MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem4 Structured version   Visualization version   GIF version

Theorem seqomlem4 7947
Description: Lemma for seq𝜔. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem4 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem4
StepHypRef Expression
1 peano2 7465 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
21fvresd 6565 . . . . . 6 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
3 frsuc 7931 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)))
41fvresd 6565 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴))
5 seqomlem.a . . . . . . . . . 10 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
65fveq1i 6546 . . . . . . . . 9 (𝑄‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴)
74, 6syl6eqr 2851 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
8 fvres 6564 . . . . . . . . . 10 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴))
95fveq1i 6546 . . . . . . . . . 10 (𝑄𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴)
108, 9syl6eqr 2851 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (𝑄𝐴))
1110fveq2d 6549 . . . . . . . 8 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
123, 7, 113eqtr3d 2841 . . . . . . 7 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
135seqomlem1 7944 . . . . . . . 8 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
1413fveq2d 6549 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
15 df-ov 7026 . . . . . . . 8 (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
16 fvex 6558 . . . . . . . . . 10 (2nd ‘(𝑄𝐴)) ∈ V
17 suceq 6138 . . . . . . . . . . . 12 (𝑖 = 𝐴 → suc 𝑖 = suc 𝐴)
18 oveq1 7030 . . . . . . . . . . . 12 (𝑖 = 𝐴 → (𝑖𝐹𝑣) = (𝐴𝐹𝑣))
1917, 18opeq12d 4724 . . . . . . . . . . 11 (𝑖 = 𝐴 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹𝑣)⟩)
20 oveq2 7031 . . . . . . . . . . . 12 (𝑣 = (2nd ‘(𝑄𝐴)) → (𝐴𝐹𝑣) = (𝐴𝐹(2nd ‘(𝑄𝐴))))
2120opeq2d 4723 . . . . . . . . . . 11 (𝑣 = (2nd ‘(𝑄𝐴)) → ⟨suc 𝐴, (𝐴𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
22 eqid 2797 . . . . . . . . . . 11 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
23 opex 5255 . . . . . . . . . . 11 ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ ∈ V
2419, 21, 22, 23ovmpo 7173 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (2nd ‘(𝑄𝐴)) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
2516, 24mpan2 687 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
26 fvres 6564 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = (𝑄𝐴))
2726, 13eqtrd 2833 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
28 frfnom 7929 . . . . . . . . . . . . . . . . . 18 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
295reseq1i 5737 . . . . . . . . . . . . . . . . . . 19 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
3029fneq1i 6327 . . . . . . . . . . . . . . . . . 18 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
3128, 30mpbir 232 . . . . . . . . . . . . . . . . 17 (𝑄 ↾ ω) Fn ω
32 fnfvelrn 6720 . . . . . . . . . . . . . . . . 17 (((𝑄 ↾ ω) Fn ω ∧ 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3331, 32mpan 686 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3427, 33eqeltrrd 2886 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ ran (𝑄 ↾ ω))
35 df-ima 5463 . . . . . . . . . . . . . . 15 (𝑄 “ ω) = ran (𝑄 ↾ ω)
3634, 35syl6eleqr 2896 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
37 df-br 4969 . . . . . . . . . . . . . 14 (𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)) ↔ ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
3836, 37sylibr 235 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)))
395seqomlem2 7945 . . . . . . . . . . . . . 14 (𝑄 “ ω) Fn ω
40 fnbrfvb 6593 . . . . . . . . . . . . . 14 (((𝑄 “ ω) Fn ω ∧ 𝐴 ∈ ω) → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4139, 40mpan 686 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4238, 41mpbird 258 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)))
4342eqcomd 2803 . . . . . . . . . . 11 (𝐴 ∈ ω → (2nd ‘(𝑄𝐴)) = ((𝑄 “ ω)‘𝐴))
4443oveq2d 7039 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴𝐹(2nd ‘(𝑄𝐴))) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
4544opeq2d 4723 . . . . . . . . 9 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4625, 45eqtrd 2833 . . . . . . . 8 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4715, 46syl5eqr 2847 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4812, 14, 473eqtrd 2837 . . . . . 6 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
492, 48eqtrd 2833 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
50 fnfvelrn 6720 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ suc 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5131, 1, 50sylancr 587 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5249, 51eqeltrrd 2886 . . . 4 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ ran (𝑄 ↾ ω))
5352, 35syl6eleqr 2896 . . 3 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
54 df-br 4969 . . 3 (suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
5553, 54sylibr 235 . 2 (𝐴 ∈ ω → suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)))
56 fnbrfvb 6593 . . 3 (((𝑄 “ ω) Fn ω ∧ suc 𝐴 ∈ ω) → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5739, 1, 56sylancr 587 . 2 (𝐴 ∈ ω → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5855, 57mpbird 258 1 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 207   = wceq 1525  wcel 2083  Vcvv 3440  c0 4217  cop 4484   class class class wbr 4968   I cid 5354  ran crn 5451  cres 5452  cima 5453  suc csuc 6075   Fn wfn 6227  cfv 6232  (class class class)co 7023  cmpo 7025  ωcom 7443  2nd c2nd 7551  reccrdg 7904
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1781  ax-4 1795  ax-5 1892  ax-6 1951  ax-7 1996  ax-8 2085  ax-9 2093  ax-10 2114  ax-11 2128  ax-12 2143  ax-13 2346  ax-ext 2771  ax-sep 5101  ax-nul 5108  ax-pow 5164  ax-pr 5228  ax-un 7326
This theorem depends on definitions:  df-bi 208  df-an 397  df-or 843  df-3or 1081  df-3an 1082  df-tru 1528  df-ex 1766  df-nf 1770  df-sb 2045  df-mo 2578  df-eu 2614  df-clab 2778  df-cleq 2790  df-clel 2865  df-nfc 2937  df-ne 2987  df-ral 3112  df-rex 3113  df-reu 3114  df-rab 3116  df-v 3442  df-sbc 3712  df-csb 3818  df-dif 3868  df-un 3870  df-in 3872  df-ss 3880  df-pss 3882  df-nul 4218  df-if 4388  df-pw 4461  df-sn 4479  df-pr 4481  df-tp 4483  df-op 4485  df-uni 4752  df-iun 4833  df-br 4969  df-opab 5031  df-mpt 5048  df-tr 5071  df-id 5355  df-eprel 5360  df-po 5369  df-so 5370  df-fr 5409  df-we 5411  df-xp 5456  df-rel 5457  df-cnv 5458  df-co 5459  df-dm 5460  df-rn 5461  df-res 5462  df-ima 5463  df-pred 6030  df-ord 6076  df-on 6077  df-lim 6078  df-suc 6079  df-iota 6196  df-fun 6234  df-fn 6235  df-f 6236  df-f1 6237  df-fo 6238  df-f1o 6239  df-fv 6240  df-ov 7026  df-oprab 7027  df-mpo 7028  df-om 7444  df-2nd 7553  df-wrecs 7805  df-recs 7867  df-rdg 7905
This theorem is referenced by:  seqomsuc  7951
  Copyright terms: Public domain W3C validator