MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  seqomlem4 Structured version   Visualization version   GIF version

Theorem seqomlem4 8453
Description: Lemma for seqω. (Contributed by Stefan O'Rear, 1-Nov-2014.) (Revised by Mario Carneiro, 23-Jun-2015.)
Hypothesis
Ref Expression
seqomlem.a 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
Assertion
Ref Expression
seqomlem4 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Distinct variable groups:   𝑄,𝑖,𝑣   𝐴,𝑖,𝑣   𝑖,𝐹,𝑣
Allowed substitution hints:   𝐼(𝑣,𝑖)

Proof of Theorem seqomlem4
StepHypRef Expression
1 peano2 7881 . . . . . . 7 (𝐴 ∈ ω → suc 𝐴 ∈ ω)
21fvresd 6912 . . . . . 6 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
3 frsuc 8437 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)))
41fvresd 6912 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴))
5 seqomlem.a . . . . . . . . . 10 𝑄 = rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)
65fveq1i 6893 . . . . . . . . 9 (𝑄‘suc 𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘suc 𝐴)
74, 6eqtr4di 2791 . . . . . . . 8 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘suc 𝐴) = (𝑄‘suc 𝐴))
8 fvres 6911 . . . . . . . . . 10 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴))
95fveq1i 6893 . . . . . . . . . 10 (𝑄𝐴) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩)‘𝐴)
108, 9eqtr4di 2791 . . . . . . . . 9 (𝐴 ∈ ω → ((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴) = (𝑄𝐴))
1110fveq2d 6896 . . . . . . . 8 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘((rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)‘𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
123, 7, 113eqtr3d 2781 . . . . . . 7 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)))
135seqomlem1 8450 . . . . . . . 8 (𝐴 ∈ ω → (𝑄𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
1413fveq2d 6896 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘(𝑄𝐴)) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩))
15 df-ov 7412 . . . . . . . 8 (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
16 fvex 6905 . . . . . . . . . 10 (2nd ‘(𝑄𝐴)) ∈ V
17 suceq 6431 . . . . . . . . . . . 12 (𝑖 = 𝐴 → suc 𝑖 = suc 𝐴)
18 oveq1 7416 . . . . . . . . . . . 12 (𝑖 = 𝐴 → (𝑖𝐹𝑣) = (𝐴𝐹𝑣))
1917, 18opeq12d 4882 . . . . . . . . . . 11 (𝑖 = 𝐴 → ⟨suc 𝑖, (𝑖𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹𝑣)⟩)
20 oveq2 7417 . . . . . . . . . . . 12 (𝑣 = (2nd ‘(𝑄𝐴)) → (𝐴𝐹𝑣) = (𝐴𝐹(2nd ‘(𝑄𝐴))))
2120opeq2d 4881 . . . . . . . . . . 11 (𝑣 = (2nd ‘(𝑄𝐴)) → ⟨suc 𝐴, (𝐴𝐹𝑣)⟩ = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
22 eqid 2733 . . . . . . . . . . 11 (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩) = (𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)
23 opex 5465 . . . . . . . . . . 11 ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ ∈ V
2419, 21, 22, 23ovmpo 7568 . . . . . . . . . 10 ((𝐴 ∈ ω ∧ (2nd ‘(𝑄𝐴)) ∈ V) → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
2516, 24mpan2 690 . . . . . . . . 9 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩)
26 fvres 6911 . . . . . . . . . . . . . . . . 17 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = (𝑄𝐴))
2726, 13eqtrd 2773 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) = ⟨𝐴, (2nd ‘(𝑄𝐴))⟩)
28 frfnom 8435 . . . . . . . . . . . . . . . . . 18 (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω
295reseq1i 5978 . . . . . . . . . . . . . . . . . . 19 (𝑄 ↾ ω) = (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω)
3029fneq1i 6647 . . . . . . . . . . . . . . . . . 18 ((𝑄 ↾ ω) Fn ω ↔ (rec((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩), ⟨∅, ( I ‘𝐼)⟩) ↾ ω) Fn ω)
3128, 30mpbir 230 . . . . . . . . . . . . . . . . 17 (𝑄 ↾ ω) Fn ω
32 fnfvelrn 7083 . . . . . . . . . . . . . . . . 17 (((𝑄 ↾ ω) Fn ω ∧ 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3331, 32mpan 689 . . . . . . . . . . . . . . . 16 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘𝐴) ∈ ran (𝑄 ↾ ω))
3427, 33eqeltrrd 2835 . . . . . . . . . . . . . . 15 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ ran (𝑄 ↾ ω))
35 df-ima 5690 . . . . . . . . . . . . . . 15 (𝑄 “ ω) = ran (𝑄 ↾ ω)
3634, 35eleqtrrdi 2845 . . . . . . . . . . . . . 14 (𝐴 ∈ ω → ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
37 df-br 5150 . . . . . . . . . . . . . 14 (𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)) ↔ ⟨𝐴, (2nd ‘(𝑄𝐴))⟩ ∈ (𝑄 “ ω))
3836, 37sylibr 233 . . . . . . . . . . . . 13 (𝐴 ∈ ω → 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴)))
395seqomlem2 8451 . . . . . . . . . . . . . 14 (𝑄 “ ω) Fn ω
40 fnbrfvb 6945 . . . . . . . . . . . . . 14 (((𝑄 “ ω) Fn ω ∧ 𝐴 ∈ ω) → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4139, 40mpan 689 . . . . . . . . . . . . 13 (𝐴 ∈ ω → (((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)) ↔ 𝐴(𝑄 “ ω)(2nd ‘(𝑄𝐴))))
4238, 41mpbird 257 . . . . . . . . . . . 12 (𝐴 ∈ ω → ((𝑄 “ ω)‘𝐴) = (2nd ‘(𝑄𝐴)))
4342eqcomd 2739 . . . . . . . . . . 11 (𝐴 ∈ ω → (2nd ‘(𝑄𝐴)) = ((𝑄 “ ω)‘𝐴))
4443oveq2d 7425 . . . . . . . . . 10 (𝐴 ∈ ω → (𝐴𝐹(2nd ‘(𝑄𝐴))) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
4544opeq2d 4881 . . . . . . . . 9 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹(2nd ‘(𝑄𝐴)))⟩ = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4625, 45eqtrd 2773 . . . . . . . 8 (𝐴 ∈ ω → (𝐴(𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)(2nd ‘(𝑄𝐴))) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4715, 46eqtr3id 2787 . . . . . . 7 (𝐴 ∈ ω → ((𝑖 ∈ ω, 𝑣 ∈ V ↦ ⟨suc 𝑖, (𝑖𝐹𝑣)⟩)‘⟨𝐴, (2nd ‘(𝑄𝐴))⟩) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
4812, 14, 473eqtrd 2777 . . . . . 6 (𝐴 ∈ ω → (𝑄‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
492, 48eqtrd 2773 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) = ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩)
50 fnfvelrn 7083 . . . . . 6 (((𝑄 ↾ ω) Fn ω ∧ suc 𝐴 ∈ ω) → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5131, 1, 50sylancr 588 . . . . 5 (𝐴 ∈ ω → ((𝑄 ↾ ω)‘suc 𝐴) ∈ ran (𝑄 ↾ ω))
5249, 51eqeltrrd 2835 . . . 4 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ ran (𝑄 ↾ ω))
5352, 35eleqtrrdi 2845 . . 3 (𝐴 ∈ ω → ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
54 df-br 5150 . . 3 (suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ ⟨suc 𝐴, (𝐴𝐹((𝑄 “ ω)‘𝐴))⟩ ∈ (𝑄 “ ω))
5553, 54sylibr 233 . 2 (𝐴 ∈ ω → suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴)))
56 fnbrfvb 6945 . . 3 (((𝑄 “ ω) Fn ω ∧ suc 𝐴 ∈ ω) → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5739, 1, 56sylancr 588 . 2 (𝐴 ∈ ω → (((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)) ↔ suc 𝐴(𝑄 “ ω)(𝐴𝐹((𝑄 “ ω)‘𝐴))))
5855, 57mpbird 257 1 (𝐴 ∈ ω → ((𝑄 “ ω)‘suc 𝐴) = (𝐴𝐹((𝑄 “ ω)‘𝐴)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205   = wceq 1542  wcel 2107  Vcvv 3475  c0 4323  cop 4635   class class class wbr 5149   I cid 5574  ran crn 5678  cres 5679  cima 5680  suc csuc 6367   Fn wfn 6539  cfv 6544  (class class class)co 7409  cmpo 7411  ωcom 7855  2nd c2nd 7974  reccrdg 8409
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2155  ax-12 2172  ax-ext 2704  ax-sep 5300  ax-nul 5307  ax-pr 5428  ax-un 7725
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 847  df-3or 1089  df-3an 1090  df-tru 1545  df-fal 1555  df-ex 1783  df-nf 1787  df-sb 2069  df-mo 2535  df-eu 2564  df-clab 2711  df-cleq 2725  df-clel 2811  df-nfc 2886  df-ne 2942  df-ral 3063  df-rex 3072  df-reu 3378  df-rab 3434  df-v 3477  df-sbc 3779  df-csb 3895  df-dif 3952  df-un 3954  df-in 3956  df-ss 3966  df-pss 3968  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4910  df-iun 5000  df-br 5150  df-opab 5212  df-mpt 5233  df-tr 5267  df-id 5575  df-eprel 5581  df-po 5589  df-so 5590  df-fr 5632  df-we 5634  df-xp 5683  df-rel 5684  df-cnv 5685  df-co 5686  df-dm 5687  df-rn 5688  df-res 5689  df-ima 5690  df-pred 6301  df-ord 6368  df-on 6369  df-lim 6370  df-suc 6371  df-iota 6496  df-fun 6546  df-fn 6547  df-f 6548  df-f1 6549  df-fo 6550  df-f1o 6551  df-fv 6552  df-ov 7412  df-oprab 7413  df-mpo 7414  df-om 7856  df-2nd 7976  df-frecs 8266  df-wrecs 8297  df-recs 8371  df-rdg 8410
This theorem is referenced by:  seqomsuc  8457
  Copyright terms: Public domain W3C validator