MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval Structured version   Visualization version   GIF version

Theorem cantnfval 9682
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfval (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2735 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 9677 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
54fveq1d 6878 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹))
6 cantnfcl.f . . . 4 (𝜑𝐹𝑆)
7 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
81, 2, 3cantnfdm 9678 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
97, 8eqtrid 2782 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
106, 9eleqtrd 2836 . . 3 (𝜑𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
11 ovex 7438 . . . . . 6 (𝑓 supp ∅) ∈ V
12 eqid 2735 . . . . . . 7 OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝑓 supp ∅))
1312oiexg 9549 . . . . . 6 ((𝑓 supp ∅) ∈ V → OrdIso( E , (𝑓 supp ∅)) ∈ V)
1411, 13mp1i 13 . . . . 5 (𝑓 = 𝐹 → OrdIso( E , (𝑓 supp ∅)) ∈ V)
15 simpr 484 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝑓 supp ∅)))
16 oveq1 7412 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑓 supp ∅) = (𝐹 supp ∅))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓 supp ∅) = (𝐹 supp ∅))
18 oieq2 9527 . . . . . . . . . . . . . . . 16 ((𝑓 supp ∅) = (𝐹 supp ∅) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
2015, 19eqtrd 2770 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝐹 supp ∅)))
21 cantnfcl.g . . . . . . . . . . . . . 14 𝐺 = OrdIso( E , (𝐹 supp ∅))
2220, 21eqtr4di 2788 . . . . . . . . . . . . 13 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = 𝐺)
2322fveq1d 6878 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘) = (𝐺𝑘))
2423oveq2d 7421 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝐴o (𝑘)) = (𝐴o (𝐺𝑘)))
25 simpl 482 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → 𝑓 = 𝐹)
2625, 23fveq12d 6883 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓‘(𝑘)) = (𝐹‘(𝐺𝑘)))
2724, 26oveq12d 7423 . . . . . . . . . 10 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → ((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) = ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))))
2827oveq1d 7420 . . . . . . . . 9 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
2928mpoeq3dv 7486 . . . . . . . 8 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)))
30 eqid 2735 . . . . . . . 8 ∅ = ∅
31 seqomeq12 8468 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
3229, 30, 31sylancl 586 . . . . . . 7 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
33 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
3432, 33eqtr4di 2788 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = 𝐻)
3522dmeqd 5885 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → dom = dom 𝐺)
3634, 35fveq12d 6883 . . . . 5 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
3714, 36csbied 3910 . . . 4 (𝑓 = 𝐹OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
38 eqid 2735 . . . 4 (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
39 fvex 6889 . . . 4 (𝐻‘dom 𝐺) ∈ V
4037, 38, 39fvmpt 6986 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
4110, 40syl 17 . 2 (𝜑 → ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
425, 41eqtrd 2770 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3415  Vcvv 3459  csb 3874  c0 4308   class class class wbr 5119  cmpt 5201   E cep 5552  dom cdm 5654  Oncon0 6352  cfv 6531  (class class class)co 7405  cmpo 7407   supp csupp 8159  seqωcseqom 8461   +o coa 8477   ·o comu 8478  o coe 8479  m cmap 8840   finSupp cfsupp 9373  OrdIsocoi 9523   CNF ccnf 9675
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pr 5402  ax-un 7729
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-op 4608  df-uni 4884  df-iun 4969  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-2nd 7989  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-seqom 8462  df-oi 9524  df-cnf 9676
This theorem is referenced by:  cantnfval2  9683  cantnfle  9685  cantnflt2  9687  cantnff  9688  cantnf0  9689  cantnfp1lem3  9694  cantnflem1  9703  cantnf  9707  cnfcom2  9716
  Copyright terms: Public domain W3C validator