![]() |
Mathbox for Alexander van der Vekens |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > fsummmodsnunz | Structured version Visualization version GIF version |
Description: A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.) |
Ref | Expression |
---|---|
fsummmodsnunz | ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | nfcv 2926 | . . 3 ⊢ Ⅎ𝑥(𝐵 mod 𝑁) | |
2 | nfcsb1v 3800 | . . 3 ⊢ Ⅎ𝑘⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) | |
3 | csbeq1a 3791 | . . 3 ⊢ (𝑘 = 𝑥 → (𝐵 mod 𝑁) = ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁)) | |
4 | 1, 2, 3 | cbvsumi 14904 | . 2 ⊢ Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∪ {𝑧})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) |
5 | snfi 8383 | . . . . 5 ⊢ {𝑧} ∈ Fin | |
6 | unfi 8572 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin) | |
7 | 5, 6 | mpan2 678 | . . . 4 ⊢ (𝐴 ∈ Fin → (𝐴 ∪ {𝑧}) ∈ Fin) |
8 | 7 | 3ad2ant1 1113 | . . 3 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑧}) ∈ Fin) |
9 | rspcsbela 4265 | . . . . . . 7 ⊢ ((𝑥 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
10 | 9 | expcom 406 | . . . . . 6 ⊢ (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑧}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
11 | 10 | 3ad2ant3 1115 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑧}) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ)) |
12 | 11 | imp 398 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) |
13 | vex 3412 | . . . . . . . . 9 ⊢ 𝑥 ∈ V | |
14 | csbov1g 7014 | . . . . . . . . 9 ⊢ (𝑥 ∈ V → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁)) | |
15 | 13, 14 | ax-mp 5 | . . . . . . . 8 ⊢ ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) = (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) |
16 | simpr 477 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) | |
17 | simpl 475 | . . . . . . . . . 10 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → 𝑁 ∈ ℕ) | |
18 | 16, 17 | zmodcld 13068 | . . . . . . . . 9 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℕ0) |
19 | 18 | nn0zd 11891 | . . . . . . . 8 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 mod 𝑁) ∈ ℤ) |
20 | 15, 19 | syl5eqel 2864 | . . . . . . 7 ⊢ ((𝑁 ∈ ℕ ∧ ⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
21 | 20 | ex 405 | . . . . . 6 ⊢ (𝑁 ∈ ℕ → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
22 | 21 | 3ad2ant2 1114 | . . . . 5 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
23 | 22 | adantr 473 | . . . 4 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → (⦋𝑥 / 𝑘⦌𝐵 ∈ ℤ → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ)) |
24 | 12, 23 | mpd 15 | . . 3 ⊢ (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → ⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
25 | 8, 24 | fsumzcl 14942 | . 2 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑧})⦋𝑥 / 𝑘⦌(𝐵 mod 𝑁) ∈ ℤ) |
26 | 4, 25 | syl5eqel 2864 | 1 ⊢ ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 ∧ w3a 1068 = wceq 1507 ∈ wcel 2048 ∀wral 3082 Vcvv 3409 ⦋csb 3782 ∪ cun 3823 {csn 4435 (class class class)co 6970 Fincfn 8298 ℕcn 11431 ℤcz 11786 mod cmo 13045 Σcsu 14893 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-rep 5043 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 ax-inf2 8890 ax-cnex 10383 ax-resscn 10384 ax-1cn 10385 ax-icn 10386 ax-addcl 10387 ax-addrcl 10388 ax-mulcl 10389 ax-mulrcl 10390 ax-mulcom 10391 ax-addass 10392 ax-mulass 10393 ax-distr 10394 ax-i2m1 10395 ax-1ne0 10396 ax-1rid 10397 ax-rnegex 10398 ax-rrecex 10399 ax-cnre 10400 ax-pre-lttri 10401 ax-pre-lttrn 10402 ax-pre-ltadd 10403 ax-pre-mulgt0 10404 ax-pre-sup 10405 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3or 1069 df-3an 1070 df-tru 1510 df-fal 1520 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-nel 3068 df-ral 3087 df-rex 3088 df-reu 3089 df-rmo 3090 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-pss 3841 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-tp 4440 df-op 4442 df-uni 4707 df-int 4744 df-iun 4788 df-br 4924 df-opab 4986 df-mpt 5003 df-tr 5025 df-id 5305 df-eprel 5310 df-po 5319 df-so 5320 df-fr 5359 df-se 5360 df-we 5361 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-rn 5411 df-res 5412 df-ima 5413 df-pred 5980 df-ord 6026 df-on 6027 df-lim 6028 df-suc 6029 df-iota 6146 df-fun 6184 df-fn 6185 df-f 6186 df-f1 6187 df-fo 6188 df-f1o 6189 df-fv 6190 df-isom 6191 df-riota 6931 df-ov 6973 df-oprab 6974 df-mpo 6975 df-om 7391 df-1st 7494 df-2nd 7495 df-wrecs 7743 df-recs 7805 df-rdg 7843 df-1o 7897 df-oadd 7901 df-er 8081 df-en 8299 df-dom 8300 df-sdom 8301 df-fin 8302 df-sup 8693 df-inf 8694 df-oi 8761 df-card 9154 df-pnf 10468 df-mnf 10469 df-xr 10470 df-ltxr 10471 df-le 10472 df-sub 10664 df-neg 10665 df-div 11091 df-nn 11432 df-2 11496 df-3 11497 df-n0 11701 df-z 11787 df-uz 12052 df-rp 12198 df-fz 12702 df-fzo 12843 df-fl 12970 df-mod 13046 df-seq 13178 df-exp 13238 df-hash 13499 df-cj 14309 df-re 14310 df-im 14311 df-sqrt 14445 df-abs 14446 df-clim 14696 df-sum 14894 |
This theorem is referenced by: (None) |
Copyright terms: Public domain | W3C validator |