MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cnfcom2 Structured version   Visualization version   GIF version

Theorem cnfcom2 9662
Description: Any nonzero ordinal 𝐵 is equinumerous to the leading term of its Cantor normal form. (Contributed by Mario Carneiro, 30-May-2015.) (Revised by AV, 3-Jul-2019.)
Hypotheses
Ref Expression
cnfcom.s 𝑆 = dom (ω CNF 𝐴)
cnfcom.a (𝜑𝐴 ∈ On)
cnfcom.b (𝜑𝐵 ∈ (ω ↑o 𝐴))
cnfcom.f 𝐹 = ((ω CNF 𝐴)‘𝐵)
cnfcom.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cnfcom.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
cnfcom.t 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
cnfcom.m 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
cnfcom.k 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
cnfcom.w 𝑊 = (𝐺 dom 𝐺)
cnfcom2.1 (𝜑 → ∅ ∈ 𝐵)
Assertion
Ref Expression
cnfcom2 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Distinct variable groups:   𝑥,𝑘,𝑧,𝐴   𝑥,𝑀   𝑓,𝑘,𝑥,𝑧,𝐹   𝑧,𝑇   𝑥,𝑊   𝑓,𝐺,𝑘,𝑥,𝑧   𝑓,𝐻,𝑥   𝑆,𝑘,𝑧   𝜑,𝑘,𝑥,𝑧
Allowed substitution hints:   𝜑(𝑓)   𝐴(𝑓)   𝐵(𝑥,𝑧,𝑓,𝑘)   𝑆(𝑥,𝑓)   𝑇(𝑥,𝑓,𝑘)   𝐻(𝑧,𝑘)   𝐾(𝑥,𝑧,𝑓,𝑘)   𝑀(𝑧,𝑓,𝑘)   𝑊(𝑧,𝑓,𝑘)

Proof of Theorem cnfcom2
StepHypRef Expression
1 cnfcom.s . . . . 5 𝑆 = dom (ω CNF 𝐴)
2 cnfcom.a . . . . 5 (𝜑𝐴 ∈ On)
3 cnfcom.b . . . . 5 (𝜑𝐵 ∈ (ω ↑o 𝐴))
4 cnfcom.f . . . . 5 𝐹 = ((ω CNF 𝐴)‘𝐵)
5 cnfcom.g . . . . 5 𝐺 = OrdIso( E , (𝐹 supp ∅))
6 cnfcom.h . . . . 5 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅)
7 cnfcom.t . . . . 5 𝑇 = seqω((𝑘 ∈ V, 𝑓 ∈ V ↦ 𝐾), ∅)
8 cnfcom.m . . . . 5 𝑀 = ((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘)))
9 cnfcom.k . . . . 5 𝐾 = ((𝑥𝑀 ↦ (dom 𝑓 +o 𝑥)) ∪ (𝑥 ∈ dom 𝑓 ↦ (𝑀 +o 𝑥)))
10 ovex 7423 . . . . . . . . . 10 (𝐹 supp ∅) ∈ V
115oion 9496 . . . . . . . . . 10 ((𝐹 supp ∅) ∈ V → dom 𝐺 ∈ On)
1210, 11ax-mp 5 . . . . . . . . 9 dom 𝐺 ∈ On
1312elexi 3473 . . . . . . . 8 dom 𝐺 ∈ V
1413uniex 7720 . . . . . . 7 dom 𝐺 ∈ V
1514sucid 6419 . . . . . 6 dom 𝐺 ∈ suc dom 𝐺
16 cnfcom.w . . . . . . 7 𝑊 = (𝐺 dom 𝐺)
17 cnfcom2.1 . . . . . . 7 (𝜑 → ∅ ∈ 𝐵)
181, 2, 3, 4, 5, 6, 7, 8, 9, 16, 17cnfcom2lem 9661 . . . . . 6 (𝜑 → dom 𝐺 = suc dom 𝐺)
1915, 18eleqtrrid 2836 . . . . 5 (𝜑 dom 𝐺 ∈ dom 𝐺)
201, 2, 3, 4, 5, 6, 7, 8, 9, 19cnfcom 9660 . . . 4 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2116oveq2i 7401 . . . . . 6 (ω ↑o 𝑊) = (ω ↑o (𝐺 dom 𝐺))
2216fveq2i 6864 . . . . . 6 (𝐹𝑊) = (𝐹‘(𝐺 dom 𝐺))
2321, 22oveq12i 7402 . . . . 5 ((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))
24 f1oeq3 6793 . . . . 5 (((ω ↑o 𝑊) ·o (𝐹𝑊)) = ((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))) → ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺)))))
2523, 24ax-mp 5 . . . 4 ((𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o (𝐺 dom 𝐺)) ·o (𝐹‘(𝐺 dom 𝐺))))
2620, 25sylibr 234 . . 3 (𝜑 → (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
2718fveq2d 6865 . . . 4 (𝜑 → (𝑇‘dom 𝐺) = (𝑇‘suc dom 𝐺))
2827f1oeq1d 6798 . . 3 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘suc dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
2926, 28mpbird 257 . 2 (𝜑 → (𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
30 omelon 9606 . . . . . . 7 ω ∈ On
3130a1i 11 . . . . . 6 (𝜑 → ω ∈ On)
321, 31, 2cantnff1o 9656 . . . . . . . . 9 (𝜑 → (ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴))
33 f1ocnv 6815 . . . . . . . . 9 ((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) → (ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆)
34 f1of 6803 . . . . . . . . 9 ((ω CNF 𝐴):(ω ↑o 𝐴)–1-1-onto𝑆(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3532, 33, 343syl 18 . . . . . . . 8 (𝜑(ω CNF 𝐴):(ω ↑o 𝐴)⟶𝑆)
3635, 3ffvelcdmd 7060 . . . . . . 7 (𝜑 → ((ω CNF 𝐴)‘𝐵) ∈ 𝑆)
374, 36eqeltrid 2833 . . . . . 6 (𝜑𝐹𝑆)
388oveq1i 7400 . . . . . . . . . 10 (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)
3938a1i 11 . . . . . . . . 9 ((𝑘 ∈ V ∧ 𝑧 ∈ V) → (𝑀 +o 𝑧) = (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
4039mpoeq3ia 7470 . . . . . . . 8 (𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
41 eqid 2730 . . . . . . . 8 ∅ = ∅
42 seqomeq12 8425 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
4340, 41, 42mp2an 692 . . . . . . 7 seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (𝑀 +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
446, 43eqtri 2753 . . . . . 6 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((ω ↑o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
451, 31, 2, 5, 37, 44cantnfval 9628 . . . . 5 (𝜑 → ((ω CNF 𝐴)‘𝐹) = (𝐻‘dom 𝐺))
464fveq2i 6864 . . . . 5 ((ω CNF 𝐴)‘𝐹) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵))
4745, 46eqtr3di 2780 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)))
4818fveq2d 6865 . . . 4 (𝜑 → (𝐻‘dom 𝐺) = (𝐻‘suc dom 𝐺))
49 f1ocnvfv2 7255 . . . . 5 (((ω CNF 𝐴):𝑆1-1-onto→(ω ↑o 𝐴) ∧ 𝐵 ∈ (ω ↑o 𝐴)) → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5032, 3, 49syl2anc 584 . . . 4 (𝜑 → ((ω CNF 𝐴)‘((ω CNF 𝐴)‘𝐵)) = 𝐵)
5147, 48, 503eqtr3d 2773 . . 3 (𝜑 → (𝐻‘suc dom 𝐺) = 𝐵)
5251f1oeq2d 6799 . 2 (𝜑 → ((𝑇‘dom 𝐺):(𝐻‘suc dom 𝐺)–1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)) ↔ (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊))))
5329, 52mpbid 232 1 (𝜑 → (𝑇‘dom 𝐺):𝐵1-1-onto→((ω ↑o 𝑊) ·o (𝐹𝑊)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  Vcvv 3450  cun 3915  c0 4299   cuni 4874  cmpt 5191   E cep 5540  ccnv 5640  dom cdm 5641  Oncon0 6335  suc csuc 6337  wf 6510  1-1-ontowf1o 6513  cfv 6514  (class class class)co 7390  cmpo 7392  ωcom 7845   supp csupp 8142  seqωcseqom 8418   +o coa 8434   ·o comu 8435  o coe 8436  OrdIsocoi 9469   CNF ccnf 9621
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714  ax-inf2 9601
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-pss 3937  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-tr 5218  df-id 5536  df-eprel 5541  df-po 5549  df-so 5550  df-fr 5594  df-se 5595  df-we 5596  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-pred 6277  df-ord 6338  df-on 6339  df-lim 6340  df-suc 6341  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-isom 6523  df-riota 7347  df-ov 7393  df-oprab 7394  df-mpo 7395  df-om 7846  df-1st 7971  df-2nd 7972  df-supp 8143  df-frecs 8263  df-wrecs 8294  df-recs 8343  df-rdg 8381  df-seqom 8419  df-1o 8437  df-2o 8438  df-oadd 8441  df-omul 8442  df-oexp 8443  df-er 8674  df-map 8804  df-en 8922  df-dom 8923  df-sdom 8924  df-fin 8925  df-fsupp 9320  df-oi 9470  df-cnf 9622
This theorem is referenced by:  cnfcom3  9664
  Copyright terms: Public domain W3C validator