Step | Hyp | Ref
| Expression |
1 | | fourierdlem34.q |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
2 | | fourierdlem34.m |
. . . . . 6
⊢ (𝜑 → 𝑀 ∈ ℕ) |
3 | | fourierdlem34.p |
. . . . . . 7
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
4 | 3 | fourierdlem2 43540 |
. . . . . 6
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
5 | 2, 4 | syl 17 |
. . . . 5
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
6 | 1, 5 | mpbid 231 |
. . . 4
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
7 | 6 | simpld 494 |
. . 3
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
8 | | elmapi 8595 |
. . 3
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
9 | 7, 8 | syl 17 |
. 2
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
10 | | simplr 765 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = (𝑄‘𝑗)) ∧ ¬ 𝑖 = 𝑗) → (𝑄‘𝑖) = (𝑄‘𝑗)) |
11 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
12 | 11 | ad2antrr 722 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘𝑖) ∈ ℝ) |
13 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0...𝑀)) → (𝑄‘𝑘) ∈ ℝ) |
14 | 13 | ad4ant14 748 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄‘𝑘) ∈ ℝ) |
15 | 14 | adantllr 715 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄‘𝑘) ∈ ℝ) |
16 | | eleq1w 2821 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑘 → (𝑖 ∈ (0..^𝑀) ↔ 𝑘 ∈ (0..^𝑀))) |
17 | 16 | anbi2d 628 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑘 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑘 ∈ (0..^𝑀)))) |
18 | | fveq2 6756 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑘 → (𝑄‘𝑖) = (𝑄‘𝑘)) |
19 | | oveq1 7262 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑖 = 𝑘 → (𝑖 + 1) = (𝑘 + 1)) |
20 | 19 | fveq2d 6760 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑘 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑘 + 1))) |
21 | 18, 20 | breq12d 5083 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑘 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑘) < (𝑄‘(𝑘 + 1)))) |
22 | 17, 21 | imbi12d 344 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑘 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘𝑘) < (𝑄‘(𝑘 + 1))))) |
23 | 6 | simprrd 770 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
24 | 23 | r19.21bi 3132 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
25 | 22, 24 | chvarvv 2003 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘𝑘) < (𝑄‘(𝑘 + 1))) |
26 | 25 | ad4ant14 748 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘𝑘) < (𝑄‘(𝑘 + 1))) |
27 | 26 | adantllr 715 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘𝑘) < (𝑄‘(𝑘 + 1))) |
28 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ (0...𝑀)) |
29 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (0...𝑀)) |
30 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
31 | 15, 27, 28, 29, 30 | monoords 42726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘𝑖) < (𝑄‘𝑗)) |
32 | 12, 31 | ltned 11041 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘𝑖) ≠ (𝑄‘𝑗)) |
33 | 32 | neneqd 2947 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
34 | 33 | adantlr 711 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ 𝑖 < 𝑗) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
35 | | simpll 763 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀))) |
36 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
37 | 36 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
38 | 37 | ad3antlr 727 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ) |
39 | | elfzelz 13185 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℤ) |
40 | 39 | zred 12355 |
. . . . . . . . . . 11
⊢ (𝑖 ∈ (0...𝑀) → 𝑖 ∈ ℝ) |
41 | 40 | ad4antlr 729 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ) |
42 | | neqne 2950 |
. . . . . . . . . . . 12
⊢ (¬
𝑖 = 𝑗 → 𝑖 ≠ 𝑗) |
43 | 42 | necomd 2998 |
. . . . . . . . . . 11
⊢ (¬
𝑖 = 𝑗 → 𝑗 ≠ 𝑖) |
44 | 43 | ad2antlr 723 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ≠ 𝑖) |
45 | | simpr 484 |
. . . . . . . . . 10
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗) |
46 | 38, 41, 44, 45 | lttri5d 42728 |
. . . . . . . . 9
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → 𝑗 < 𝑖) |
47 | 9 | ffvelrnda 6943 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
48 | 47 | adantr 480 |
. . . . . . . . . . . 12
⊢ (((𝜑 ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄‘𝑗) ∈ ℝ) |
49 | 48 | adantllr 715 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄‘𝑗) ∈ ℝ) |
50 | | simp-4l 779 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → 𝜑) |
51 | 50, 13 | sylancom 587 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0...𝑀)) → (𝑄‘𝑘) ∈ ℝ) |
52 | | simp-4l 779 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → 𝜑) |
53 | 52, 25 | sylancom 587 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) ∧ 𝑘 ∈ (0..^𝑀)) → (𝑄‘𝑘) < (𝑄‘(𝑘 + 1))) |
54 | | simplr 765 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 ∈ (0...𝑀)) |
55 | | simpllr 772 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑖 ∈ (0...𝑀)) |
56 | | simpr 484 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → 𝑗 < 𝑖) |
57 | 51, 53, 54, 55, 56 | monoords 42726 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄‘𝑗) < (𝑄‘𝑖)) |
58 | 49, 57 | gtned 11040 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → (𝑄‘𝑖) ≠ (𝑄‘𝑗)) |
59 | 58 | neneqd 2947 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 < 𝑖) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
60 | 35, 46, 59 | syl2anc 583 |
. . . . . . . 8
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
61 | 34, 60 | pm2.61dan 809 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
62 | 61 | adantlr 711 |
. . . . . 6
⊢
(((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = (𝑄‘𝑗)) ∧ ¬ 𝑖 = 𝑗) → ¬ (𝑄‘𝑖) = (𝑄‘𝑗)) |
63 | 10, 62 | condan 814 |
. . . . 5
⊢ ((((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ (𝑄‘𝑖) = (𝑄‘𝑗)) → 𝑖 = 𝑗) |
64 | 63 | ex 412 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0...𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → ((𝑄‘𝑖) = (𝑄‘𝑗) → 𝑖 = 𝑗)) |
65 | 64 | ralrimiva 3107 |
. . 3
⊢ ((𝜑 ∧ 𝑖 ∈ (0...𝑀)) → ∀𝑗 ∈ (0...𝑀)((𝑄‘𝑖) = (𝑄‘𝑗) → 𝑖 = 𝑗)) |
66 | 65 | ralrimiva 3107 |
. 2
⊢ (𝜑 → ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄‘𝑖) = (𝑄‘𝑗) → 𝑖 = 𝑗)) |
67 | | dff13 7109 |
. 2
⊢ (𝑄:(0...𝑀)–1-1→ℝ ↔ (𝑄:(0...𝑀)⟶ℝ ∧ ∀𝑖 ∈ (0...𝑀)∀𝑗 ∈ (0...𝑀)((𝑄‘𝑖) = (𝑄‘𝑗) → 𝑖 = 𝑗))) |
68 | 9, 66, 67 | sylanbrc 582 |
1
⊢ (𝜑 → 𝑄:(0...𝑀)–1-1→ℝ) |