![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > scmatrhmcl | Structured version Visualization version GIF version |
Description: The value of the ring homomorphism 𝐹 is a scalar matrix. (Contributed by AV, 22-Dec-2019.) |
Ref | Expression |
---|---|
scmatrhmval.k | ⊢ 𝐾 = (Base‘𝑅) |
scmatrhmval.a | ⊢ 𝐴 = (𝑁 Mat 𝑅) |
scmatrhmval.o | ⊢ 1 = (1r‘𝐴) |
scmatrhmval.t | ⊢ ∗ = ( ·𝑠 ‘𝐴) |
scmatrhmval.f | ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
scmatrhmval.c | ⊢ 𝐶 = (𝑁 ScMat 𝑅) |
Ref | Expression |
---|---|
scmatrhmcl | ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐶) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | scmatrhmval.k | . . . 4 ⊢ 𝐾 = (Base‘𝑅) | |
2 | scmatrhmval.a | . . . 4 ⊢ 𝐴 = (𝑁 Mat 𝑅) | |
3 | scmatrhmval.o | . . . 4 ⊢ 1 = (1r‘𝐴) | |
4 | scmatrhmval.t | . . . 4 ⊢ ∗ = ( ·𝑠 ‘𝐴) | |
5 | scmatrhmval.f | . . . 4 ⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) | |
6 | 1, 2, 3, 4, 5 | scmatrhmval 22473 | . . 3 ⊢ ((𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
7 | 6 | 3adant1 1127 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) = (𝑋 ∗ 1 )) |
8 | 3simpa 1145 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑁 ∈ Fin ∧ 𝑅 ∈ Ring)) | |
9 | simp3 1135 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝑋 ∈ 𝐾) | |
10 | 2 | matring 22389 | . . . . . 6 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ Ring) |
11 | 10 | 3adant3 1129 | . . . . 5 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 𝐴 ∈ Ring) |
12 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝐴) = (Base‘𝐴) | |
13 | 12, 3 | ringidcl 20214 | . . . . 5 ⊢ (𝐴 ∈ Ring → 1 ∈ (Base‘𝐴)) |
14 | 11, 13 | syl 17 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → 1 ∈ (Base‘𝐴)) |
15 | 1, 2, 12, 4 | matvscl 22377 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑋 ∈ 𝐾 ∧ 1 ∈ (Base‘𝐴))) → (𝑋 ∗ 1 ) ∈ (Base‘𝐴)) |
16 | 8, 9, 14, 15 | syl12anc 835 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋 ∗ 1 ) ∈ (Base‘𝐴)) |
17 | oveq1 7426 | . . . . . 6 ⊢ (𝑐 = 𝑋 → (𝑐 ∗ 1 ) = (𝑋 ∗ 1 )) | |
18 | 17 | eqeq2d 2736 | . . . . 5 ⊢ (𝑐 = 𝑋 → ((𝑋 ∗ 1 ) = (𝑐 ∗ 1 ) ↔ (𝑋 ∗ 1 ) = (𝑋 ∗ 1 ))) |
19 | 18 | adantl 480 | . . . 4 ⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) ∧ 𝑐 = 𝑋) → ((𝑋 ∗ 1 ) = (𝑐 ∗ 1 ) ↔ (𝑋 ∗ 1 ) = (𝑋 ∗ 1 ))) |
20 | eqidd 2726 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋 ∗ 1 ) = (𝑋 ∗ 1 )) | |
21 | 9, 19, 20 | rspcedvd 3608 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ∃𝑐 ∈ 𝐾 (𝑋 ∗ 1 ) = (𝑐 ∗ 1 )) |
22 | scmatrhmval.c | . . . . 5 ⊢ 𝐶 = (𝑁 ScMat 𝑅) | |
23 | 1, 2, 12, 3, 4, 22 | scmatel 22451 | . . . 4 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑋 ∗ 1 ) ∈ 𝐶 ↔ ((𝑋 ∗ 1 ) ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ 𝐾 (𝑋 ∗ 1 ) = (𝑐 ∗ 1 )))) |
24 | 23 | 3adant3 1129 | . . 3 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → ((𝑋 ∗ 1 ) ∈ 𝐶 ↔ ((𝑋 ∗ 1 ) ∈ (Base‘𝐴) ∧ ∃𝑐 ∈ 𝐾 (𝑋 ∗ 1 ) = (𝑐 ∗ 1 )))) |
25 | 16, 21, 24 | mpbir2and 711 | . 2 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝑋 ∗ 1 ) ∈ 𝐶) |
26 | 7, 25 | eqeltrd 2825 | 1 ⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ∧ 𝑋 ∈ 𝐾) → (𝐹‘𝑋) ∈ 𝐶) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 394 ∧ w3a 1084 = wceq 1533 ∈ wcel 2098 ∃wrex 3059 ↦ cmpt 5232 ‘cfv 6549 (class class class)co 7419 Fincfn 8964 Basecbs 17183 ·𝑠 cvsca 17240 1rcur 20133 Ringcrg 20185 Mat cmat 22351 ScMat cscmat 22435 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5365 ax-pr 5429 ax-un 7741 ax-cnex 11196 ax-resscn 11197 ax-1cn 11198 ax-icn 11199 ax-addcl 11200 ax-addrcl 11201 ax-mulcl 11202 ax-mulrcl 11203 ax-mulcom 11204 ax-addass 11205 ax-mulass 11206 ax-distr 11207 ax-i2m1 11208 ax-1ne0 11209 ax-1rid 11210 ax-rnegex 11211 ax-rrecex 11212 ax-cnre 11213 ax-pre-lttri 11214 ax-pre-lttrn 11215 ax-pre-ltadd 11216 ax-pre-mulgt0 11217 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3774 df-csb 3890 df-dif 3947 df-un 3949 df-in 3951 df-ss 3961 df-pss 3964 df-nul 4323 df-if 4531 df-pw 4606 df-sn 4631 df-pr 4633 df-tp 4635 df-op 4637 df-ot 4639 df-uni 4910 df-int 4951 df-iun 4999 df-iin 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5576 df-eprel 5582 df-po 5590 df-so 5591 df-fr 5633 df-se 5634 df-we 5635 df-xp 5684 df-rel 5685 df-cnv 5686 df-co 5687 df-dm 5688 df-rn 5689 df-res 5690 df-ima 5691 df-pred 6307 df-ord 6374 df-on 6375 df-lim 6376 df-suc 6377 df-iota 6501 df-fun 6551 df-fn 6552 df-f 6553 df-f1 6554 df-fo 6555 df-f1o 6556 df-fv 6557 df-isom 6558 df-riota 7375 df-ov 7422 df-oprab 7423 df-mpo 7424 df-of 7685 df-om 7872 df-1st 7994 df-2nd 7995 df-supp 8166 df-frecs 8287 df-wrecs 8318 df-recs 8392 df-rdg 8431 df-1o 8487 df-er 8725 df-map 8847 df-ixp 8917 df-en 8965 df-dom 8966 df-sdom 8967 df-fin 8968 df-fsupp 9388 df-sup 9467 df-oi 9535 df-card 9964 df-pnf 11282 df-mnf 11283 df-xr 11284 df-ltxr 11285 df-le 11286 df-sub 11478 df-neg 11479 df-nn 12246 df-2 12308 df-3 12309 df-4 12310 df-5 12311 df-6 12312 df-7 12313 df-8 12314 df-9 12315 df-n0 12506 df-z 12592 df-dec 12711 df-uz 12856 df-fz 13520 df-fzo 13663 df-seq 14003 df-hash 14326 df-struct 17119 df-sets 17136 df-slot 17154 df-ndx 17166 df-base 17184 df-ress 17213 df-plusg 17249 df-mulr 17250 df-sca 17252 df-vsca 17253 df-ip 17254 df-tset 17255 df-ple 17256 df-ds 17258 df-hom 17260 df-cco 17261 df-0g 17426 df-gsum 17427 df-prds 17432 df-pws 17434 df-mre 17569 df-mrc 17570 df-acs 17572 df-mgm 18603 df-sgrp 18682 df-mnd 18698 df-mhm 18743 df-submnd 18744 df-grp 18901 df-minusg 18902 df-sbg 18903 df-mulg 19032 df-subg 19086 df-ghm 19176 df-cntz 19280 df-cmn 19749 df-abl 19750 df-mgp 20087 df-rng 20105 df-ur 20134 df-ring 20187 df-subrg 20520 df-lmod 20757 df-lss 20828 df-sra 21070 df-rgmod 21071 df-dsmm 21683 df-frlm 21698 df-mamu 22335 df-mat 22352 df-scmat 22437 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |