| Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > setsidel | Structured version Visualization version GIF version | ||
| Description: The injected slot is an element of the structure with replacement. (Contributed by AV, 10-Nov-2021.) |
| Ref | Expression |
|---|---|
| setsidel.s | ⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| setsidel.b | ⊢ (𝜑 → 𝐵 ∈ 𝑊) |
| setsidel.r | ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) |
| Ref | Expression |
|---|---|
| setsidel | ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | opex 5409 | . . . 4 ⊢ 〈𝐴, 𝐵〉 ∈ V | |
| 2 | 1 | snid 4616 | . . 3 ⊢ 〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} |
| 3 | elun2 4132 | . . 3 ⊢ (〈𝐴, 𝐵〉 ∈ {〈𝐴, 𝐵〉} → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 4 | 2, 3 | mp1i 13 | . 2 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 5 | setsidel.r | . . 3 ⊢ 𝑅 = (𝑆 sSet 〈𝐴, 𝐵〉) | |
| 6 | setsidel.s | . . . 4 ⊢ (𝜑 → 𝑆 ∈ 𝑉) | |
| 7 | setsidel.b | . . . 4 ⊢ (𝜑 → 𝐵 ∈ 𝑊) | |
| 8 | setsval 17082 | . . . 4 ⊢ ((𝑆 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊) → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) | |
| 9 | 6, 7, 8 | syl2anc 584 | . . 3 ⊢ (𝜑 → (𝑆 sSet 〈𝐴, 𝐵〉) = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 10 | 5, 9 | eqtrid 2780 | . 2 ⊢ (𝜑 → 𝑅 = ((𝑆 ↾ (V ∖ {𝐴})) ∪ {〈𝐴, 𝐵〉})) |
| 11 | 4, 10 | eleqtrrd 2836 | 1 ⊢ (𝜑 → 〈𝐴, 𝐵〉 ∈ 𝑅) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 = wceq 1541 ∈ wcel 2113 Vcvv 3437 ∖ cdif 3895 ∪ cun 3896 {csn 4577 〈cop 4583 ↾ cres 5623 (class class class)co 7354 sSet csts 17078 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-sep 5238 ax-nul 5248 ax-pr 5374 ax-un 7676 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ral 3049 df-rex 3058 df-rab 3397 df-v 3439 df-sbc 3738 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-nul 4283 df-if 4477 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-br 5096 df-opab 5158 df-id 5516 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-res 5633 df-iota 6444 df-fun 6490 df-fv 6496 df-ov 7357 df-oprab 7358 df-mpo 7359 df-sets 17079 |
| This theorem is referenced by: (None) |
| Copyright terms: Public domain | W3C validator |