Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem34 Structured version   Visualization version   GIF version

Theorem fourierdlem34 43682
Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem34.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem34.m (𝜑𝑀 ∈ ℕ)
fourierdlem34.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem34 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem34
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem34.q . . . . 5 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem34.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 fourierdlem34.p . . . . . . 7 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 43650 . . . . . 6 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . 5 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 231 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 495 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8637 . . 3 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . 2 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 simplr 766 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → (𝑄𝑖) = (𝑄𝑗))
119ffvelrnda 6961 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
1211ad2antrr 723 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ∈ ℝ)
139ffvelrnda 6961 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1413ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1514adantllr 716 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
16 eleq1w 2821 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀)))
1716anbi2d 629 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑘 ∈ (0..^𝑀))))
18 fveq2 6774 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄𝑖) = (𝑄𝑘))
19 oveq1 7282 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
2019fveq2d 6778 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1)))
2118, 20breq12d 5087 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑘) < (𝑄‘(𝑘 + 1))))
2217, 21imbi12d 345 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))))
236simprrd 771 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2423r19.21bi 3134 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2522, 24chvarvv 2002 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2625ad4ant14 749 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2726adantllr 716 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
28 simpllr 773 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0...𝑀))
29 simplr 766 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0...𝑀))
30 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
3115, 27, 28, 29, 30monoords 42836 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) < (𝑄𝑗))
3212, 31ltned 11111 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ≠ (𝑄𝑗))
3332neneqd 2948 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
3433adantlr 712 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
35 simpll 764 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)))
36 elfzelz 13256 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3736zred 12426 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
3837ad3antlr 728 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ)
39 elfzelz 13256 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
4039zred 12426 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
4140ad4antlr 730 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ)
42 neqne 2951 . . . . . . . . . . . 12 𝑖 = 𝑗𝑖𝑗)
4342necomd 2999 . . . . . . . . . . 11 𝑖 = 𝑗𝑗𝑖)
4443ad2antlr 724 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
45 simpr 485 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗)
4638, 41, 44, 45lttri5d 42838 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 < 𝑖)
479ffvelrnda 6961 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
4847adantr 481 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
4948adantllr 716 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
50 simp-4l 780 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → 𝜑)
5150, 13sylancom 588 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
52 simp-4l 780 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → 𝜑)
5352, 25sylancom 588 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
54 simplr 766 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0...𝑀))
55 simpllr 773 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0...𝑀))
56 simpr 485 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
5751, 53, 54, 55, 56monoords 42836 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) < (𝑄𝑖))
5849, 57gtned 11110 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑖) ≠ (𝑄𝑗))
5958neneqd 2948 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → ¬ (𝑄𝑖) = (𝑄𝑗))
6035, 46, 59syl2anc 584 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6134, 60pm2.61dan 810 . . . . . . 7 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6261adantlr 712 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6310, 62condan 815 . . . . 5 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) → 𝑖 = 𝑗)
6463ex 413 . . . 4 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6564ralrimiva 3103 . . 3 ((𝜑𝑖 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6665ralrimiva 3103 . 2 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
67 dff13 7128 . 2 (𝑄:(0...𝑀)–1-1→ℝ ↔ (𝑄:(0...𝑀)⟶ℝ ∧ ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗)))
689, 66, 67sylanbrc 583 1 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396   = wceq 1539  wcel 2106  wne 2943  wral 3064  {crab 3068   class class class wbr 5074  cmpt 5157  wf 6429  1-1wf1 6430  cfv 6433  (class class class)co 7275  m cmap 8615  cr 10870  0cc0 10871  1c1 10872   + caddc 10874   < clt 11009  cn 11973  ...cfz 13239  ..^cfzo 13382
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-iun 4926  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-1st 7831  df-2nd 7832  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-er 8498  df-map 8617  df-en 8734  df-dom 8735  df-sdom 8736  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-n0 12234  df-z 12320  df-uz 12583  df-fz 13240  df-fzo 13383
This theorem is referenced by:  fourierdlem50  43697
  Copyright terms: Public domain W3C validator