| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setsidel | Structured version Visualization version GIF version | ||
| Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| setsidel | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5437 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | 1 | snid 4636 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 3 | elun2 4156 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 5 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
| 6 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 7 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | setsval 17173 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 10 | 5, 9 | eqtrid 2781 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 11 | 4, 10 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1539 ∈ wcel 2107 Vcvv 3457 ∖ cdif 3921 ∪ cun 3922 {csn 4599 〈cop 4605 ↾ cres 5654 (class class class)co 7400 sSet csts 17169 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5264 ax-nul 5274 ax-pr 5400 ax-un 7724 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ral 3051 df-rex 3060 df-rab 3414 df-v 3459 df-sbc 3764 df-dif 3927 df-un 3929 df-in 3931 df-ss 3941 df-nul 4307 df-if 4499 df-sn 4600 df-pr 4602 df-op 4606 df-uni 4882 df-br 5118 df-opab 5180 df-id 5546 df-xp 5658 df-rel 5659 df-cnv 5660 df-co 5661 df-dm 5662 df-res 5664 df-iota 6481 df-fun 6530 df-fv 6536 df-ov 7403 df-oprab 7404 df-mpo 7405 df-sets 17170 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |