MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem33 Structured version   Visualization version   GIF version

Theorem fin23lem33 10101
Description: Lemma for fin23 10145. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem33 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐺   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑏)

Proof of Theorem fin23lem33
Dummy variables 𝑐 𝑑 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6774 . . . . . . 7 (𝑗 = 𝑐 → (𝑒𝑗) = (𝑒𝑐))
21ineq1d 4145 . . . . . 6 (𝑗 = 𝑐 → ((𝑒𝑗) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑘))
32eqeq1d 2740 . . . . 5 (𝑗 = 𝑐 → (((𝑒𝑗) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑘) = ∅))
43, 2ifbieq2d 4485 . . . 4 (𝑗 = 𝑐 → if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)))
5 ineq2 4140 . . . . . 6 (𝑘 = 𝑑 → ((𝑒𝑐) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑑))
65eqeq1d 2740 . . . . 5 (𝑘 = 𝑑 → (((𝑒𝑐) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑑) = ∅))
7 id 22 . . . . 5 (𝑘 = 𝑑𝑘 = 𝑑)
86, 7, 5ifbieq12d 4487 . . . 4 (𝑘 = 𝑑 → if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
94, 8cbvmpov 7370 . . 3 (𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
10 eqid 2738 . . 3 ran 𝑒 = ran 𝑒
11 seqomeq12 8285 . . 3 (((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))) ∧ ran 𝑒 = ran 𝑒) → seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒))
129, 10, 11mp2an 689 . 2 seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒)
13 fin23lem33.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
14 fveq2 6774 . . . 4 (𝑙 = 𝑦 → (𝑒𝑙) = (𝑒𝑦))
1514sseq2d 3953 . . 3 (𝑙 = 𝑦 → ( ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙) ↔ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)))
1615cbvrabv 3426 . 2 {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} = {𝑦 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)}
17 eqid 2738 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))
18 eqid 2738 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))
19 eqid 2738 . 2 if({𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)))) = if({𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))))
2012, 13, 16, 17, 18, 19fin23lem32 10100 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  wal 1537   = wceq 1539  wex 1782  wcel 2106  {cab 2715  wral 3064  {crab 3068  Vcvv 3432  cdif 3884  cin 3886  wss 3887  wpss 3888  c0 4256  ifcif 4459  𝒫 cpw 4533   cuni 4839   cint 4879   class class class wbr 5074  cmpt 5157  ran crn 5590  ccom 5593  suc csuc 6268  1-1wf1 6430  cfv 6433  crio 7231  (class class class)co 7275  cmpo 7277  ωcom 7712  seqωcseqom 8278  m cmap 8615  cen 8730  Fincfn 8733
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-seqom 8279  df-1o 8297  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-card 9697
This theorem is referenced by:  fin23lem41  10108
  Copyright terms: Public domain W3C validator