Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsidel Structured version   Visualization version   GIF version

Theorem setsidel 46495
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
setsidel (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)

Proof of Theorem setsidel
StepHypRef Expression
1 opex 5454 . . . 4 𝐴, 𝐵⟩ ∈ V
21snid 4656 . . 3 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩}
3 elun2 4169 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝐴, 𝐵⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
42, 3mp1i 13 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
5 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
6 setsidel.s . . . 4 (𝜑𝑆𝑉)
7 setsidel.b . . . 4 (𝜑𝐵𝑊)
8 setsval 17096 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
96, 7, 8syl2anc 583 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
105, 9eqtrid 2776 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
114, 10eleqtrrd 2828 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1533  wcel 2098  Vcvv 3466  cdif 3937  cun 3938  {csn 4620  cop 4626  cres 5668  (class class class)co 7401   sSet csts 17092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-sep 5289  ax-nul 5296  ax-pr 5417  ax-un 7718
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ral 3054  df-rex 3063  df-rab 3425  df-v 3468  df-sbc 3770  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-nul 4315  df-if 4521  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-br 5139  df-opab 5201  df-id 5564  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-res 5678  df-iota 6485  df-fun 6535  df-fv 6541  df-ov 7404  df-oprab 7405  df-mpo 7406  df-sets 17093
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator