MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem4 Structured version   Visualization version   GIF version

Theorem seqomlem4 8498
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem4 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem4
StepHypRef Expression
1 peano2 7917 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
21fvresd 6931 . . . . . 6 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
3 frsuc 8482 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)))
41fvresd 6931 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴))
5 seqomlem.a . . . . . . . . . 10 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
65fveq1i 6912 . . . . . . . . 9 (𝑄‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴)
74, 6eqtr4di 2794 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
8 fvres 6930 . . . . . . . . . 10 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴))
95fveq1i 6912 . . . . . . . . . 10 (𝑄𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴)
108, 9eqtr4di 2794 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (𝑄𝐴))
1110fveq2d 6915 . . . . . . . 8 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
123, 7, 113eqtr3d 2784 . . . . . . 7 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
135seqomlem1 8495 . . . . . . . 8 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
1413fveq2d 6915 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
15 df-ov 7438 . . . . . . . 8 (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
16 fvex 6924 . . . . . . . . . 10 (2nd ‘(𝑄𝐴)) ∈ V
17 suceq 6455 . . . . . . . . . . . 12 (𝑖 = 𝐴 → suc 𝑖 = suc 𝐴)
18 oveq1 7442 . . . . . . . . . . . 12 (𝑖 = 𝐴 → (𝑖𝐹𝑣) = (𝐴𝐹𝑣))
1917, 18opeq12d 4887 . . . . . . . . . . 11 (𝑖 = 𝐴 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹𝑣)⟩)
20 oveq2 7443 . . . . . . . . . . . 12 (𝑣 = (2nd ‘(𝑄𝐴)) → (𝐴𝐹𝑣) = (𝐴𝐹(2nd ‘(𝑄𝐴))))
2120opeq2d 4886 . . . . . . . . . . 11 (𝑣 = (2nd ‘(𝑄𝐴)) → ⟨suc 𝐴, (𝐴𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
22 eqid 2736 . . . . . . . . . . 11 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
23 opex 5476 . . . . . . . . . . 11 ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ ∈ V
2419, 21, 22, 23ovmpo 7597 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (2nd ‘(𝑄𝐴)) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
2516, 24mpan2 691 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
26 fvres 6930 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = (𝑄𝐴))
2726, 13eqtrd 2776 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
28 frfnom 8480 . . . . . . . . . . . . . . . . . 18 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
295reseq1i 5997 . . . . . . . . . . . . . . . . . . 19 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
3029fneq1i 6670 . . . . . . . . . . . . . . . . . 18 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
3128, 30mpbir 231 . . . . . . . . . . . . . . . . 17 (𝑄 ↾ ω) Fn ω
32 fnfvelrn 7104 . . . . . . . . . . . . . . . . 17 (((𝑄 ↾ ω) Fn ω ∧ 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3331, 32mpan 690 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3427, 33eqeltrrd 2841 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ ran (𝑄 ↾ ω))
35 df-ima 5703 . . . . . . . . . . . . . . 15 (𝑄 “ ω) = ran (𝑄 ↾ ω)
3634, 35eleqtrrdi 2851 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
37 df-br 5150 . . . . . . . . . . . . . 14 (𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)) ↔ ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
3836, 37sylibr 234 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)))
395seqomlem2 8496 . . . . . . . . . . . . . 14 (𝑄 “ ω) Fn ω
40 fnbrfvb 6964 . . . . . . . . . . . . . 14 (((𝑄 “ ω) Fn ω ∧ 𝐴 ∈ ω) → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4139, 40mpan 690 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4238, 41mpbird 257 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)))
4342eqcomd 2742 . . . . . . . . . . 11 (𝐴 ∈ ω → (2nd ‘(𝑄𝐴)) = ((𝑄 “ ω)‘𝐴))
4443oveq2d 7451 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴𝐹(2nd ‘(𝑄𝐴))) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
4544opeq2d 4886 . . . . . . . . 9 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4625, 45eqtrd 2776 . . . . . . . 8 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4715, 46eqtr3id 2790 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4812, 14, 473eqtrd 2780 . . . . . 6 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
492, 48eqtrd 2776 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
50 fnfvelrn 7104 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ suc 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5131, 1, 50sylancr 587 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5249, 51eqeltrrd 2841 . . . 4 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ ran (𝑄 ↾ ω))
5352, 35eleqtrrdi 2851 . . 3 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
54 df-br 5150 . . 3 (suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
5553, 54sylibr 234 . 2 (𝐴 ∈ ω → suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)))
56 fnbrfvb 6964 . . 3 (((𝑄 “ ω) Fn ω ∧ suc 𝐴 ∈ ω) → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5739, 1, 56sylancr 587 . 2 (𝐴 ∈ ω → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5855, 57mpbird 257 1 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206   = wceq 1538  wcel 2107  Vcvv 3479  c0 4340  cop 4638   class class class wbr 5149   I cid 5583  ran crn 5691  cres 5692  cima 5693  suc csuc 6391   Fn wfn 6561  cfv 6566  (class class class)co 7435  cmpo 7437  ωcom 7891  2nd c2nd 8018  reccrdg 8454
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1966  ax-7 2006  ax-8 2109  ax-9 2117  ax-10 2140  ax-11 2156  ax-12 2176  ax-ext 2707  ax-sep 5303  ax-nul 5313  ax-pr 5439  ax-un 7758
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1541  df-fal 1551  df-ex 1778  df-nf 1782  df-sb 2064  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2728  df-clel 2815  df-nfc 2891  df-ne 2940  df-ral 3061  df-rex 3070  df-reu 3380  df-rab 3435  df-v 3481  df-sbc 3793  df-csb 3910  df-dif 3967  df-un 3969  df-in 3971  df-ss 3981  df-pss 3984  df-nul 4341  df-if 4533  df-pw 4608  df-sn 4633  df-pr 4635  df-op 4639  df-uni 4914  df-iun 4999  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5584  df-eprel 5590  df-po 5598  df-so 5599  df-fr 5642  df-we 5644  df-xp 5696  df-rel 5697  df-cnv 5698  df-co 5699  df-dm 5700  df-rn 5701  df-res 5702  df-ima 5703  df-pred 6326  df-ord 6392  df-on 6393  df-lim 6394  df-suc 6395  df-iota 6519  df-fun 6568  df-fn 6569  df-f 6570  df-f1 6571  df-fo 6572  df-f1o 6573  df-fv 6574  df-ov 7438  df-oprab 7439  df-mpo 7440  df-om 7892  df-2nd 8020  df-frecs 8311  df-wrecs 8342  df-recs 8416  df-rdg 8455
This theorem is referenced by:  seqomsuc  8502
  Copyright terms: Public domain W3C validator