | 3expa 1117 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 )) |
11 | 1, 2, 3, 4, 5 | scmatrhmval 21676 | . . . . . . . . . 10 ⊢ ((𝑅 ∈ Ring ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
12 | 11 | adantll 711 | . . . . . . . . 9 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝐹‘𝑐) = (𝑐 ∗ 1 )) |
13 | 12 | eqcomd 2744 | . . . . . . . 8 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑐 ∗ 1 ) = (𝐹‘𝑐)) |
14 | 13 | eqeq2d 2749 | . . . . . . 7 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) ↔ 𝑦 = (𝐹‘𝑐))) |
15 | 14 | biimpd 228 | . . . . . 6 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑐 ∈ 𝐾) → (𝑦 = (𝑐 ∗ 1 ) → 𝑦 = (𝐹‘𝑐))) |
16 | 15 | reximdva 3203 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
17 | 16 | adantr 481 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → (∃𝑐 ∈ 𝐾 𝑦 = (𝑐 ∗ 1 ) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) |
18 | 10, 17 | mpd 15 | . . 3 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ 𝑦 ∈ 𝐶) → ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
19 | 18 | ralrimiva 3103 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐)) |
20 | dffo3 6978 | . 2 ⊢ (𝐹:𝐾–onto→𝐶 ↔ (𝐹:𝐾⟶𝐶 ∧ ∀𝑦 ∈ 𝐶 ∃𝑐 ∈ 𝐾 𝑦 = (𝐹‘𝑐))) | |
21 | 7, 19, 20 | sylanbrc 583 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾–onto→𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 = wceq 1539 ∈ wcel 2106 ∀wral 3064 ∃wrex 3065 ↦ cmpt 5157 ⟶wf 6429 –onto→wfo 6431 ‘cfv 6433 (class class class)co 7275 Fincfn 8733 Basecbs 16912 ·𝑠 cvsca 16966 1rcur 19737 Ringcrg 19783 Mat cmat 21554 ScMat cscmat 21638 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-rep 5209 ax-sep 5223 ax-nul 5230 ax-pow 5288 ax-pr 5352 ax-un 7588 ax-cnex 10927 ax-resscn 10928 ax-1cn 10929 ax-icn 10930 ax-addcl 10931 ax-addrcl 10932 ax-mulcl 10933 ax-mulrcl 10934 ax-mulcom 10935 ax-addass 10936 ax-mulass 10937 ax-distr 10938 ax-i2m1 10939 ax-1ne0 10940 ax-1rid 10941 ax-rnegex 10942 ax-rrecex 10943 ax-cnre 10944 ax-pre-lttri 10945 ax-pre-lttrn 10946 ax-pre-ltadd 10947 ax-pre-mulgt0 10948 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-nel 3050 df-ral 3069 df-rex 3070 df-rmo 3071 df-reu 3072 df-rab 3073 df-v 3434 df-sbc 3717 df-csb 3833 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-pss 3906 df-nul 4257 df-if 4460 df-pw 4535 df-sn 4562 df-pr 4564 df-tp 4566 df-op 4568 df-ot 4570 df-uni 4840 df-int 4880 df-iun 4926 df-iin 4927 df-br 5075 df-opab 5137 df-mpt 5158 df-tr 5192 df-id 5489 df-eprel 5495 df-po 5503 df-so 5504 df-fr 5544 df-se 5545 df-we 5546 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-pred 6202 df-ord 6269 df-on 6270 df-lim 6271 df-suc 6272 df-iota 6391 df-fun 6435 df-fn 6436 df-f 6437 df-f1 6438 df-fo 6439 df-f1o 6440 df-fv 6441 df-isom 6442 df-riota 7232 df-ov 7278 df-oprab 7279 df-mpo 7280 df-of 7533 df-om 7713 df-1st 7831 df-2nd 7832 df-supp 7978 df-frecs 8097 df-wrecs 8128 df-recs 8202 df-rdg 8241 df-1o 8297 df-er 8498 df-map 8617 df-ixp 8686 df-en 8734 df-dom 8735 df-sdom 8736 df-fin 8737 df-fsupp 9129 df-sup 9201 df-oi 9269 df-card 9697 df-pnf 11011 df-mnf 11012 df-xr 11013 df-ltxr 11014 df-le 11015 df-sub 11207 df-neg 11208 df-nn 11974 df-2 12036 df-3 12037 df-4 12038 df-5 12039 df-6 12040 df-7 12041 df-8 12042 df-9 12043 df-n0 12234 df-z 12320 df-dec 12438 df-uz 12583 df-fz 13240 df-fzo 13383 df-seq 13722 df-hash 14045 df-struct 16848 df-sets 16865 df-slot 16883 df-ndx 16895 df-base 16913 df-ress 16942 df-plusg 16975 df-mulr 16976 df-sca 16978 df-vsca 16979 df-ip 16980 df-tset 16981 df-ple 16982 df-ds 16984 df-hom 16986 df-cco 16987 df-0g 17152 df-gsum 17153 df-prds 17158 df-pws 17160 df-mre 17295 df-mrc 17296 df-acs 17298 df-mgm 18326 df-sgrp 18375 df-mnd 18386 df-mhm 18430 df-submnd 18431 df-grp 18580 df-minusg 18581 df-sbg 18582 df-mulg 18701 df-subg 18752 df-ghm 18832 df-cntz 18923 df-cmn 19388 df-abl 19389 df-mgp 19721 df-ur 19738 df-ring 19785 df-subrg 20022 df-lmod 20125 df-lss 20194 df-sra 20434 df-rgmod 20435 df-dsmm 20939 df-frlm 20954 df-mamu 21533 df-mat 21555 df-scmat 21640 |
This theorem is referenced by: scmatf1o 21681 |
Copyright terms: Public domain | W3C validator |