Users' Mathboxes Mathbox for Alexander van der Vekens < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fsummmodsnunz Structured version   Visualization version   GIF version

Theorem fsummmodsnunz 44885
Description: A finite sum of summands modulo a positive number with an additional summand is an integer. (Contributed by Alexander van der Vekens, 1-Sep-2018.)
Assertion
Ref Expression
fsummmodsnunz ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
Distinct variable groups:   𝐴,𝑘   𝑘,𝑁   𝑧,𝑘
Allowed substitution hints:   𝐴(𝑧)   𝐵(𝑧,𝑘)   𝑁(𝑧)

Proof of Theorem fsummmodsnunz
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 nfcv 2905 . . 3 𝑥(𝐵 mod 𝑁)
2 nfcsb1v 3862 . . 3 𝑘𝑥 / 𝑘(𝐵 mod 𝑁)
3 csbeq1a 3851 . . 3 (𝑘 = 𝑥 → (𝐵 mod 𝑁) = 𝑥 / 𝑘(𝐵 mod 𝑁))
41, 2, 3cbvsumi 15454 . 2 Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) = Σ𝑥 ∈ (𝐴 ∪ {𝑧})𝑥 / 𝑘(𝐵 mod 𝑁)
5 snfi 8869 . . . . 5 {𝑧} ∈ Fin
6 unfi 8993 . . . . 5 ((𝐴 ∈ Fin ∧ {𝑧} ∈ Fin) → (𝐴 ∪ {𝑧}) ∈ Fin)
75, 6mpan2 689 . . . 4 (𝐴 ∈ Fin → (𝐴 ∪ {𝑧}) ∈ Fin)
873ad2ant1 1133 . . 3 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝐴 ∪ {𝑧}) ∈ Fin)
9 rspcsbela 4375 . . . . . . 7 ((𝑥 ∈ (𝐴 ∪ {𝑧}) ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
109expcom 415 . . . . . 6 (∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ → (𝑥 ∈ (𝐴 ∪ {𝑧}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
11103ad2ant3 1135 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 ∈ (𝐴 ∪ {𝑧}) → 𝑥 / 𝑘𝐵 ∈ ℤ))
1211imp 408 . . . 4 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → 𝑥 / 𝑘𝐵 ∈ ℤ)
13 vex 3441 . . . . . . . . 9 𝑥 ∈ V
14 csbov1g 7352 . . . . . . . . 9 (𝑥 ∈ V → 𝑥 / 𝑘(𝐵 mod 𝑁) = (𝑥 / 𝑘𝐵 mod 𝑁))
1513, 14ax-mp 5 . . . . . . . 8 𝑥 / 𝑘(𝐵 mod 𝑁) = (𝑥 / 𝑘𝐵 mod 𝑁)
16 simpr 486 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑥 / 𝑘𝐵 ∈ ℤ)
17 simpl 484 . . . . . . . . . 10 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑁 ∈ ℕ)
1816, 17zmodcld 13658 . . . . . . . . 9 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 mod 𝑁) ∈ ℕ0)
1918nn0zd 12470 . . . . . . . 8 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 mod 𝑁) ∈ ℤ)
2015, 19eqeltrid 2841 . . . . . . 7 ((𝑁 ∈ ℕ ∧ 𝑥 / 𝑘𝐵 ∈ ℤ) → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
2120ex 414 . . . . . 6 (𝑁 ∈ ℕ → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
22213ad2ant2 1134 . . . . 5 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
2322adantr 482 . . . 4 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → (𝑥 / 𝑘𝐵 ∈ ℤ → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ))
2412, 23mpd 15 . . 3 (((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) ∧ 𝑥 ∈ (𝐴 ∪ {𝑧})) → 𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
258, 24fsumzcl 15492 . 2 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑥 ∈ (𝐴 ∪ {𝑧})𝑥 / 𝑘(𝐵 mod 𝑁) ∈ ℤ)
264, 25eqeltrid 2841 1 ((𝐴 ∈ Fin ∧ 𝑁 ∈ ℕ ∧ ∀𝑘 ∈ (𝐴 ∪ {𝑧})𝐵 ∈ ℤ) → Σ𝑘 ∈ (𝐴 ∪ {𝑧})(𝐵 mod 𝑁) ∈ ℤ)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 397  w3a 1087   = wceq 1539  wcel 2104  wral 3062  Vcvv 3437  csb 3837  cun 3890  {csn 4565  (class class class)co 7307  Fincfn 8764  cn 12019  cz 12365   mod cmo 13635  Σcsu 15442
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1911  ax-6 1969  ax-7 2009  ax-8 2106  ax-9 2114  ax-10 2135  ax-11 2152  ax-12 2169  ax-ext 2707  ax-rep 5218  ax-sep 5232  ax-nul 5239  ax-pow 5297  ax-pr 5361  ax-un 7620  ax-inf2 9443  ax-cnex 10973  ax-resscn 10974  ax-1cn 10975  ax-icn 10976  ax-addcl 10977  ax-addrcl 10978  ax-mulcl 10979  ax-mulrcl 10980  ax-mulcom 10981  ax-addass 10982  ax-mulass 10983  ax-distr 10984  ax-i2m1 10985  ax-1ne0 10986  ax-1rid 10987  ax-rnegex 10988  ax-rrecex 10989  ax-cnre 10990  ax-pre-lttri 10991  ax-pre-lttrn 10992  ax-pre-ltadd 10993  ax-pre-mulgt0 10994  ax-pre-sup 10995
This theorem depends on definitions:  df-bi 206  df-an 398  df-or 846  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2887  df-ne 2942  df-nel 3048  df-ral 3063  df-rex 3072  df-rmo 3285  df-reu 3286  df-rab 3287  df-v 3439  df-sbc 3722  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4566  df-pr 4568  df-op 4572  df-uni 4845  df-int 4887  df-iun 4933  df-br 5082  df-opab 5144  df-mpt 5165  df-tr 5199  df-id 5500  df-eprel 5506  df-po 5514  df-so 5515  df-fr 5555  df-se 5556  df-we 5557  df-xp 5606  df-rel 5607  df-cnv 5608  df-co 5609  df-dm 5610  df-rn 5611  df-res 5612  df-ima 5613  df-pred 6217  df-ord 6284  df-on 6285  df-lim 6286  df-suc 6287  df-iota 6410  df-fun 6460  df-fn 6461  df-f 6462  df-f1 6463  df-fo 6464  df-f1o 6465  df-fv 6466  df-isom 6467  df-riota 7264  df-ov 7310  df-oprab 7311  df-mpo 7312  df-om 7745  df-1st 7863  df-2nd 7864  df-frecs 8128  df-wrecs 8159  df-recs 8233  df-rdg 8272  df-1o 8328  df-er 8529  df-en 8765  df-dom 8766  df-sdom 8767  df-fin 8768  df-sup 9245  df-inf 9246  df-oi 9313  df-card 9741  df-pnf 11057  df-mnf 11058  df-xr 11059  df-ltxr 11060  df-le 11061  df-sub 11253  df-neg 11254  df-div 11679  df-nn 12020  df-2 12082  df-3 12083  df-n0 12280  df-z 12366  df-uz 12629  df-rp 12777  df-fz 13286  df-fzo 13429  df-fl 13558  df-mod 13636  df-seq 13768  df-exp 13829  df-hash 14091  df-cj 14855  df-re 14856  df-im 14857  df-sqrt 14991  df-abs 14992  df-clim 15242  df-sum 15443
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator