Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   GIF version

Theorem mzpcl34 39672
Description: Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))

Proof of Theorem mzpcl34
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐹𝑃)
2 simp3 1135 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐺𝑃)
3 simp1 1133 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑃 ∈ (mzPolyCld‘𝑉))
43elfvexd 6679 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑉 ∈ V)
5 elmzpcl 39667 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
73, 6mpbid 235 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
87simprrd 773 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))
9 oveq1 7142 . . . . 5 (𝑓 = 𝐹 → (𝑓f + 𝑔) = (𝐹f + 𝑔))
109eleq1d 2874 . . . 4 (𝑓 = 𝐹 → ((𝑓f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝑔) ∈ 𝑃))
11 oveq1 7142 . . . . 5 (𝑓 = 𝐹 → (𝑓f · 𝑔) = (𝐹f · 𝑔))
1211eleq1d 2874 . . . 4 (𝑓 = 𝐹 → ((𝑓f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝑔) ∈ 𝑃))
1310, 12anbi12d 633 . . 3 (𝑓 = 𝐹 → (((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃)))
14 oveq2 7143 . . . . 5 (𝑔 = 𝐺 → (𝐹f + 𝑔) = (𝐹f + 𝐺))
1514eleq1d 2874 . . . 4 (𝑔 = 𝐺 → ((𝐹f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝐺) ∈ 𝑃))
16 oveq2 7143 . . . . 5 (𝑔 = 𝐺 → (𝐹f · 𝑔) = (𝐹f · 𝐺))
1716eleq1d 2874 . . . 4 (𝑔 = 𝐺 → ((𝐹f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝐺) ∈ 𝑃))
1815, 17anbi12d 633 . . 3 (𝑔 = 𝐺 → (((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃)))
1913, 18rspc2va 3582 . 2 (((𝐹𝑃𝐺𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
201, 2, 8, 19syl21anc 836 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399  w3a 1084   = wceq 1538  wcel 2111  wral 3106  Vcvv 3441  wss 3881  {csn 4525  cmpt 5110   × cxp 5517  cfv 6324  (class class class)co 7135  f cof 7387  m cmap 8389   + caddc 10529   · cmul 10531  cz 11969  mzPolyCldcmzpcl 39662
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ral 3111  df-rex 3112  df-rab 3115  df-v 3443  df-sbc 3721  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-iota 6283  df-fun 6326  df-fv 6332  df-ov 7138  df-mzpcl 39664
This theorem is referenced by:  mzpincl  39675  mzpadd  39679  mzpmul  39680
  Copyright terms: Public domain W3C validator