Step | Hyp | Ref
| Expression |
1 | | fveq2 6756 |
. . . . . . 7
⊢ (𝑗 = 𝑐 → (𝑒‘𝑗) = (𝑒‘𝑐)) |
2 | 1 | ineq1d 4142 |
. . . . . 6
⊢ (𝑗 = 𝑐 → ((𝑒‘𝑗) ∩ 𝑘) = ((𝑒‘𝑐) ∩ 𝑘)) |
3 | 2 | eqeq1d 2740 |
. . . . 5
⊢ (𝑗 = 𝑐 → (((𝑒‘𝑗) ∩ 𝑘) = ∅ ↔ ((𝑒‘𝑐) ∩ 𝑘) = ∅)) |
4 | 3, 2 | ifbieq2d 4482 |
. . . 4
⊢ (𝑗 = 𝑐 → if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘)) = if(((𝑒‘𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑐) ∩ 𝑘))) |
5 | | ineq2 4137 |
. . . . . 6
⊢ (𝑘 = 𝑑 → ((𝑒‘𝑐) ∩ 𝑘) = ((𝑒‘𝑐) ∩ 𝑑)) |
6 | 5 | eqeq1d 2740 |
. . . . 5
⊢ (𝑘 = 𝑑 → (((𝑒‘𝑐) ∩ 𝑘) = ∅ ↔ ((𝑒‘𝑐) ∩ 𝑑) = ∅)) |
7 | | id 22 |
. . . . 5
⊢ (𝑘 = 𝑑 → 𝑘 = 𝑑) |
8 | 6, 7, 5 | ifbieq12d 4484 |
. . . 4
⊢ (𝑘 = 𝑑 → if(((𝑒‘𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑐) ∩ 𝑘)) = if(((𝑒‘𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒‘𝑐) ∩ 𝑑))) |
9 | 4, 8 | cbvmpov 7348 |
. . 3
⊢ (𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒‘𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒‘𝑐) ∩ 𝑑))) |
10 | | eqid 2738 |
. . 3
⊢ ∪ ran 𝑒 = ∪ ran 𝑒 |
11 | | seqomeq12 8255 |
. . 3
⊢ (((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒‘𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒‘𝑐) ∩ 𝑑))) ∧ ∪ ran
𝑒 = ∪ ran 𝑒) → seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒‘𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒‘𝑐) ∩ 𝑑))), ∪ ran 𝑒)) |
12 | 9, 10, 11 | mp2an 688 |
. 2
⊢
seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒‘𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒‘𝑐) ∩ 𝑑))), ∪ ran 𝑒) |
13 | | fin23lem33.f |
. 2
⊢ 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔 ↑m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎‘𝑥) → ∩ ran
𝑎 ∈ ran 𝑎)} |
14 | | fveq2 6756 |
. . . 4
⊢ (𝑙 = 𝑦 → (𝑒‘𝑙) = (𝑒‘𝑦)) |
15 | 14 | sseq2d 3949 |
. . 3
⊢ (𝑙 = 𝑦 → (∩ ran
seqω((𝑗
∈ ω, 𝑘 ∈ V
↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙) ↔ ∩ ran
seqω((𝑗
∈ ω, 𝑘 ∈ V
↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑦))) |
16 | 15 | cbvrabv 3416 |
. 2
⊢ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} = {𝑦 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑦)} |
17 | | eqid 2738 |
. 2
⊢ (𝑔 ∈ ω ↦
(℩𝑥 ∈
{𝑙 ∈ ω ∣
∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)}) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (℩𝑥 ∈ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)}) ≈ 𝑔)) |
18 | | eqid 2738 |
. 2
⊢ (𝑔 ∈ ω ↦
(℩𝑥 ∈
(ω ∖ {𝑙 ∈
ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})) ≈ 𝑔)) |
19 | | eqid 2738 |
. 2
⊢ if({𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} ↦ ((𝑒‘𝑖) ∖ ∩ ran
seqω((𝑗
∈ ω, 𝑘 ∈ V
↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (℩𝑥 ∈ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)}) ≈ 𝑔)))) = if({𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (℩𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} ↦ ((𝑒‘𝑖) ∖ ∩ ran
seqω((𝑗
∈ ω, 𝑘 ∈ V
↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (℩𝑥 ∈ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ∩ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒‘𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒‘𝑗) ∩ 𝑘))), ∪ ran 𝑒) ⊆ (𝑒‘𝑙)}) ≈ 𝑔)))) |
20 | 12, 13, 16, 17, 18, 19 | fin23lem32 10031 |
1
⊢ (𝐺 ∈ 𝐹 → ∃𝑓∀𝑏((𝑏:ω–1-1→V ∧ ∪ ran 𝑏 ⊆ 𝐺) → ((𝑓‘𝑏):ω–1-1→V ∧ ∪ ran (𝑓‘𝑏) ⊊ ∪ ran
𝑏))) |