Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  setsidel Structured version   Visualization version   GIF version

Theorem setsidel 47503
Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.)
Hypotheses
Ref Expression
setsidel.s (𝜑𝑆𝑉)
setsidel.b (𝜑𝐵𝑊)
setsidel.r 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
Assertion
Ref Expression
setsidel (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)

Proof of Theorem setsidel
StepHypRef Expression
1 opex 5409 . . . 4 𝐴, 𝐵⟩ ∈ V
21snid 4616 . . 3 𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩}
3 elun2 4132 . . 3 (⟨𝐴, 𝐵⟩ ∈ {⟨𝐴, 𝐵⟩} → ⟨𝐴, 𝐵⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
42, 3mp1i 13 . 2 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
5 setsidel.r . . 3 𝑅 = (𝑆 sSet ⟨𝐴, 𝐵⟩)
6 setsidel.s . . . 4 (𝜑𝑆𝑉)
7 setsidel.b . . . 4 (𝜑𝐵𝑊)
8 setsval 17082 . . . 4 ((𝑆𝑉𝐵𝑊) → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
96, 7, 8syl2anc 584 . . 3 (𝜑 → (𝑆 sSet ⟨𝐴, 𝐵⟩) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
105, 9eqtrid 2780 . 2 (𝜑𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {⟨𝐴, 𝐵⟩}))
114, 10eleqtrrd 2836 1 (𝜑 → ⟨𝐴, 𝐵⟩ ∈ 𝑅)
Colors of variables: wff setvar class
Syntax hints:  wi 4   = wceq 1541  wcel 2113  Vcvv 3437  cdif 3895  cun 3896  {csn 4577  cop 4583  cres 5623  (class class class)co 7354   sSet csts 17078
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2115  ax-9 2123  ax-10 2146  ax-11 2162  ax-12 2182  ax-ext 2705  ax-sep 5238  ax-nul 5248  ax-pr 5374  ax-un 7676
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2537  df-eu 2566  df-clab 2712  df-cleq 2725  df-clel 2808  df-nfc 2882  df-ral 3049  df-rex 3058  df-rab 3397  df-v 3439  df-sbc 3738  df-dif 3901  df-un 3903  df-in 3905  df-ss 3915  df-nul 4283  df-if 4477  df-sn 4578  df-pr 4580  df-op 4584  df-uni 4861  df-br 5096  df-opab 5158  df-id 5516  df-xp 5627  df-rel 5628  df-cnv 5629  df-co 5630  df-dm 5631  df-res 5633  df-iota 6444  df-fun 6490  df-fv 6496  df-ov 7357  df-oprab 7358  df-mpo 7359  df-sets 17079
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator