Proof of Theorem cnfcom2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | cnfcom.s | . . . . 5
⊢ 𝑆 = dom (ω CNF 𝐴) | 
| 2 |  | cnfcom.a | . . . . 5
⊢ (𝜑 → 𝐴 ∈ On) | 
| 3 |  | cnfcom.b | . . . . 5
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) | 
| 4 |  | cnfcom.f | . . . . 5
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) | 
| 5 |  | cnfcom.g | . . . . 5
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) | 
| 6 |  | cnfcom.h | . . . . 5
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) | 
| 7 |  | cnfcom.t | . . . . 5
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) | 
| 8 |  | cnfcom.m | . . . . 5
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) | 
| 9 |  | cnfcom.k | . . . . 5
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) | 
| 10 |  | ovex 7465 | . . . . . . . . . 10
⊢ (𝐹 supp ∅) ∈
V | 
| 11 | 5 | oion 9577 | . . . . . . . . . 10
⊢ ((𝐹 supp ∅) ∈ V →
dom 𝐺 ∈
On) | 
| 12 | 10, 11 | ax-mp 5 | . . . . . . . . 9
⊢ dom 𝐺 ∈ On | 
| 13 | 12 | elexi 3502 | . . . . . . . 8
⊢ dom 𝐺 ∈ V | 
| 14 | 13 | uniex 7762 | . . . . . . 7
⊢ ∪ dom 𝐺 ∈ V | 
| 15 | 14 | sucid 6465 | . . . . . 6
⊢ ∪ dom 𝐺 ∈ suc ∪ dom
𝐺 | 
| 16 |  | cnfcom.w | . . . . . . 7
⊢ 𝑊 = (𝐺‘∪ dom
𝐺) | 
| 17 |  | cnfcom2.1 | . . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝐵) | 
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 16,
17 | cnfcom2lem 9742 | . . . . . 6
⊢ (𝜑 → dom 𝐺 = suc ∪ dom
𝐺) | 
| 19 | 15, 18 | eleqtrrid 2847 | . . . . 5
⊢ (𝜑 → ∪ dom 𝐺 ∈ dom 𝐺) | 
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | cnfcom 9741 | . . . 4
⊢ (𝜑 → (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺)))) | 
| 21 | 16 | oveq2i 7443 | . . . . . 6
⊢ (ω
↑o 𝑊) =
(ω ↑o (𝐺‘∪ dom
𝐺)) | 
| 22 | 16 | fveq2i 6908 | . . . . . 6
⊢ (𝐹‘𝑊) = (𝐹‘(𝐺‘∪ dom
𝐺)) | 
| 23 | 21, 22 | oveq12i 7444 | . . . . 5
⊢ ((ω
↑o 𝑊)
·o (𝐹‘𝑊)) = ((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))) | 
| 24 |  | f1oeq3 6837 | . . . . 5
⊢
(((ω ↑o 𝑊) ·o (𝐹‘𝑊)) = ((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))) → ((𝑇‘suc ∪ dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))))) | 
| 25 | 23, 24 | ax-mp 5 | . . . 4
⊢ ((𝑇‘suc ∪ dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺)))) | 
| 26 | 20, 25 | sylibr 234 | . . 3
⊢ (𝜑 → (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) | 
| 27 | 18 | fveq2d 6909 | . . . 4
⊢ (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc ∪ dom
𝐺)) | 
| 28 | 27 | f1oeq1d 6842 | . . 3
⊢ (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)))) | 
| 29 | 26, 28 | mpbird 257 | . 2
⊢ (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) | 
| 30 |  | omelon 9687 | . . . . . . 7
⊢ ω
∈ On | 
| 31 | 30 | a1i 11 | . . . . . 6
⊢ (𝜑 → ω ∈
On) | 
| 32 | 1, 31, 2 | cantnff1o 9737 | . . . . . . . . 9
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) | 
| 33 |  | f1ocnv 6859 | . . . . . . . . 9
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) | 
| 34 |  | f1of 6847 | . . . . . . . . 9
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 35 | 32, 33, 34 | 3syl 18 | . . . . . . . 8
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) | 
| 36 | 35, 3 | ffvelcdmd 7104 | . . . . . . 7
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) | 
| 37 | 4, 36 | eqeltrid 2844 | . . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑆) | 
| 38 | 8 | oveq1i 7442 | . . . . . . . . . 10
⊢ (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) | 
| 39 | 38 | a1i 11 | . . . . . . . . 9
⊢ ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) | 
| 40 | 39 | mpoeq3ia 7512 | . . . . . . . 8
⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) | 
| 41 |  | eqid 2736 | . . . . . . . 8
⊢ ∅ =
∅ | 
| 42 |  | seqomeq12 8495 | . . . . . . . 8
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (𝑀 +o
𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) | 
| 43 | 40, 41, 42 | mp2an 692 | . . . . . . 7
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | 
| 44 | 6, 43 | eqtri 2764 | . . . . . 6
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) | 
| 45 | 1, 31, 2, 5, 37, 44 | cantnfval 9709 | . . . . 5
⊢ (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺)) | 
| 46 | 4 | fveq2i 6908 | . . . . 5
⊢ ((ω
CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) | 
| 47 | 45, 46 | eqtr3di 2791 | . . . 4
⊢ (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵))) | 
| 48 | 18 | fveq2d 6909 | . . . 4
⊢ (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc ∪ dom
𝐺)) | 
| 49 |  | f1ocnvfv2 7298 | . . . . 5
⊢
(((ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) | 
| 50 | 32, 3, 49 | syl2anc 584 | . . . 4
⊢ (𝜑 → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) | 
| 51 | 47, 48, 50 | 3eqtr3d 2784 | . . 3
⊢ (𝜑 → (𝐻‘suc ∪ dom
𝐺) = 𝐵) | 
| 52 | 51 | f1oeq2d 6843 | . 2
⊢ (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)))) | 
| 53 | 29, 52 | mpbid 232 | 1
⊢ (𝜑 → (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) |