Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   GIF version

Theorem mzpcl34 42687
Description: Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))

Proof of Theorem mzpcl34
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1137 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐹𝑃)
2 simp3 1138 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐺𝑃)
3 simp1 1136 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑃 ∈ (mzPolyCld‘𝑉))
43elfvexd 6959 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑉 ∈ V)
5 elmzpcl 42682 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
73, 6mpbid 232 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
87simprrd 773 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))
9 oveq1 7455 . . . . 5 (𝑓 = 𝐹 → (𝑓f + 𝑔) = (𝐹f + 𝑔))
109eleq1d 2829 . . . 4 (𝑓 = 𝐹 → ((𝑓f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝑔) ∈ 𝑃))
11 oveq1 7455 . . . . 5 (𝑓 = 𝐹 → (𝑓f · 𝑔) = (𝐹f · 𝑔))
1211eleq1d 2829 . . . 4 (𝑓 = 𝐹 → ((𝑓f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝑔) ∈ 𝑃))
1310, 12anbi12d 631 . . 3 (𝑓 = 𝐹 → (((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃)))
14 oveq2 7456 . . . . 5 (𝑔 = 𝐺 → (𝐹f + 𝑔) = (𝐹f + 𝐺))
1514eleq1d 2829 . . . 4 (𝑔 = 𝐺 → ((𝐹f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝐺) ∈ 𝑃))
16 oveq2 7456 . . . . 5 (𝑔 = 𝐺 → (𝐹f · 𝑔) = (𝐹f · 𝐺))
1716eleq1d 2829 . . . 4 (𝑔 = 𝐺 → ((𝐹f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝐺) ∈ 𝑃))
1815, 17anbi12d 631 . . 3 (𝑔 = 𝐺 → (((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃)))
1913, 18rspc2va 3647 . 2 (((𝐹𝑃𝐺𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
201, 2, 8, 19syl21anc 837 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  Vcvv 3488  wss 3976  {csn 4648  cmpt 5249   × cxp 5698  cfv 6573  (class class class)co 7448  f cof 7712  m cmap 8884   + caddc 11187   · cmul 11189  cz 12639  mzPolyCldcmzpcl 42677
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-ov 7451  df-mzpcl 42679
This theorem is referenced by:  mzpincl  42690  mzpadd  42694  mzpmul  42695
  Copyright terms: Public domain W3C validator