Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem34 Structured version   Visualization version   GIF version

Theorem fourierdlem34 46112
Description: A partition is one to one. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem34.p 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem34.m (𝜑𝑀 ∈ ℕ)
fourierdlem34.q (𝜑𝑄 ∈ (𝑃𝑀))
Assertion
Ref Expression
fourierdlem34 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)

Proof of Theorem fourierdlem34
Dummy variables 𝑗 𝑘 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem34.q . . . . 5 (𝜑𝑄 ∈ (𝑃𝑀))
2 fourierdlem34.m . . . . . 6 (𝜑𝑀 ∈ ℕ)
3 fourierdlem34.p . . . . . . 7 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
43fourierdlem2 46080 . . . . . 6 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
52, 4syl 17 . . . . 5 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
61, 5mpbid 232 . . . 4 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
76simpld 494 . . 3 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
8 elmapi 8799 . . 3 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
97, 8syl 17 . 2 (𝜑𝑄:(0...𝑀)⟶ℝ)
10 simplr 768 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → (𝑄𝑖) = (𝑄𝑗))
119ffvelcdmda 7038 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0...𝑀)) → (𝑄𝑖) ∈ ℝ)
1211ad2antrr 726 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ∈ ℝ)
139ffvelcdmda 7038 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1413ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
1514adantllr 719 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
16 eleq1w 2811 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑖 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀)))
1716anbi2d 630 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑘 ∈ (0..^𝑀))))
18 fveq2 6840 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄𝑖) = (𝑄𝑘))
19 oveq1 7376 . . . . . . . . . . . . . . . . . 18 (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1))
2019fveq2d 6844 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1)))
2118, 20breq12d 5115 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑘 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑘) < (𝑄‘(𝑘 + 1))))
2217, 21imbi12d 344 . . . . . . . . . . . . . . 15 (𝑖 = 𝑘 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))))
236simprrd 773 . . . . . . . . . . . . . . . 16 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2423r19.21bi 3227 . . . . . . . . . . . . . . 15 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
2522, 24chvarvv 1989 . . . . . . . . . . . . . 14 ((𝜑𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2625ad4ant14 752 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
2726adantllr 719 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
28 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0...𝑀))
29 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0...𝑀))
30 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
3115, 27, 28, 29, 30monoords 45268 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) < (𝑄𝑗))
3212, 31ltned 11286 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄𝑖) ≠ (𝑄𝑗))
3332neneqd 2930 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
3433adantlr 715 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
35 simpll 766 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)))
36 elfzelz 13461 . . . . . . . . . . . 12 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3736zred 12614 . . . . . . . . . . 11 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
3837ad3antlr 731 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ)
39 elfzelz 13461 . . . . . . . . . . . 12 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ)
4039zred 12614 . . . . . . . . . . 11 (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ)
4140ad4antlr 733 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ)
42 neqne 2933 . . . . . . . . . . . 12 𝑖 = 𝑗𝑖𝑗)
4342necomd 2980 . . . . . . . . . . 11 𝑖 = 𝑗𝑗𝑖)
4443ad2antlr 727 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
45 simpr 484 . . . . . . . . . 10 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗)
4638, 41, 44, 45lttri5d 45270 . . . . . . . . 9 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 < 𝑖)
479ffvelcdmda 7038 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
4847adantr 480 . . . . . . . . . . . 12 (((𝜑𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
4948adantllr 719 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) ∈ ℝ)
50 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → 𝜑)
5150, 13sylancom 588 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄𝑘) ∈ ℝ)
52 simp-4l 782 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → 𝜑)
5352, 25sylancom 588 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄𝑘) < (𝑄‘(𝑘 + 1)))
54 simplr 768 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0...𝑀))
55 simpllr 775 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0...𝑀))
56 simpr 484 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖)
5751, 53, 54, 55, 56monoords 45268 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑗) < (𝑄𝑖))
5849, 57gtned 11285 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄𝑖) ≠ (𝑄𝑗))
5958neneqd 2930 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → ¬ (𝑄𝑖) = (𝑄𝑗))
6035, 46, 59syl2anc 584 . . . . . . . 8 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6134, 60pm2.61dan 812 . . . . . . 7 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6261adantlr 715 . . . . . 6 (((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄𝑖) = (𝑄𝑗))
6310, 62condan 817 . . . . 5 ((((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄𝑖) = (𝑄𝑗)) → 𝑖 = 𝑗)
6463ex 412 . . . 4 (((𝜑𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6564ralrimiva 3125 . . 3 ((𝜑𝑖 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
6665ralrimiva 3125 . 2 (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗))
67 dff13 7211 . 2 (𝑄:(0...𝑀)–1-1→ℝ ↔ (𝑄:(0...𝑀)⟶ℝ ∧ ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄𝑖) = (𝑄𝑗) → 𝑖 = 𝑗)))
689, 66, 67sylanbrc 583 1 (𝜑𝑄:(0...𝑀)–1-1→ℝ)
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  wne 2925  wral 3044  {crab 3402   class class class wbr 5102  cmpt 5183  wf 6495  1-1wf1 6496  cfv 6499  (class class class)co 7369  m cmap 8776  cr 11043  0cc0 11044  1c1 11045   + caddc 11047   < clt 11184  cn 12162  ...cfz 13444  ..^cfzo 13591
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-sep 5246  ax-nul 5256  ax-pow 5315  ax-pr 5382  ax-un 7691  ax-cnex 11100  ax-resscn 11101  ax-1cn 11102  ax-icn 11103  ax-addcl 11104  ax-addrcl 11105  ax-mulcl 11106  ax-mulrcl 11107  ax-mulcom 11108  ax-addass 11109  ax-mulass 11110  ax-distr 11111  ax-i2m1 11112  ax-1ne0 11113  ax-1rid 11114  ax-rnegex 11115  ax-rrecex 11116  ax-cnre 11117  ax-pre-lttri 11118  ax-pre-lttrn 11119  ax-pre-ltadd 11120  ax-pre-mulgt0 11121
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-pss 3931  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-tr 5210  df-id 5526  df-eprel 5531  df-po 5539  df-so 5540  df-fr 5584  df-we 5586  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-pred 6262  df-ord 6323  df-on 6324  df-lim 6325  df-suc 6326  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-oprab 7373  df-mpo 7374  df-om 7823  df-1st 7947  df-2nd 7948  df-frecs 8237  df-wrecs 8268  df-recs 8317  df-rdg 8355  df-er 8648  df-map 8778  df-en 8896  df-dom 8897  df-sdom 8898  df-pnf 11186  df-mnf 11187  df-xr 11188  df-ltxr 11189  df-le 11190  df-sub 11383  df-neg 11384  df-nn 12163  df-n0 12419  df-z 12506  df-uz 12770  df-fz 13445  df-fzo 13592
This theorem is referenced by:  fourierdlem50  46127
  Copyright terms: Public domain W3C validator