| Step | Hyp | Ref
| Expression |
| 1 | | scmatrhmval.k |
. 2
⊢ 𝐾 = (Base‘𝑅) |
| 2 | | eqid 2737 |
. 2
⊢
(Base‘𝑆) =
(Base‘𝑆) |
| 3 | | eqid 2737 |
. 2
⊢
(+g‘𝑅) = (+g‘𝑅) |
| 4 | | eqid 2737 |
. 2
⊢
(+g‘𝑆) = (+g‘𝑆) |
| 5 | | ringgrp 20235 |
. . 3
⊢ (𝑅 ∈ Ring → 𝑅 ∈ Grp) |
| 6 | 5 | adantl 481 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Grp) |
| 7 | | scmatrhmval.a |
. . . 4
⊢ 𝐴 = (𝑁 Mat 𝑅) |
| 8 | | eqid 2737 |
. . . 4
⊢
(Base‘𝐴) =
(Base‘𝐴) |
| 9 | | eqid 2737 |
. . . 4
⊢
(0g‘𝑅) = (0g‘𝑅) |
| 10 | | scmatrhmval.c |
. . . 4
⊢ 𝐶 = (𝑁 ScMat 𝑅) |
| 11 | 7, 8, 1, 9, 10 | scmatsgrp 22525 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (SubGrp‘𝐴)) |
| 12 | | scmatghm.s |
. . . 4
⊢ 𝑆 = (𝐴 ↾s 𝐶) |
| 13 | 12 | subggrp 19147 |
. . 3
⊢ (𝐶 ∈ (SubGrp‘𝐴) → 𝑆 ∈ Grp) |
| 14 | 11, 13 | syl 17 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ Grp) |
| 15 | | scmatrhmval.o |
. . . 4
⊢ 1 =
(1r‘𝐴) |
| 16 | | scmatrhmval.t |
. . . 4
⊢ ∗ = (
·𝑠 ‘𝐴) |
| 17 | | scmatrhmval.f |
. . . 4
⊢ 𝐹 = (𝑥 ∈ 𝐾 ↦ (𝑥 ∗ 1 )) |
| 18 | 1, 7, 15, 16, 17, 10 | scmatf 22535 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶𝐶) |
| 19 | 7, 10, 12 | scmatstrbas 22532 |
. . . 4
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑆) = 𝐶) |
| 20 | 19 | feq3d 6723 |
. . 3
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝐹:𝐾⟶(Base‘𝑆) ↔ 𝐹:𝐾⟶𝐶)) |
| 21 | 18, 20 | mpbird 257 |
. 2
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹:𝐾⟶(Base‘𝑆)) |
| 22 | 7 | matsca2 22426 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝐴)) |
| 23 | 10 | ovexi 7465 |
. . . . . . . . . 10
⊢ 𝐶 ∈ V |
| 24 | | eqid 2737 |
. . . . . . . . . . 11
⊢
(Scalar‘𝐴) =
(Scalar‘𝐴) |
| 25 | 12, 24 | resssca 17387 |
. . . . . . . . . 10
⊢ (𝐶 ∈ V →
(Scalar‘𝐴) =
(Scalar‘𝑆)) |
| 26 | 23, 25 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Scalar‘𝐴) =
(Scalar‘𝑆)) |
| 27 | 22, 26 | eqtrd 2777 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 = (Scalar‘𝑆)) |
| 28 | 27 | fveq2d 6910 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(+g‘𝑅) =
(+g‘(Scalar‘𝑆))) |
| 29 | 28 | oveqd 7448 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦(+g‘𝑅)𝑧) = (𝑦(+g‘(Scalar‘𝑆))𝑧)) |
| 30 | 29 | oveq1d 7446 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦(+g‘𝑅)𝑧) ∗ 1 ) = ((𝑦(+g‘(Scalar‘𝑆))𝑧) ∗ 1 )) |
| 31 | 30 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦(+g‘𝑅)𝑧) ∗ 1 ) = ((𝑦(+g‘(Scalar‘𝑆))𝑧) ∗ 1 )) |
| 32 | 7 | matlmod 22435 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐴 ∈ LMod) |
| 33 | 7, 10 | scmatlss 22531 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐶 ∈ (LSubSp‘𝐴)) |
| 34 | | eqid 2737 |
. . . . . . . 8
⊢
(LSubSp‘𝐴) =
(LSubSp‘𝐴) |
| 35 | 12, 34 | lsslmod 20958 |
. . . . . . 7
⊢ ((𝐴 ∈ LMod ∧ 𝐶 ∈ (LSubSp‘𝐴)) → 𝑆 ∈ LMod) |
| 36 | 32, 33, 35 | syl2anc 584 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑆 ∈ LMod) |
| 37 | 36 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑆 ∈ LMod) |
| 38 | 27 | fveq2d 6910 |
. . . . . . . . . 10
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(Base‘𝑅) =
(Base‘(Scalar‘𝑆))) |
| 39 | 1, 38 | eqtrid 2789 |
. . . . . . . . 9
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐾 =
(Base‘(Scalar‘𝑆))) |
| 40 | 39 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝐾 ↔ 𝑦 ∈ (Base‘(Scalar‘𝑆)))) |
| 41 | 40 | biimpd 229 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑦 ∈ 𝐾 → 𝑦 ∈ (Base‘(Scalar‘𝑆)))) |
| 42 | 41 | adantrd 491 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → 𝑦 ∈ (Base‘(Scalar‘𝑆)))) |
| 43 | 42 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑦 ∈ (Base‘(Scalar‘𝑆))) |
| 44 | 39 | eleq2d 2827 |
. . . . . . . 8
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧 ∈ 𝐾 ↔ 𝑧 ∈ (Base‘(Scalar‘𝑆)))) |
| 45 | 44 | biimpd 229 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → (𝑧 ∈ 𝐾 → 𝑧 ∈ (Base‘(Scalar‘𝑆)))) |
| 46 | 45 | adantld 490 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → ((𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → 𝑧 ∈ (Base‘(Scalar‘𝑆)))) |
| 47 | 46 | imp 406 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑧 ∈ (Base‘(Scalar‘𝑆))) |
| 48 | 7, 8, 1, 9, 10 | scmatid 22520 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) →
(1r‘𝐴)
∈ 𝐶) |
| 49 | 15 | a1i 11 |
. . . . . . 7
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 =
(1r‘𝐴)) |
| 50 | 48, 49, 19 | 3eltr4d 2856 |
. . . . . 6
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 1 ∈
(Base‘𝑆)) |
| 51 | 50 | adantr 480 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 1 ∈ (Base‘𝑆)) |
| 52 | | eqid 2737 |
. . . . . 6
⊢
(Scalar‘𝑆) =
(Scalar‘𝑆) |
| 53 | 12, 16 | ressvsca 17388 |
. . . . . . 7
⊢ (𝐶 ∈ V → ∗ = (
·𝑠 ‘𝑆)) |
| 54 | 23, 53 | ax-mp 5 |
. . . . . 6
⊢ ∗ = (
·𝑠 ‘𝑆) |
| 55 | | eqid 2737 |
. . . . . 6
⊢
(Base‘(Scalar‘𝑆)) = (Base‘(Scalar‘𝑆)) |
| 56 | | eqid 2737 |
. . . . . 6
⊢
(+g‘(Scalar‘𝑆)) =
(+g‘(Scalar‘𝑆)) |
| 57 | 2, 4, 52, 54, 55, 56 | lmodvsdir 20884 |
. . . . 5
⊢ ((𝑆 ∈ LMod ∧ (𝑦 ∈
(Base‘(Scalar‘𝑆)) ∧ 𝑧 ∈ (Base‘(Scalar‘𝑆)) ∧ 1 ∈ (Base‘𝑆))) → ((𝑦(+g‘(Scalar‘𝑆))𝑧) ∗ 1 ) = ((𝑦 ∗ 1
)(+g‘𝑆)(𝑧 ∗ 1 ))) |
| 58 | 37, 43, 47, 51, 57 | syl13anc 1374 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦(+g‘(Scalar‘𝑆))𝑧) ∗ 1 ) = ((𝑦 ∗ 1
)(+g‘𝑆)(𝑧 ∗ 1 ))) |
| 59 | 31, 58 | eqtrd 2777 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝑦(+g‘𝑅)𝑧) ∗ 1 ) = ((𝑦 ∗ 1
)(+g‘𝑆)(𝑧 ∗ 1 ))) |
| 60 | | simpr 484 |
. . . . 5
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝑅 ∈ Ring) |
| 61 | 60 | adantr 480 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → 𝑅 ∈ Ring) |
| 62 | 60 | anim1i 615 |
. . . . . 6
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾))) |
| 63 | | 3anass 1095 |
. . . . . 6
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) ↔ (𝑅 ∈ Ring ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾))) |
| 64 | 62, 63 | sylibr 234 |
. . . . 5
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) |
| 65 | 1, 3 | ringacl 20275 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐾) |
| 66 | 64, 65 | syl 17 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝑦(+g‘𝑅)𝑧) ∈ 𝐾) |
| 67 | 1, 7, 15, 16, 17 | scmatrhmval 22533 |
. . . 4
⊢ ((𝑅 ∈ Ring ∧ (𝑦(+g‘𝑅)𝑧) ∈ 𝐾) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) ∗ 1 )) |
| 68 | 61, 66, 67 | syl2anc 584 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) = ((𝑦(+g‘𝑅)𝑧) ∗ 1 )) |
| 69 | 1, 7, 15, 16, 17 | scmatrhmval 22533 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑦 ∈ 𝐾) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
| 70 | 69 | ad2ant2lr 748 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑦) = (𝑦 ∗ 1 )) |
| 71 | 1, 7, 15, 16, 17 | scmatrhmval 22533 |
. . . . 5
⊢ ((𝑅 ∈ Ring ∧ 𝑧 ∈ 𝐾) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
| 72 | 71 | ad2ant2l 746 |
. . . 4
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘𝑧) = (𝑧 ∗ 1 )) |
| 73 | 70, 72 | oveq12d 7449 |
. . 3
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → ((𝐹‘𝑦)(+g‘𝑆)(𝐹‘𝑧)) = ((𝑦 ∗ 1
)(+g‘𝑆)(𝑧 ∗ 1 ))) |
| 74 | 59, 68, 73 | 3eqtr4d 2787 |
. 2
⊢ (((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) ∧ (𝑦 ∈ 𝐾 ∧ 𝑧 ∈ 𝐾)) → (𝐹‘(𝑦(+g‘𝑅)𝑧)) = ((𝐹‘𝑦)(+g‘𝑆)(𝐹‘𝑧))) |
| 75 | 1, 2, 3, 4, 6, 14,
21, 74 | isghmd 19243 |
1
⊢ ((𝑁 ∈ Fin ∧ 𝑅 ∈ Ring) → 𝐹 ∈ (𝑅 GrpHom 𝑆)) |