![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > setsidel | Structured version Visualization version GIF version |
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
Ref | Expression |
---|---|
setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
Ref | Expression |
---|---|
setsidel | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | opex 5484 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
2 | 1 | snid 4684 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
3 | elun2 4206 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
4 | 2, 3 | mp1i 13 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
5 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
6 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
7 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
8 | setsval 17214 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
9 | 6, 7, 8 | syl2anc 583 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
10 | 5, 9 | eqtrid 2792 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
11 | 4, 10 | eleqtrrd 2847 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 = wceq 1537 ∈ wcel 2108 Vcvv 3488 ∖ cdif 3973 ∪ cun 3974 {csn 4648 〈cop 4654 ↾ cres 5702 (class class class)co 7448 sSet csts 17210 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-res 5712 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-sets 17211 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |