Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummmodsnunz | Structured version Visualization version GIF version |
Description: A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
fsummmodsnunz | ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2908 | . . 3 ⊢ Ⅎ𝑥(𝐵 mod 𝑁) | |
2 | nfcsb1v 3861 | . . 3 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) | |
3 | csbeq1a 3850 | . . 3 ⊢ (𝑘 = 𝑥 → (𝐵 mod 𝑁) = ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁)) | |
4 | 1, 2, 3 | cbvsumi 15390 | . 2 ⊢ Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∪ {𝑧})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) |
5 | snfi 8804 | . . . . 5 ⊢ {𝑧} ∈ Fin | |
6 | unfi 8920 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin) | |
7 | 5, 6 | mpan2 687 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∪ {𝑧}) ∈ Fin) |
8 | 7 | 3ad2ant1 1131 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑧}) ∈ Fin) |
9 | rspcsbela 4374 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
10 | 9 | expcom 413 | . . . . . 6 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑧}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
11 | 10 | 3ad2ant3 1133 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑧}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
12 | 11 | imp 406 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
13 | vex 3434 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
14 | csbov1g 7313 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) |
16 | simpr 484 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
17 | simpl 482 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → 𝑁 ∈ ℕ) | |
18 | 16, 17 | zmodcld 13593 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℕ0) |
19 | 18 | nn0zd 12406 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℤ) |
20 | 15, 19 | eqeltrid 2844 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
21 | 20 | ex 412 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
22 | 21 | 3ad2ant2 1132 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
23 | 22 | adantr 480 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
24 | 12, 23 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
25 | 8, 24 | fsumzcl 15428 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑧})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
26 | 4, 25 | eqeltrid 2844 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1085 = wceq 1541 ∈ wcel 2109 ∀wral 3065 Vcvv 3430 ⦋csb 3836 ∪ cun 3889 {csn 4566 (class class class)co 7268 Fincfn 8707 ℕcn 11956 ℤcz 12302 mod cmo 13570 Σcsu 15378 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1801 ax-4 1815 ax-5 1916 ax-6 1974 ax-7 2014 ax-8 2111 ax-9 2119 ax-10 2140 ax-11 2157 ax-12 2174 ax-ext 2710 ax-rep 5213 ax-sep 5226 ax-nul 5233 ax-pow 5291 ax-pr 5355 ax-un 7579 ax-inf2 9360 ax-cnex 10911 ax-resscn 10912 ax-1cn 10913 ax-icn 10914 ax-addcl 10915 ax-addrcl 10916 ax-mulcl 10917 ax-mulrcl 10918 ax-mulcom 10919 ax-addass 10920 ax-mulass 10921 ax-distr 10922 ax-i2m1 10923 ax-1ne0 10924 ax-1rid 10925 ax-rnegex 10926 ax-rrecex 10927 ax-cnre 10928 ax-pre-lttri 10929 ax-pre-lttrn 10930 ax-pre-ltadd 10931 ax-pre-mulgt0 10932 ax-pre-sup 10933 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1544 df-fal 1554 df-ex 1786 df-nf 1790 df-sb 2071 df-mo 2541 df-eu 2570 df-clab 2717 df-cleq 2731 df-clel 2817 df-nfc 2890 df-ne 2945 df-nel 3051 df-ral 3070 df-rex 3071 df-reu 3072 df-rmo 3073 df-rab 3074 df-v 3432 df-sbc 3720 df-csb 3837 df-dif 3894 df-un 3896 df-in 3898 df-ss 3908 df-pss 3910 df-nul 4262 df-if 4465 df-pw 4540 df-sn 4567 df-pr 4569 df-tp 4571 df-op 4573 df-uni 4845 df-int 4885 df-iun 4931 df-br 5079 df-opab 5141 df-mpt 5162 df-tr 5196 df-id 5488 df-eprel 5494 df-po 5502 df-so 5503 df-fr 5543 df-se 5544 df-we 5545 df-xp 5594 df-rel 5595 df-cnv 5596 df-co 5597 df-dm 5598 df-rn 5599 df-res 5600 df-ima 5601 df-pred 6199 df-ord 6266 df-on 6267 df-lim 6268 df-suc 6269 df-iota 6388 df-fun 6432 df-fn 6433 df-f 6434 df-f1 6435 df-fo 6436 df-f1o 6437 df-fv 6438 df-isom 6439 df-riota 7225 df-ov 7271 df-oprab 7272 df-mpo 7273 df-om 7701 df-1st 7817 df-2nd 7818 df-frecs 8081 df-wrecs 8112 df-recs 8186 df-rdg 8225 df-1o 8281 df-er 8472 df-en 8708 df-dom 8709 df-sdom 8710 df-fin 8711 df-sup 9162 df-inf 9163 df-oi 9230 df-card 9681 df-pnf 10995 df-mnf 10996 df-xr 10997 df-ltxr 10998 df-le 10999 df-sub 11190 df-neg 11191 df-div 11616 df-nn 11957 df-2 12019 df-3 12020 df-n0 12217 df-z 12303 df-uz 12565 df-rp 12713 df-fz 13222 df-fzo 13365 df-fl 13493 df-mod 13571 df-seq 13703 df-exp 13764 df-hash 14026 df-cj 14791 df-re 14792 df-im 14793 df-sqrt 14927 df-abs 14928 df-clim 15178 df-sum 15379 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |