Proof of Theorem cdleme42ke
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | simpl1l 1224 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → 𝐾 ∈ HL) | 
| 2 |  | simpr2 1195 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) | 
| 3 |  | cdleme41.b | . . . . . . . 8
⊢ 𝐵 = (Base‘𝐾) | 
| 4 |  | cdleme41.l | . . . . . . . 8
⊢  ≤ =
(le‘𝐾) | 
| 5 |  | cdleme41.j | . . . . . . . 8
⊢  ∨ =
(join‘𝐾) | 
| 6 |  | cdleme41.m | . . . . . . . 8
⊢  ∧ =
(meet‘𝐾) | 
| 7 |  | cdleme41.a | . . . . . . . 8
⊢ 𝐴 = (Atoms‘𝐾) | 
| 8 |  | cdleme41.h | . . . . . . . 8
⊢ 𝐻 = (LHyp‘𝐾) | 
| 9 |  | cdleme41.u | . . . . . . . 8
⊢ 𝑈 = ((𝑃 ∨ 𝑄) ∧ 𝑊) | 
| 10 |  | cdleme41.d | . . . . . . . 8
⊢ 𝐷 = ((𝑠 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑠) ∧ 𝑊))) | 
| 11 |  | cdleme41.e | . . . . . . . 8
⊢ 𝐸 = ((𝑡 ∨ 𝑈) ∧ (𝑄 ∨ ((𝑃 ∨ 𝑡) ∧ 𝑊))) | 
| 12 |  | cdleme41.g | . . . . . . . 8
⊢ 𝐺 = ((𝑃 ∨ 𝑄) ∧ (𝐸 ∨ ((𝑠 ∨ 𝑡) ∧ 𝑊))) | 
| 13 |  | cdleme41.i | . . . . . . . 8
⊢ 𝐼 = (℩𝑦 ∈ 𝐵 ∀𝑡 ∈ 𝐴 ((¬ 𝑡 ≤ 𝑊 ∧ ¬ 𝑡 ≤ (𝑃 ∨ 𝑄)) → 𝑦 = 𝐺)) | 
| 14 |  | cdleme41.n | . . . . . . . 8
⊢ 𝑁 = if(𝑠 ≤ (𝑃 ∨ 𝑄), 𝐼, 𝐷) | 
| 15 |  | cdleme41.o | . . . . . . . 8
⊢ 𝑂 = (℩𝑧 ∈ 𝐵 ∀𝑠 ∈ 𝐴 ((¬ 𝑠 ≤ 𝑊 ∧ (𝑠 ∨ (𝑥 ∧ 𝑊)) = 𝑥) → 𝑧 = (𝑁 ∨ (𝑥 ∧ 𝑊)))) | 
| 16 |  | cdleme41.f | . . . . . . . 8
⊢ 𝐹 = (𝑥 ∈ 𝐵 ↦ if((𝑃 ≠ 𝑄 ∧ ¬ 𝑥 ≤ 𝑊), 𝑂, 𝑥)) | 
| 17 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16 | cdleme32fvaw 40442 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) | 
| 18 | 2, 17 | syldan 591 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∈ 𝐴 ∧ ¬ (𝐹‘𝑅) ≤ 𝑊)) | 
| 19 | 18 | simpld 494 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝐹‘𝑅) ∈ 𝐴) | 
| 20 | 5, 7 | hlatjidm 39371 | . . . . 5
⊢ ((𝐾 ∈ HL ∧ (𝐹‘𝑅) ∈ 𝐴) → ((𝐹‘𝑅) ∨ (𝐹‘𝑅)) = (𝐹‘𝑅)) | 
| 21 | 1, 19, 20 | syl2anc 584 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∨ (𝐹‘𝑅)) = (𝐹‘𝑅)) | 
| 22 |  | fveq2 6905 | . . . . 5
⊢ (𝑅 = 𝑆 → (𝐹‘𝑅) = (𝐹‘𝑆)) | 
| 23 | 22 | oveq2d 7448 | . . . 4
⊢ (𝑅 = 𝑆 → ((𝐹‘𝑅) ∨ (𝐹‘𝑅)) = ((𝐹‘𝑅) ∨ (𝐹‘𝑆))) | 
| 24 | 21, 23 | sylan9req 2797 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹‘𝑅) = ((𝐹‘𝑅) ∨ (𝐹‘𝑆))) | 
| 25 |  | simpr2l 1232 | . . . . . . . . 9
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → 𝑅 ∈ 𝐴) | 
| 26 | 5, 7 | hlatjidm 39371 | . . . . . . . . 9
⊢ ((𝐾 ∈ HL ∧ 𝑅 ∈ 𝐴) → (𝑅 ∨ 𝑅) = 𝑅) | 
| 27 | 1, 25, 26 | syl2anc 584 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝑅 ∨ 𝑅) = 𝑅) | 
| 28 | 27 | oveq1d 7447 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝑅 ∨ 𝑅) ∧ 𝑊) = (𝑅 ∧ 𝑊)) | 
| 29 |  | simpl1 1191 | . . . . . . . 8
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻)) | 
| 30 |  | eqid 2736 | . . . . . . . . 9
⊢
(0.‘𝐾) =
(0.‘𝐾) | 
| 31 | 4, 6, 30, 7, 8 | lhpmat 40033 | . . . . . . . 8
⊢ (((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊)) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) | 
| 32 | 29, 2, 31 | syl2anc 584 | . . . . . . 7
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝑅 ∧ 𝑊) = (0.‘𝐾)) | 
| 33 | 28, 32 | eqtrd 2776 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝑅 ∨ 𝑅) ∧ 𝑊) = (0.‘𝐾)) | 
| 34 | 33 | oveq2d 7448 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑅) ∧ 𝑊)) = ((𝐹‘𝑅) ∨ (0.‘𝐾))) | 
| 35 |  | hlol 39363 | . . . . . . 7
⊢ (𝐾 ∈ HL → 𝐾 ∈ OL) | 
| 36 | 1, 35 | syl 17 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → 𝐾 ∈ OL) | 
| 37 | 3, 7 | atbase 39291 | . . . . . . 7
⊢ ((𝐹‘𝑅) ∈ 𝐴 → (𝐹‘𝑅) ∈ 𝐵) | 
| 38 | 19, 37 | syl 17 | . . . . . 6
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → (𝐹‘𝑅) ∈ 𝐵) | 
| 39 | 3, 5, 30 | olj01 39227 | . . . . . 6
⊢ ((𝐾 ∈ OL ∧ (𝐹‘𝑅) ∈ 𝐵) → ((𝐹‘𝑅) ∨ (0.‘𝐾)) = (𝐹‘𝑅)) | 
| 40 | 36, 38, 39 | syl2anc 584 | . . . . 5
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∨ (0.‘𝐾)) = (𝐹‘𝑅)) | 
| 41 | 34, 40 | eqtrd 2776 | . . . 4
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑅) ∧ 𝑊)) = (𝐹‘𝑅)) | 
| 42 |  | oveq2 7440 | . . . . . . 7
⊢ (𝑅 = 𝑆 → (𝑅 ∨ 𝑅) = (𝑅 ∨ 𝑆)) | 
| 43 | 42 | oveq1d 7447 | . . . . . 6
⊢ (𝑅 = 𝑆 → ((𝑅 ∨ 𝑅) ∧ 𝑊) = ((𝑅 ∨ 𝑆) ∧ 𝑊)) | 
| 44 |  | cdleme34e.v | . . . . . 6
⊢ 𝑉 = ((𝑅 ∨ 𝑆) ∧ 𝑊) | 
| 45 | 43, 44 | eqtr4di 2794 | . . . . 5
⊢ (𝑅 = 𝑆 → ((𝑅 ∨ 𝑅) ∧ 𝑊) = 𝑉) | 
| 46 | 45 | oveq2d 7448 | . . . 4
⊢ (𝑅 = 𝑆 → ((𝐹‘𝑅) ∨ ((𝑅 ∨ 𝑅) ∧ 𝑊)) = ((𝐹‘𝑅) ∨ 𝑉)) | 
| 47 | 41, 46 | sylan9req 2797 | . . 3
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹‘𝑅) = ((𝐹‘𝑅) ∨ 𝑉)) | 
| 48 | 24, 47 | eqtr3d 2778 | . 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) ∧ 𝑅 = 𝑆) → ((𝐹‘𝑅) ∨ (𝐹‘𝑆)) = ((𝐹‘𝑅) ∨ 𝑉)) | 
| 49 | 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 44 | cdleme42k 40487 | . . 3
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊)) ∧ 𝑅 ≠ 𝑆) → ((𝐹‘𝑅) ∨ (𝐹‘𝑆)) = ((𝐹‘𝑅) ∨ 𝑉)) | 
| 50 | 49 | 3expa 1118 | . 2
⊢
(((((𝐾 ∈ HL
∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) ∧ 𝑅 ≠ 𝑆) → ((𝐹‘𝑅) ∨ (𝐹‘𝑆)) = ((𝐹‘𝑅) ∨ 𝑉)) | 
| 51 | 48, 50 | pm2.61dane 3028 | 1
⊢ ((((𝐾 ∈ HL ∧ 𝑊 ∈ 𝐻) ∧ (𝑃 ∈ 𝐴 ∧ ¬ 𝑃 ≤ 𝑊) ∧ (𝑄 ∈ 𝐴 ∧ ¬ 𝑄 ≤ 𝑊)) ∧ (𝑃 ≠ 𝑄 ∧ (𝑅 ∈ 𝐴 ∧ ¬ 𝑅 ≤ 𝑊) ∧ (𝑆 ∈ 𝐴 ∧ ¬ 𝑆 ≤ 𝑊))) → ((𝐹‘𝑅) ∨ (𝐹‘𝑆)) = ((𝐹‘𝑅) ∨ 𝑉)) |