MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Structured version   Visualization version   GIF version

Theorem cnfcom2 9603
Description: Any nonzero ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5 𝑆 = dom (ω CNF 𝐴)
2 cnfcom.a . . . . 5 (𝜑𝐴 ∈ On)
3 cnfcom.b . . . . 5 (𝜑𝐵 ∈ (ω ↑o 𝐴))
4 cnfcom.f . . . . 5 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.g . . . . 5 𝐺 = OrdIso( E , (𝐹 supp ∅))
6 cnfcom.h . . . . 5 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
7 cnfcom.t . . . . 5 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
8 cnfcom.m . . . . 5 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
9 cnfcom.k . . . . 5 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
10 ovex 7388 . . . . . . . . . 10 (𝐹 supp ∅) ∈ V
115oion 9433 . . . . . . . . . 10 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1210, 11ax-mp 5 . . . . . . . . 9 dom 𝐺 ∈ On
1312elexi 3460 . . . . . . . 8 dom 𝐺 ∈ V
1413uniex 7683 . . . . . . 7 dom 𝐺 ∈ V
1514sucid 6398 . . . . . 6 dom 𝐺 ∈ suc dom 𝐺
16 cnfcom.w . . . . . . 7 𝑊 = (𝐺 dom 𝐺)
17 cnfcom2.1 . . . . . . 7 (𝜑 → ∅ ∈ 𝐵)
181, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17cnfcom2lem 9602 . . . . . 6 (𝜑 → dom 𝐺 = suc dom 𝐺)
1915, 18eleqtrrid 2840 . . . . 5 (𝜑 dom 𝐺 ∈ dom 𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 19cnfcom 9601 . . . 4 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2116oveq2i 7366 . . . . . 6 (ω ↑o 𝑊) = (ω ↑o (𝐺 dom 𝐺))
2216fveq2i 6834 . . . . . 6 (𝐹𝑊) = (𝐹‘(𝐺 dom 𝐺))
2321, 22oveq12i 7367 . . . . 5 ((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))
24 f1oeq3 6761 . . . . 5 (((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))) → ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))))
2523, 24ax-mp 5 . . . 4 ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2620, 25sylibr 234 . . 3 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
2718fveq2d 6835 . . . 4 (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺))
2827f1oeq1d 6766 . . 3 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
2926, 28mpbird 257 . 2 (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
30 omelon 9547 . . . . . . 7 ω ∈ On
3130a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
321, 31, 2cantnff1o 9597 . . . . . . . . 9 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
33 f1ocnv 6783 . . . . . . . . 9 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
34 f1of 6771 . . . . . . . . 9 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3532, 33, 343syl 18 . . . . . . . 8 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3635, 3ffvelcdmd 7027 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
374, 36eqeltrid 2837 . . . . . 6 (𝜑𝐹𝑆)
388oveq1i 7365 . . . . . . . . . 10 (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)
3938a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
4039mpoeq3ia 7433 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
41 eqid 2733 . . . . . . . 8 ∅ = ∅
42 seqomeq12 8382 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
4340, 41, 42mp2an 692 . . . . . . 7 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
446, 43eqtri 2756 . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
451, 31, 2, 5, 37, 44cantnfval 9569 . . . . 5 (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺))
464fveq2i 6834 . . . . 5 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
4745, 46eqtr3di 2783 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)))
4818fveq2d 6835 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc dom 𝐺))
49 f1ocnvfv2 7220 . . . . 5 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5032, 3, 49syl2anc 584 . . . 4 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5147, 48, 503eqtr3d 2776 . . 3 (𝜑 → (𝐻‘suc dom 𝐺) = 𝐵)
5251f1oeq2d 6767 . 2 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
5329, 52mpbid 232 1 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1541  wcel 2113  Vcvv 3437  cun 3896  c0 4282   cuni 4860  cmpt 5176   E cep 5520  ccnv 5620  dom cdm 5621  Oncon0 6314  suc csuc 6316  wf 6485  1-1-ontowf1o 6488  cfv 6489  (class class class)co 7355  cmpo 7357  ωcom 7805   supp csupp 8099  seqωcseqom 8375   +o coa 8391   ·o comu 8392  o coe 8393  OrdIsocoi 9406   CNF ccnf 9562
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7677  ax-inf2 9542
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ne 2930  df-ral 3049  df-rex 3058  df-rmo 3347  df-reu 3348  df-rab 3397  df-v 3439  df-sbc 3738  df-csb 3847  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-pss 3918  df-nul 4283  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-int 4900  df-iun 4945  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5516  df-eprel 5521  df-po 5529  df-so 5530  df-fr 5574  df-se 5575  df-we 5576  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-rn 5632  df-res 5633  df-ima 5634  df-pred 6256  df-ord 6317  df-on 6318  df-lim 6319  df-suc 6320  df-iota 6445  df-fun 6491  df-fn 6492  df-f 6493  df-f1 6494  df-fo 6495  df-f1o 6496  df-fv 6497  df-isom 6498  df-riota 7312  df-ov 7358  df-oprab 7359  df-mpo 7360  df-om 7806  df-1st 7930  df-2nd 7931  df-supp 8100  df-frecs 8220  df-wrecs 8251  df-recs 8300  df-rdg 8338  df-seqom 8376  df-1o 8394  df-2o 8395  df-oadd 8398  df-omul 8399  df-oexp 8400  df-er 8631  df-map 8761  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9257  df-oi 9407  df-cnf 9563
This theorem is referenced by:  cnfcom3  9605
  Copyright terms: Public domain W3C validator