MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Structured version   Visualization version   GIF version

Theorem cnfcom2 8965
Description: Any nonzero ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5 𝑆 = dom (ω CNF 𝐴)
2 cnfcom.a . . . . 5 (𝜑𝐴 ∈ On)
3 cnfcom.b . . . . 5 (𝜑𝐵 ∈ (ω ↑o 𝐴))
4 cnfcom.f . . . . 5 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.g . . . . 5 𝐺 = OrdIso( E , (𝐹 supp ∅))
6 cnfcom.h . . . . 5 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
7 cnfcom.t . . . . 5 𝑇 = seq𝜔((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
8 cnfcom.m . . . . 5 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
9 cnfcom.k . . . . 5 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
10 ovex 7014 . . . . . . . . . 10 (𝐹 supp ∅) ∈ V
115oion 8801 . . . . . . . . . 10 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1210, 11ax-mp 5 . . . . . . . . 9 dom 𝐺 ∈ On
1312elexi 3436 . . . . . . . 8 dom 𝐺 ∈ V
1413uniex 7289 . . . . . . 7 dom 𝐺 ∈ V
1514sucid 6113 . . . . . 6 dom 𝐺 ∈ suc dom 𝐺
16 cnfcom.w . . . . . . 7 𝑊 = (𝐺 dom 𝐺)
17 cnfcom2.1 . . . . . . 7 (𝜑 → ∅ ∈ 𝐵)
181, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17cnfcom2lem 8964 . . . . . 6 (𝜑 → dom 𝐺 = suc dom 𝐺)
1915, 18syl5eleqr 2875 . . . . 5 (𝜑 dom 𝐺 ∈ dom 𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 19cnfcom 8963 . . . 4 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2116oveq2i 6993 . . . . . 6 (ω ↑o 𝑊) = (ω ↑o (𝐺 dom 𝐺))
2216fveq2i 6507 . . . . . 6 (𝐹𝑊) = (𝐹‘(𝐺 dom 𝐺))
2321, 22oveq12i 6994 . . . . 5 ((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))
24 f1oeq3 6440 . . . . 5 (((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))) → ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))))
2523, 24ax-mp 5 . . . 4 ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2620, 25sylibr 226 . . 3 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
2718fveq2d 6508 . . . 4 (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺))
28 f1oeq1 6438 . . . 4 ((𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺) → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
2927, 28syl 17 . . 3 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
3026, 29mpbird 249 . 2 (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
314fveq2i 6507 . . . . 5 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
32 omelon 8909 . . . . . . 7 ω ∈ On
3332a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
341, 33, 2cantnff1o 8959 . . . . . . . . 9 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
35 f1ocnv 6461 . . . . . . . . 9 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
36 f1of 6449 . . . . . . . . 9 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3734, 35, 363syl 18 . . . . . . . 8 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3837, 3ffvelrnd 6683 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
394, 38syl5eqel 2872 . . . . . 6 (𝜑𝐹𝑆)
408oveq1i 6992 . . . . . . . . . 10 (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)
4140a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
4241mpoeq3ia 7056 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
43 eqid 2780 . . . . . . . 8 ∅ = ∅
44 seqomeq12 7899 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
4542, 43, 44mp2an 680 . . . . . . 7 seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
466, 45eqtri 2804 . . . . . 6 𝐻 = seq𝜔((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
471, 33, 2, 5, 39, 46cantnfval 8931 . . . . 5 (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺))
4831, 47syl5reqr 2831 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)))
4918fveq2d 6508 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc dom 𝐺))
50 f1ocnvfv2 6865 . . . . 5 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5134, 3, 50syl2anc 576 . . . 4 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5248, 49, 513eqtr3d 2824 . . 3 (𝜑 → (𝐻‘suc dom 𝐺) = 𝐵)
5352f1oeq2d 6445 . 2 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
5430, 53mpbid 224 1 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 387   = wceq 1508  wcel 2051  Vcvv 3417  cun 3829  c0 4181   cuni 4717  cmpt 5013   E cep 5320  ccnv 5410  dom cdm 5411  Oncon0 6034  suc csuc 6036  wf 6189  1-1-ontowf1o 6192  cfv 6193  (class class class)co 6982  cmpo 6984  ωcom 7402   supp csupp 7639  seq𝜔cseqom 7892   +o coa 7908   ·o comu 7909  o coe 7910  OrdIsocoi 8774   CNF ccnf 8924
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1759  ax-4 1773  ax-5 1870  ax-6 1929  ax-7 1966  ax-8 2053  ax-9 2060  ax-10 2080  ax-11 2094  ax-12 2107  ax-13 2302  ax-ext 2752  ax-rep 5053  ax-sep 5064  ax-nul 5071  ax-pow 5123  ax-pr 5190  ax-un 7285  ax-inf2 8904
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 835  df-3or 1070  df-3an 1071  df-tru 1511  df-fal 1521  df-ex 1744  df-nf 1748  df-sb 2017  df-mo 2551  df-eu 2589  df-clab 2761  df-cleq 2773  df-clel 2848  df-nfc 2920  df-ne 2970  df-ral 3095  df-rex 3096  df-reu 3097  df-rmo 3098  df-rab 3099  df-v 3419  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4182  df-if 4354  df-pw 4427  df-sn 4445  df-pr 4447  df-tp 4449  df-op 4451  df-uni 4718  df-int 4755  df-iun 4799  df-br 4935  df-opab 4997  df-mpt 5014  df-tr 5036  df-id 5316  df-eprel 5321  df-po 5330  df-so 5331  df-fr 5370  df-se 5371  df-we 5372  df-xp 5417  df-rel 5418  df-cnv 5419  df-co 5420  df-dm 5421  df-rn 5422  df-res 5423  df-ima 5424  df-pred 5991  df-ord 6037  df-on 6038  df-lim 6039  df-suc 6040  df-iota 6157  df-fun 6195  df-fn 6196  df-f 6197  df-f1 6198  df-fo 6199  df-f1o 6200  df-fv 6201  df-isom 6202  df-riota 6943  df-ov 6985  df-oprab 6986  df-mpo 6987  df-om 7403  df-1st 7507  df-2nd 7508  df-supp 7640  df-wrecs 7756  df-recs 7818  df-rdg 7856  df-seqom 7893  df-1o 7911  df-2o 7912  df-oadd 7915  df-omul 7916  df-oexp 7917  df-er 8095  df-map 8214  df-en 8313  df-dom 8314  df-sdom 8315  df-fin 8316  df-fsupp 8635  df-oi 8775  df-cnf 8925
This theorem is referenced by:  cnfcom3  8967
  Copyright terms: Public domain W3C validator