Proof of Theorem cnfcom2
| Step | Hyp | Ref
| Expression |
| 1 | | cnfcom.s |
. . . . 5
⊢ 𝑆 = dom (ω CNF 𝐴) |
| 2 | | cnfcom.a |
. . . . 5
⊢ (𝜑 → 𝐴 ∈ On) |
| 3 | | cnfcom.b |
. . . . 5
⊢ (𝜑 → 𝐵 ∈ (ω ↑o 𝐴)) |
| 4 | | cnfcom.f |
. . . . 5
⊢ 𝐹 = (◡(ω CNF 𝐴)‘𝐵) |
| 5 | | cnfcom.g |
. . . . 5
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| 6 | | cnfcom.h |
. . . . 5
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) |
| 7 | | cnfcom.t |
. . . . 5
⊢ 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅) |
| 8 | | cnfcom.m |
. . . . 5
⊢ 𝑀 = ((ω ↑o
(𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) |
| 9 | | cnfcom.k |
. . . . 5
⊢ 𝐾 = ((𝑥 ∈ 𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ ◡(𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥))) |
| 10 | | ovex 7443 |
. . . . . . . . . 10
⊢ (𝐹 supp ∅) ∈
V |
| 11 | 5 | oion 9555 |
. . . . . . . . . 10
⊢ ((𝐹 supp ∅) ∈ V →
dom 𝐺 ∈
On) |
| 12 | 10, 11 | ax-mp 5 |
. . . . . . . . 9
⊢ dom 𝐺 ∈ On |
| 13 | 12 | elexi 3487 |
. . . . . . . 8
⊢ dom 𝐺 ∈ V |
| 14 | 13 | uniex 7740 |
. . . . . . 7
⊢ ∪ dom 𝐺 ∈ V |
| 15 | 14 | sucid 6441 |
. . . . . 6
⊢ ∪ dom 𝐺 ∈ suc ∪ dom
𝐺 |
| 16 | | cnfcom.w |
. . . . . . 7
⊢ 𝑊 = (𝐺‘∪ dom
𝐺) |
| 17 | | cnfcom2.1 |
. . . . . . 7
⊢ (𝜑 → ∅ ∈ 𝐵) |
| 18 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 16,
17 | cnfcom2lem 9720 |
. . . . . 6
⊢ (𝜑 → dom 𝐺 = suc ∪ dom
𝐺) |
| 19 | 15, 18 | eleqtrrid 2842 |
. . . . 5
⊢ (𝜑 → ∪ dom 𝐺 ∈ dom 𝐺) |
| 20 | 1, 2, 3, 4, 5, 6, 7, 8, 9, 19 | cnfcom 9719 |
. . . 4
⊢ (𝜑 → (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺)))) |
| 21 | 16 | oveq2i 7421 |
. . . . . 6
⊢ (ω
↑o 𝑊) =
(ω ↑o (𝐺‘∪ dom
𝐺)) |
| 22 | 16 | fveq2i 6884 |
. . . . . 6
⊢ (𝐹‘𝑊) = (𝐹‘(𝐺‘∪ dom
𝐺)) |
| 23 | 21, 22 | oveq12i 7422 |
. . . . 5
⊢ ((ω
↑o 𝑊)
·o (𝐹‘𝑊)) = ((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))) |
| 24 | | f1oeq3 6813 |
. . . . 5
⊢
(((ω ↑o 𝑊) ·o (𝐹‘𝑊)) = ((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))) → ((𝑇‘suc ∪ dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺))))) |
| 25 | 23, 24 | ax-mp 5 |
. . . 4
⊢ ((𝑇‘suc ∪ dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o (𝐺‘∪ dom 𝐺)) ·o (𝐹‘(𝐺‘∪ dom
𝐺)))) |
| 26 | 20, 25 | sylibr 234 |
. . 3
⊢ (𝜑 → (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) |
| 27 | 18 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc ∪ dom
𝐺)) |
| 28 | 27 | f1oeq1d 6818 |
. . 3
⊢ (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘suc ∪ dom
𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)))) |
| 29 | 26, 28 | mpbird 257 |
. 2
⊢ (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) |
| 30 | | omelon 9665 |
. . . . . . 7
⊢ ω
∈ On |
| 31 | 30 | a1i 11 |
. . . . . 6
⊢ (𝜑 → ω ∈
On) |
| 32 | 1, 31, 2 | cantnff1o 9715 |
. . . . . . . . 9
⊢ (𝜑 → (ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴)) |
| 33 | | f1ocnv 6835 |
. . . . . . . . 9
⊢ ((ω
CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) → ◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆) |
| 34 | | f1of 6823 |
. . . . . . . . 9
⊢ (◡(ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto→𝑆 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
| 35 | 32, 33, 34 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ◡(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆) |
| 36 | 35, 3 | ffvelcdmd 7080 |
. . . . . . 7
⊢ (𝜑 → (◡(ω CNF 𝐴)‘𝐵) ∈ 𝑆) |
| 37 | 4, 36 | eqeltrid 2839 |
. . . . . 6
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| 38 | 8 | oveq1i 7420 |
. . . . . . . . . 10
⊢ (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧) |
| 39 | 38 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) |
| 40 | 39 | mpoeq3ia 7490 |
. . . . . . . 8
⊢ (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) |
| 41 | | eqid 2736 |
. . . . . . . 8
⊢ ∅ =
∅ |
| 42 | | seqomeq12 8473 |
. . . . . . . 8
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (𝑀 +o
𝑧)), ∅) =
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((ω ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) |
| 43 | 40, 41, 42 | mp2an 692 |
. . . . . . 7
⊢
seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
| 44 | 6, 43 | eqtri 2759 |
. . . . . 6
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω
↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
| 45 | 1, 31, 2, 5, 37, 44 | cantnfval 9687 |
. . . . 5
⊢ (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺)) |
| 46 | 4 | fveq2i 6884 |
. . . . 5
⊢ ((ω
CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) |
| 47 | 45, 46 | eqtr3di 2786 |
. . . 4
⊢ (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵))) |
| 48 | 18 | fveq2d 6885 |
. . . 4
⊢ (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc ∪ dom
𝐺)) |
| 49 | | f1ocnvfv2 7275 |
. . . . 5
⊢
(((ω CNF 𝐴):𝑆–1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) |
| 50 | 32, 3, 49 | syl2anc 584 |
. . . 4
⊢ (𝜑 → ((ω CNF 𝐴)‘(◡(ω CNF 𝐴)‘𝐵)) = 𝐵) |
| 51 | 47, 48, 50 | 3eqtr3d 2779 |
. . 3
⊢ (𝜑 → (𝐻‘suc ∪ dom
𝐺) = 𝐵) |
| 52 | 51 | f1oeq2d 6819 |
. 2
⊢ (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc ∪ dom
𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)) ↔ (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊)))) |
| 53 | 29, 52 | mpbid 232 |
1
⊢ (𝜑 → (𝑇‘dom 𝐺):𝐵–1-1-onto→((ω ↑o 𝑊) ·o (𝐹‘𝑊))) |