Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  cdleme42ke Structured version   Visualization version   GIF version

Theorem cdleme42ke 39958
Description: Part of proof of Lemma E in [Crawley] p. 113. Remove 𝑅𝑆 condition. TODO: FIX COMMENT. (Contributed by NM, 2-Apr-2013.)
Hypotheses
Ref Expression
cdleme41.b 𝐵 = (Base‘𝐾)
cdleme41.l = (le‘𝐾)
cdleme41.j = (join‘𝐾)
cdleme41.m = (meet‘𝐾)
cdleme41.a 𝐴 = (Atoms‘𝐾)
cdleme41.h 𝐻 = (LHyp‘𝐾)
cdleme41.u 𝑈 = ((𝑃 𝑄) 𝑊)
cdleme41.d 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
cdleme41.e 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
cdleme41.g 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
cdleme41.i 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
cdleme41.n 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
cdleme41.o 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
cdleme41.f 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
cdleme34e.v 𝑉 = ((𝑅 𝑆) 𝑊)
Assertion
Ref Expression
cdleme42ke ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
Distinct variable groups:   𝐴,𝑠   ,𝑠   ,𝑠   ,𝑠   𝑃,𝑠   𝑄,𝑠   𝑅,𝑠   𝑆,𝑠   𝑈,𝑠   𝑊,𝑠   𝑦,𝑡,𝐴,𝑠   𝐵,𝑠,𝑡,𝑦   𝑦,𝐷   𝑦,𝐺   𝐸,𝑠,𝑦   𝐻,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝐾,𝑠,𝑡,𝑦   𝑡, ,𝑦   𝑡, ,𝑦   𝑡,𝑃,𝑦   𝑡,𝑄,𝑦   𝑡,𝑅,𝑦   𝑡,𝑆,𝑦   𝑡,𝑈,𝑦   𝑡,𝑊,𝑦   𝑥,𝑧,𝐴   𝑥,𝐵,𝑧   𝑧,𝐸,𝑠   𝑧,𝐻   𝑥, ,𝑧   𝑧,𝐾   𝑥, ,𝑧   𝑥, ,𝑧   𝑥,𝑁,𝑧   𝑥,𝑃,𝑧   𝑥,𝑄,𝑧   𝑥,𝑅,𝑧   𝑥,𝑆,𝑧   𝑥,𝑈,𝑧   𝑥,𝑊,𝑧,𝑠,𝑡,𝑦   𝑉,𝑠,𝑡,𝑥,𝑧
Allowed substitution hints:   𝐷(𝑥,𝑧,𝑡,𝑠)   𝐸(𝑥,𝑡)   𝐹(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐺(𝑥,𝑧,𝑡,𝑠)   𝐻(𝑥)   𝐼(𝑥,𝑦,𝑧,𝑡,𝑠)   𝐾(𝑥)   𝑁(𝑦,𝑡,𝑠)   𝑂(𝑥,𝑦,𝑧,𝑡,𝑠)   𝑉(𝑦)

Proof of Theorem cdleme42ke
StepHypRef Expression
1 simpl1l 1222 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝐾 ∈ HL)
2 simpr2 1193 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅𝐴 ∧ ¬ 𝑅 𝑊))
3 cdleme41.b . . . . . . . 8 𝐵 = (Base‘𝐾)
4 cdleme41.l . . . . . . . 8 = (le‘𝐾)
5 cdleme41.j . . . . . . . 8 = (join‘𝐾)
6 cdleme41.m . . . . . . . 8 = (meet‘𝐾)
7 cdleme41.a . . . . . . . 8 𝐴 = (Atoms‘𝐾)
8 cdleme41.h . . . . . . . 8 𝐻 = (LHyp‘𝐾)
9 cdleme41.u . . . . . . . 8 𝑈 = ((𝑃 𝑄) 𝑊)
10 cdleme41.d . . . . . . . 8 𝐷 = ((𝑠 𝑈) (𝑄 ((𝑃 𝑠) 𝑊)))
11 cdleme41.e . . . . . . . 8 𝐸 = ((𝑡 𝑈) (𝑄 ((𝑃 𝑡) 𝑊)))
12 cdleme41.g . . . . . . . 8 𝐺 = ((𝑃 𝑄) (𝐸 ((𝑠 𝑡) 𝑊)))
13 cdleme41.i . . . . . . . 8 𝐼 = (𝑦𝐵𝑡𝐴 ((¬ 𝑡 𝑊 ∧ ¬ 𝑡 (𝑃 𝑄)) → 𝑦 = 𝐺))
14 cdleme41.n . . . . . . . 8 𝑁 = if(𝑠 (𝑃 𝑄), 𝐼, 𝐷)
15 cdleme41.o . . . . . . . 8 𝑂 = (𝑧𝐵𝑠𝐴 ((¬ 𝑠 𝑊 ∧ (𝑠 (𝑥 𝑊)) = 𝑥) → 𝑧 = (𝑁 (𝑥 𝑊))))
16 cdleme41.f . . . . . . . 8 𝐹 = (𝑥𝐵 ↦ if((𝑃𝑄 ∧ ¬ 𝑥 𝑊), 𝑂, 𝑥))
173, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16cdleme32fvaw 39912 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
182, 17syldan 590 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ∈ 𝐴 ∧ ¬ (𝐹𝑅) 𝑊))
1918simpld 494 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐹𝑅) ∈ 𝐴)
205, 7hlatjidm 38841 . . . . 5 ((𝐾 ∈ HL ∧ (𝐹𝑅) ∈ 𝐴) → ((𝐹𝑅) (𝐹𝑅)) = (𝐹𝑅))
211, 19, 20syl2anc 583 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑅)) = (𝐹𝑅))
22 fveq2 6897 . . . . 5 (𝑅 = 𝑆 → (𝐹𝑅) = (𝐹𝑆))
2322oveq2d 7436 . . . 4 (𝑅 = 𝑆 → ((𝐹𝑅) (𝐹𝑅)) = ((𝐹𝑅) (𝐹𝑆)))
2421, 23sylan9req 2789 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹𝑅) = ((𝐹𝑅) (𝐹𝑆)))
25 simpr2l 1230 . . . . . . . . 9 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝑅𝐴)
265, 7hlatjidm 38841 . . . . . . . . 9 ((𝐾 ∈ HL ∧ 𝑅𝐴) → (𝑅 𝑅) = 𝑅)
271, 25, 26syl2anc 583 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅 𝑅) = 𝑅)
2827oveq1d 7435 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝑅 𝑅) 𝑊) = (𝑅 𝑊))
29 simpl1 1189 . . . . . . . 8 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐾 ∈ HL ∧ 𝑊𝐻))
30 eqid 2728 . . . . . . . . 9 (0.‘𝐾) = (0.‘𝐾)
314, 6, 30, 7, 8lhpmat 39503 . . . . . . . 8 (((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊)) → (𝑅 𝑊) = (0.‘𝐾))
3229, 2, 31syl2anc 583 . . . . . . 7 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝑅 𝑊) = (0.‘𝐾))
3328, 32eqtrd 2768 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝑅 𝑅) 𝑊) = (0.‘𝐾))
3433oveq2d 7436 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = ((𝐹𝑅) (0.‘𝐾)))
35 hlol 38833 . . . . . . 7 (𝐾 ∈ HL → 𝐾 ∈ OL)
361, 35syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → 𝐾 ∈ OL)
373, 7atbase 38761 . . . . . . 7 ((𝐹𝑅) ∈ 𝐴 → (𝐹𝑅) ∈ 𝐵)
3819, 37syl 17 . . . . . 6 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → (𝐹𝑅) ∈ 𝐵)
393, 5, 30olj01 38697 . . . . . 6 ((𝐾 ∈ OL ∧ (𝐹𝑅) ∈ 𝐵) → ((𝐹𝑅) (0.‘𝐾)) = (𝐹𝑅))
4036, 38, 39syl2anc 583 . . . . 5 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (0.‘𝐾)) = (𝐹𝑅))
4134, 40eqtrd 2768 . . . 4 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = (𝐹𝑅))
42 oveq2 7428 . . . . . . 7 (𝑅 = 𝑆 → (𝑅 𝑅) = (𝑅 𝑆))
4342oveq1d 7435 . . . . . 6 (𝑅 = 𝑆 → ((𝑅 𝑅) 𝑊) = ((𝑅 𝑆) 𝑊))
44 cdleme34e.v . . . . . 6 𝑉 = ((𝑅 𝑆) 𝑊)
4543, 44eqtr4di 2786 . . . . 5 (𝑅 = 𝑆 → ((𝑅 𝑅) 𝑊) = 𝑉)
4645oveq2d 7436 . . . 4 (𝑅 = 𝑆 → ((𝐹𝑅) ((𝑅 𝑅) 𝑊)) = ((𝐹𝑅) 𝑉))
4741, 46sylan9req 2789 . . 3 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → (𝐹𝑅) = ((𝐹𝑅) 𝑉))
4824, 47eqtr3d 2770 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅 = 𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
493, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 44cdleme42k 39957 . . 3 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊)) ∧ 𝑅𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
50493expa 1116 . 2 (((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) ∧ 𝑅𝑆) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
5148, 50pm2.61dane 3026 1 ((((𝐾 ∈ HL ∧ 𝑊𝐻) ∧ (𝑃𝐴 ∧ ¬ 𝑃 𝑊) ∧ (𝑄𝐴 ∧ ¬ 𝑄 𝑊)) ∧ (𝑃𝑄 ∧ (𝑅𝐴 ∧ ¬ 𝑅 𝑊) ∧ (𝑆𝐴 ∧ ¬ 𝑆 𝑊))) → ((𝐹𝑅) (𝐹𝑆)) = ((𝐹𝑅) 𝑉))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 395  w3a 1085   = wceq 1534  wcel 2099  wne 2937  wral 3058  ifcif 4529   class class class wbr 5148  cmpt 5231  cfv 6548  crio 7375  (class class class)co 7420  Basecbs 17180  lecple 17240  joincjn 18303  meetcmee 18304  0.cp0 18415  OLcol 38646  Atomscatm 38735  HLchlt 38822  LHypclh 39457
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1790  ax-4 1804  ax-5 1906  ax-6 1964  ax-7 2004  ax-8 2101  ax-9 2109  ax-10 2130  ax-11 2147  ax-12 2167  ax-ext 2699  ax-rep 5285  ax-sep 5299  ax-nul 5306  ax-pow 5365  ax-pr 5429  ax-un 7740  ax-riotaBAD 38425
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 847  df-3or 1086  df-3an 1087  df-tru 1537  df-fal 1547  df-ex 1775  df-nf 1779  df-sb 2061  df-mo 2530  df-eu 2559  df-clab 2706  df-cleq 2720  df-clel 2806  df-nfc 2881  df-ne 2938  df-ral 3059  df-rex 3068  df-rmo 3373  df-reu 3374  df-rab 3430  df-v 3473  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4324  df-if 4530  df-pw 4605  df-sn 4630  df-pr 4632  df-op 4636  df-uni 4909  df-iun 4998  df-iin 4999  df-br 5149  df-opab 5211  df-mpt 5232  df-id 5576  df-xp 5684  df-rel 5685  df-cnv 5686  df-co 5687  df-dm 5688  df-rn 5689  df-res 5690  df-ima 5691  df-iota 6500  df-fun 6550  df-fn 6551  df-f 6552  df-f1 6553  df-fo 6554  df-f1o 6555  df-fv 6556  df-riota 7376  df-ov 7423  df-oprab 7424  df-mpo 7425  df-1st 7993  df-2nd 7994  df-undef 8279  df-proset 18287  df-poset 18305  df-plt 18322  df-lub 18338  df-glb 18339  df-join 18340  df-meet 18341  df-p0 18417  df-p1 18418  df-lat 18424  df-clat 18491  df-oposet 38648  df-ol 38650  df-oml 38651  df-covers 38738  df-ats 38739  df-atl 38770  df-cvlat 38794  df-hlat 38823  df-llines 38971  df-lplanes 38972  df-lvols 38973  df-lines 38974  df-psubsp 38976  df-pmap 38977  df-padd 39269  df-lhyp 39461
This theorem is referenced by:  cdleme42keg  39959  cdleme42mN  39960  cdlemeg46fjv  39996
  Copyright terms: Public domain W3C validator