MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fin23lem33 Structured version   Visualization version   GIF version

Theorem fin23lem33 9942
Description: Lemma for fin23 9986. Discharge hypotheses. (Contributed by Stefan O'Rear, 2-Nov-2014.)
Hypothesis
Ref Expression
fin23lem33.f 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
Assertion
Ref Expression
fin23lem33 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Distinct variable groups:   𝑎,𝑏,𝑓,𝑔,𝑥,𝐺   𝐹,𝑎
Allowed substitution hints:   𝐹(𝑥,𝑓,𝑔,𝑏)

Proof of Theorem fin23lem33
Dummy variables 𝑐 𝑑 𝑒 𝑖 𝑗 𝑘 𝑙 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fveq2 6706 . . . . . . 7 (𝑗 = 𝑐 → (𝑒𝑗) = (𝑒𝑐))
21ineq1d 4116 . . . . . 6 (𝑗 = 𝑐 → ((𝑒𝑗) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑘))
32eqeq1d 2736 . . . . 5 (𝑗 = 𝑐 → (((𝑒𝑗) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑘) = ∅))
43, 2ifbieq2d 4455 . . . 4 (𝑗 = 𝑐 → if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)))
5 ineq2 4111 . . . . . 6 (𝑘 = 𝑑 → ((𝑒𝑐) ∩ 𝑘) = ((𝑒𝑐) ∩ 𝑑))
65eqeq1d 2736 . . . . 5 (𝑘 = 𝑑 → (((𝑒𝑐) ∩ 𝑘) = ∅ ↔ ((𝑒𝑐) ∩ 𝑑) = ∅))
7 id 22 . . . . 5 (𝑘 = 𝑑𝑘 = 𝑑)
86, 7, 5ifbieq12d 4457 . . . 4 (𝑘 = 𝑑 → if(((𝑒𝑐) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑐) ∩ 𝑘)) = if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
94, 8cbvmpov 7295 . . 3 (𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑)))
10 eqid 2734 . . 3 ran 𝑒 = ran 𝑒
11 seqomeq12 8179 . . 3 (((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))) = (𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))) ∧ ran 𝑒 = ran 𝑒) → seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒))
129, 10, 11mp2an 692 . 2 seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) = seqω((𝑐 ∈ ω, 𝑑 ∈ V ↦ if(((𝑒𝑐) ∩ 𝑑) = ∅, 𝑑, ((𝑒𝑐) ∩ 𝑑))), ran 𝑒)
13 fin23lem33.f . 2 𝐹 = {𝑔 ∣ ∀𝑎 ∈ (𝒫 𝑔m ω)(∀𝑥 ∈ ω (𝑎‘suc 𝑥) ⊆ (𝑎𝑥) → ran 𝑎 ∈ ran 𝑎)}
14 fveq2 6706 . . . 4 (𝑙 = 𝑦 → (𝑒𝑙) = (𝑒𝑦))
1514sseq2d 3923 . . 3 (𝑙 = 𝑦 → ( ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙) ↔ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)))
1615cbvrabv 3395 . 2 {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} = {𝑦 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑦)}
17 eqid 2734 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))
18 eqid 2734 . 2 (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔)) = (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))
19 eqid 2734 . 2 if({𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔)))) = if({𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ∈ Fin, (𝑒 ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})(𝑥 ∩ (ω ∖ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)})) ≈ 𝑔))), ((𝑖 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} ↦ ((𝑒𝑖) ∖ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒))) ∘ (𝑔 ∈ ω ↦ (𝑥 ∈ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)} (𝑥 ∩ {𝑙 ∈ ω ∣ ran seqω((𝑗 ∈ ω, 𝑘 ∈ V ↦ if(((𝑒𝑗) ∩ 𝑘) = ∅, 𝑘, ((𝑒𝑗) ∩ 𝑘))), ran 𝑒) ⊆ (𝑒𝑙)}) ≈ 𝑔))))
2012, 13, 16, 17, 18, 19fin23lem32 9941 1 (𝐺𝐹 → ∃𝑓𝑏((𝑏:ω–1-1→V ∧ ran 𝑏𝐺) → ((𝑓𝑏):ω–1-1→V ∧ ran (𝑓𝑏) ⊊ ran 𝑏)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 399  wal 1541   = wceq 1543  wex 1787  wcel 2110  {cab 2712  wral 3054  {crab 3058  Vcvv 3401  cdif 3854  cin 3856  wss 3857  wpss 3858  c0 4227  ifcif 4429  𝒫 cpw 4503   cuni 4809   cint 4849   class class class wbr 5043  cmpt 5124  ran crn 5541  ccom 5544  suc csuc 6204  1-1wf1 6366  cfv 6369  crio 7158  (class class class)co 7202  cmpo 7204  ωcom 7633  seqωcseqom 8172  m cmap 8497  cen 8612  Fincfn 8615
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2706  ax-rep 5168  ax-sep 5181  ax-nul 5188  ax-pow 5247  ax-pr 5311  ax-un 7512
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2537  df-eu 2566  df-clab 2713  df-cleq 2726  df-clel 2812  df-nfc 2882  df-ne 2936  df-ral 3059  df-rex 3060  df-reu 3061  df-rmo 3062  df-rab 3063  df-v 3403  df-sbc 3688  df-csb 3803  df-dif 3860  df-un 3862  df-in 3864  df-ss 3874  df-pss 3876  df-nul 4228  df-if 4430  df-pw 4505  df-sn 4532  df-pr 4534  df-tp 4536  df-op 4538  df-uni 4810  df-int 4850  df-iun 4896  df-br 5044  df-opab 5106  df-mpt 5125  df-tr 5151  df-id 5444  df-eprel 5449  df-po 5457  df-so 5458  df-fr 5498  df-se 5499  df-we 5500  df-xp 5546  df-rel 5547  df-cnv 5548  df-co 5549  df-dm 5550  df-rn 5551  df-res 5552  df-ima 5553  df-pred 6149  df-ord 6205  df-on 6206  df-lim 6207  df-suc 6208  df-iota 6327  df-fun 6371  df-fn 6372  df-f 6373  df-f1 6374  df-fo 6375  df-f1o 6376  df-fv 6377  df-isom 6378  df-riota 7159  df-ov 7205  df-oprab 7206  df-mpo 7207  df-om 7634  df-1st 7750  df-2nd 7751  df-wrecs 8036  df-recs 8097  df-rdg 8135  df-seqom 8173  df-1o 8191  df-er 8380  df-map 8499  df-en 8616  df-dom 8617  df-sdom 8618  df-fin 8619  df-card 9538
This theorem is referenced by:  fin23lem41  9949
  Copyright terms: Public domain W3C validator