Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummmodsnunz Structured version   Visualization version   GIF version

Theorem fsummmodsnunz 46528
Description: A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
fsummmodsnunz ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem fsummmodsnunz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2895 . . 3 𝑥(𝐵 mod 𝑁)
2 nfcsb1v 3910 . . 3 𝑘𝑥 / 𝑘(𝐵 mod 𝑁)
3 csbeq1a 3899 . . 3 (𝑘 = 𝑥 → (𝐵 mod 𝑁) = 𝑥 / 𝑘(𝐵 mod 𝑁))
41, 2, 3cbvsumi 15640 . 2 Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∪ {𝑧})𝑥 / 𝑘(𝐵 mod 𝑁)
5 snfi 9040 . . . . 5 {𝑧} ∈ Fin
6 unfi 9168 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin)
75, 6mpan2 688 . . . 4 (𝐴 ∈ Fin → (𝐴 ∪ {𝑧}) ∈ Fin)
873ad2ant1 1130 . . 3 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑧}) ∈ Fin)
9 rspcsbela 4427 . . . . . . 7 ((𝑥 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
109expcom 413 . . . . . 6 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑧}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
11103ad2ant3 1132 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑧}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1211imp 406 . . . 4 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
13 vex 3470 . . . . . . . . 9 𝑥 ∈ V
14 csbov1g 7446 . . . . . . . . 9 (𝑥 ∈ V → 𝑥 / 𝑘(𝐵 mod 𝑁) = (𝑥 / 𝑘𝐵 mod 𝑁))
1513, 14ax-mp 5 . . . . . . . 8 𝑥 / 𝑘(𝐵 mod 𝑁) = (𝑥 / 𝑘𝐵 mod 𝑁)
16 simpr 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
17 simpl 482 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑁 ∈ ℕ)
1816, 17zmodcld 13854 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
1918nn0zd 12581 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 mod 𝑁) ∈ ℤ)
2015, 19eqeltrid 2829 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
2120ex 412 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
22213ad2ant2 1131 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
2322adantr 480 . . . 4 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
2412, 23mpd 15 . . 3 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
258, 24fsumzcl 15678 . 2 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑧})𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
264, 25eqeltrid 2829 1 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1084   = wceq 1533  wcel 2098  wral 3053  Vcvv 3466  csb 3885  cun 3938  {csn 4620  (class class class)co 7401  Fincfn 8935  cn 12209  cz 12555   mod cmo 13831  Σcsu 15629
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2163  ax-ext 2695  ax-rep 5275  ax-sep 5289  ax-nul 5296  ax-pow 5353  ax-pr 5417  ax-un 7718  ax-inf2 9632  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183  ax-pre-sup 11184
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 845  df-3or 1085  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2526  df-eu 2555  df-clab 2702  df-cleq 2716  df-clel 2802  df-nfc 2877  df-ne 2933  df-nel 3039  df-ral 3054  df-rex 3063  df-rmo 3368  df-reu 3369  df-rab 3425  df-v 3468  df-sbc 3770  df-csb 3886  df-dif 3943  df-un 3945  df-in 3947  df-ss 3957  df-pss 3959  df-nul 4315  df-if 4521  df-pw 4596  df-sn 4621  df-pr 4623  df-op 4627  df-uni 4900  df-int 4941  df-iun 4989  df-br 5139  df-opab 5201  df-mpt 5222  df-tr 5256  df-id 5564  df-eprel 5570  df-po 5578  df-so 5579  df-fr 5621  df-se 5622  df-we 5623  df-xp 5672  df-rel 5673  df-cnv 5674  df-co 5675  df-dm 5676  df-rn 5677  df-res 5678  df-ima 5679  df-pred 6290  df-ord 6357  df-on 6358  df-lim 6359  df-suc 6360  df-iota 6485  df-fun 6535  df-fn 6536  df-f 6537  df-f1 6538  df-fo 6539  df-f1o 6540  df-fv 6541  df-isom 6542  df-riota 7357  df-ov 7404  df-oprab 7405  df-mpo 7406  df-om 7849  df-1st 7968  df-2nd 7969  df-frecs 8261  df-wrecs 8292  df-recs 8366  df-rdg 8405  df-1o 8461  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-fin 8939  df-sup 9433  df-inf 9434  df-oi 9501  df-card 9930  df-pnf 11247  df-mnf 11248  df-xr 11249  df-ltxr 11250  df-le 11251  df-sub 11443  df-neg 11444  df-div 11869  df-nn 12210  df-2 12272  df-3 12273  df-n0 12470  df-z 12556  df-uz 12820  df-rp 12972  df-fz 13482  df-fzo 13625  df-fl 13754  df-mod 13832  df-seq 13964  df-exp 14025  df-hash 14288  df-cj 15043  df-re 15044  df-im 15045  df-sqrt 15179  df-abs 15180  df-clim 15429  df-sum 15630
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator