| Step | Hyp | Ref
| Expression |
| 1 | | eqid 2737 |
. . . 4
⊢ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} |
| 2 | | cantnfs.a |
. . . 4
⊢ (𝜑 → 𝐴 ∈ On) |
| 3 | | cantnfs.b |
. . . 4
⊢ (𝜑 → 𝐵 ∈ On) |
| 4 | 1, 2, 3 | cantnffval 9703 |
. . 3
⊢ (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))) |
| 5 | 4 | fveq1d 6908 |
. 2
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))‘𝐹)) |
| 6 | | cantnfcl.f |
. . . 4
⊢ (𝜑 → 𝐹 ∈ 𝑆) |
| 7 | | cantnfs.s |
. . . . 5
⊢ 𝑆 = dom (𝐴 CNF 𝐵) |
| 8 | 1, 2, 3 | cantnfdm 9704 |
. . . . 5
⊢ (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
| 9 | 7, 8 | eqtrid 2789 |
. . . 4
⊢ (𝜑 → 𝑆 = {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
| 10 | 6, 9 | eleqtrd 2843 |
. . 3
⊢ (𝜑 → 𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅}) |
| 11 | | ovex 7464 |
. . . . . 6
⊢ (𝑓 supp ∅) ∈
V |
| 12 | | eqid 2737 |
. . . . . . 7
⊢ OrdIso( E
, (𝑓 supp ∅)) =
OrdIso( E , (𝑓 supp
∅)) |
| 13 | 12 | oiexg 9575 |
. . . . . 6
⊢ ((𝑓 supp ∅) ∈ V →
OrdIso( E , (𝑓 supp
∅)) ∈ V) |
| 14 | 11, 13 | mp1i 13 |
. . . . 5
⊢ (𝑓 = 𝐹 → OrdIso( E , (𝑓 supp ∅)) ∈ V) |
| 15 | | simpr 484 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → ℎ = OrdIso( E , (𝑓 supp ∅))) |
| 16 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑓 = 𝐹 → (𝑓 supp ∅) = (𝐹 supp ∅)) |
| 17 | 16 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (𝑓 supp ∅) = (𝐹 supp ∅)) |
| 18 | | oieq2 9553 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑓 supp ∅) = (𝐹 supp ∅) → OrdIso( E
, (𝑓 supp ∅)) =
OrdIso( E , (𝐹 supp
∅))) |
| 19 | 17, 18 | syl 17 |
. . . . . . . . . . . . . . 15
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E ,
(𝐹 supp
∅))) |
| 20 | 15, 19 | eqtrd 2777 |
. . . . . . . . . . . . . 14
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → ℎ = OrdIso( E , (𝐹 supp ∅))) |
| 21 | | cantnfcl.g |
. . . . . . . . . . . . . 14
⊢ 𝐺 = OrdIso( E , (𝐹 supp ∅)) |
| 22 | 20, 21 | eqtr4di 2795 |
. . . . . . . . . . . . 13
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → ℎ = 𝐺) |
| 23 | 22 | fveq1d 6908 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (ℎ‘𝑘) = (𝐺‘𝑘)) |
| 24 | 23 | oveq2d 7447 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (𝐴 ↑o (ℎ‘𝑘)) = (𝐴 ↑o (𝐺‘𝑘))) |
| 25 | | simpl 482 |
. . . . . . . . . . . 12
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → 𝑓 = 𝐹) |
| 26 | 25, 23 | fveq12d 6913 |
. . . . . . . . . . 11
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (𝑓‘(ℎ‘𝑘)) = (𝐹‘(𝐺‘𝑘))) |
| 27 | 24, 26 | oveq12d 7449 |
. . . . . . . . . 10
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → ((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) = ((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘)))) |
| 28 | 27 | oveq1d 7446 |
. . . . . . . . 9
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧) = (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) |
| 29 | 28 | mpoeq3dv 7512 |
. . . . . . . 8
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧))) |
| 30 | | eqid 2737 |
. . . . . . . 8
⊢ ∅ =
∅ |
| 31 | | seqomeq12 8494 |
. . . . . . . 8
⊢ (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)) ∧ ∅ = ∅) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) |
| 32 | 29, 30, 31 | sylancl 586 |
. . . . . . 7
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅)) |
| 33 | | cantnfval.h |
. . . . . . 7
⊢ 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (𝐺‘𝑘)) ·o (𝐹‘(𝐺‘𝑘))) +o 𝑧)), ∅) |
| 34 | 32, 33 | eqtr4di 2795 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) →
seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅) = 𝐻) |
| 35 | 22 | dmeqd 5916 |
. . . . . 6
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) → dom ℎ = dom 𝐺) |
| 36 | 34, 35 | fveq12d 6913 |
. . . . 5
⊢ ((𝑓 = 𝐹 ∧ ℎ = OrdIso( E , (𝑓 supp ∅))) →
(seqω((𝑘
∈ V, 𝑧 ∈ V
↦ (((𝐴
↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = (𝐻‘dom 𝐺)) |
| 37 | 14, 36 | csbied 3935 |
. . . 4
⊢ (𝑓 = 𝐹 → ⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ) = (𝐻‘dom 𝐺)) |
| 38 | | eqid 2737 |
. . . 4
⊢ (𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) = (𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ)) |
| 39 | | fvex 6919 |
. . . 4
⊢ (𝐻‘dom 𝐺) ∈ V |
| 40 | 37, 38, 39 | fvmpt 7016 |
. . 3
⊢ (𝐹 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} → ((𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))‘𝐹) = (𝐻‘dom 𝐺)) |
| 41 | 10, 40 | syl 17 |
. 2
⊢ (𝜑 → ((𝑓 ∈ {𝑔 ∈ (𝐴 ↑m 𝐵) ∣ 𝑔 finSupp ∅} ↦
⦋OrdIso( E , (𝑓 supp ∅)) / ℎ⦌(seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴 ↑o (ℎ‘𝑘)) ·o (𝑓‘(ℎ‘𝑘))) +o 𝑧)), ∅)‘dom ℎ))‘𝐹) = (𝐻‘dom 𝐺)) |
| 42 | 5, 41 | eqtrd 2777 |
1
⊢ (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺)) |