MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  cantnfval Structured version   Visualization version   GIF version

Theorem cantnfval 9708
Description: The value of the Cantor normal form function. (Contributed by Mario Carneiro, 25-May-2015.) (Revised by AV, 28-Jun-2019.)
Hypotheses
Ref Expression
cantnfs.s 𝑆 = dom (𝐴 CNF 𝐵)
cantnfs.a (𝜑𝐴 ∈ On)
cantnfs.b (𝜑𝐵 ∈ On)
cantnfcl.g 𝐺 = OrdIso( E , (𝐹 supp ∅))
cantnfcl.f (𝜑𝐹𝑆)
cantnfval.h 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
Assertion
Ref Expression
cantnfval (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Distinct variable groups:   𝑧,𝑘,𝐵   𝐴,𝑘,𝑧   𝑘,𝐹,𝑧   𝑆,𝑘,𝑧   𝑘,𝐺,𝑧   𝜑,𝑘,𝑧
Allowed substitution hints:   𝐻(𝑧,𝑘)

Proof of Theorem cantnfval
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 eqid 2737 . . . 4 {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅}
2 cantnfs.a . . . 4 (𝜑𝐴 ∈ On)
3 cantnfs.b . . . 4 (𝜑𝐵 ∈ On)
41, 2, 3cantnffval 9703 . . 3 (𝜑 → (𝐴 CNF 𝐵) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )))
54fveq1d 6908 . 2 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹))
6 cantnfcl.f . . . 4 (𝜑𝐹𝑆)
7 cantnfs.s . . . . 5 𝑆 = dom (𝐴 CNF 𝐵)
81, 2, 3cantnfdm 9704 . . . . 5 (𝜑 → dom (𝐴 CNF 𝐵) = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
97, 8eqtrid 2789 . . . 4 (𝜑𝑆 = {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
106, 9eleqtrd 2843 . . 3 (𝜑𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅})
11 ovex 7464 . . . . . 6 (𝑓 supp ∅) ∈ V
12 eqid 2737 . . . . . . 7 OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝑓 supp ∅))
1312oiexg 9575 . . . . . 6 ((𝑓 supp ∅) ∈ V → OrdIso( E , (𝑓 supp ∅)) ∈ V)
1411, 13mp1i 13 . . . . 5 (𝑓 = 𝐹 → OrdIso( E , (𝑓 supp ∅)) ∈ V)
15 simpr 484 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝑓 supp ∅)))
16 oveq1 7438 . . . . . . . . . . . . . . . . 17 (𝑓 = 𝐹 → (𝑓 supp ∅) = (𝐹 supp ∅))
1716adantr 480 . . . . . . . . . . . . . . . 16 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓 supp ∅) = (𝐹 supp ∅))
18 oieq2 9553 . . . . . . . . . . . . . . . 16 ((𝑓 supp ∅) = (𝐹 supp ∅) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
1917, 18syl 17 . . . . . . . . . . . . . . 15 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → OrdIso( E , (𝑓 supp ∅)) = OrdIso( E , (𝐹 supp ∅)))
2015, 19eqtrd 2777 . . . . . . . . . . . . . 14 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = OrdIso( E , (𝐹 supp ∅)))
21 cantnfcl.g . . . . . . . . . . . . . 14 𝐺 = OrdIso( E , (𝐹 supp ∅))
2220, 21eqtr4di 2795 . . . . . . . . . . . . 13 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → = 𝐺)
2322fveq1d 6908 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘) = (𝐺𝑘))
2423oveq2d 7447 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝐴o (𝑘)) = (𝐴o (𝐺𝑘)))
25 simpl 482 . . . . . . . . . . . 12 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → 𝑓 = 𝐹)
2625, 23fveq12d 6913 . . . . . . . . . . 11 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑓‘(𝑘)) = (𝐹‘(𝐺𝑘)))
2724, 26oveq12d 7449 . . . . . . . . . 10 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → ((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) = ((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))))
2827oveq1d 7446 . . . . . . . . 9 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧) = (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧))
2928mpoeq3dv 7512 . . . . . . . 8 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)))
30 eqid 2737 . . . . . . . 8 ∅ = ∅
31 seqomeq12 8494 . . . . . . . 8 (((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)) = (𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)) ∧ ∅ = ∅) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
3229, 30, 31sylancl 586 . . . . . . 7 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅))
33 cantnfval.h . . . . . . 7 𝐻 = seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝐺𝑘)) ·o (𝐹‘(𝐺𝑘))) +o 𝑧)), ∅)
3432, 33eqtr4di 2795 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅) = 𝐻)
3522dmeqd 5916 . . . . . 6 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → dom = dom 𝐺)
3634, 35fveq12d 6913 . . . . 5 ((𝑓 = 𝐹 = OrdIso( E , (𝑓 supp ∅))) → (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
3714, 36csbied 3935 . . . 4 (𝑓 = 𝐹OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ) = (𝐻‘dom 𝐺))
38 eqid 2737 . . . 4 (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom )) = (𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))
39 fvex 6919 . . . 4 (𝐻‘dom 𝐺) ∈ V
4037, 38, 39fvmpt 7016 . . 3 (𝐹 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} → ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
4110, 40syl 17 . 2 (𝜑 → ((𝑓 ∈ {𝑔 ∈ (𝐴m 𝐵) ∣ 𝑔 finSupp ∅} ↦ OrdIso( E , (𝑓 supp ∅)) / (seqω((𝑘 ∈ V, 𝑧 ∈ V ↦ (((𝐴o (𝑘)) ·o (𝑓‘(𝑘))) +o 𝑧)), ∅)‘dom ))‘𝐹) = (𝐻‘dom 𝐺))
425, 41eqtrd 2777 1 (𝜑 → ((𝐴 CNF 𝐵)‘𝐹) = (𝐻‘dom 𝐺))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {crab 3436  Vcvv 3480  csb 3899  c0 4333   class class class wbr 5143  cmpt 5225   E cep 5583  dom cdm 5685  Oncon0 6384  cfv 6561  (class class class)co 7431  cmpo 7433   supp csupp 8185  seqωcseqom 8487   +o coa 8503   ·o comu 8504  o coe 8505  m cmap 8866   finSupp cfsupp 9401  OrdIsocoi 9549   CNF ccnf 9701
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-rep 5279  ax-sep 5296  ax-nul 5306  ax-pr 5432  ax-un 7755
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-rmo 3380  df-reu 3381  df-rab 3437  df-v 3482  df-sbc 3789  df-csb 3900  df-dif 3954  df-un 3956  df-in 3958  df-ss 3968  df-pss 3971  df-nul 4334  df-if 4526  df-pw 4602  df-sn 4627  df-pr 4629  df-op 4633  df-uni 4908  df-iun 4993  df-br 5144  df-opab 5206  df-mpt 5226  df-tr 5260  df-id 5578  df-eprel 5584  df-po 5592  df-so 5593  df-fr 5637  df-se 5638  df-we 5639  df-xp 5691  df-rel 5692  df-cnv 5693  df-co 5694  df-dm 5695  df-rn 5696  df-res 5697  df-ima 5698  df-pred 6321  df-ord 6387  df-on 6388  df-lim 6389  df-suc 6390  df-iota 6514  df-fun 6563  df-fn 6564  df-f 6565  df-f1 6566  df-fo 6567  df-f1o 6568  df-fv 6569  df-isom 6570  df-riota 7388  df-ov 7434  df-oprab 7435  df-mpo 7436  df-2nd 8015  df-frecs 8306  df-wrecs 8337  df-recs 8411  df-rdg 8450  df-seqom 8488  df-oi 9550  df-cnf 9702
This theorem is referenced by:  cantnfval2  9709  cantnfle  9711  cantnflt2  9713  cantnff  9714  cantnf0  9715  cantnfp1lem3  9720  cantnflem1  9729  cantnf  9733  cnfcom2  9742
  Copyright terms: Public domain W3C validator