Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   GIF version

Theorem mzpcl34 40469
Description: Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))

Proof of Theorem mzpcl34
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1135 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐹𝑃)
2 simp3 1136 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐺𝑃)
3 simp1 1134 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑃 ∈ (mzPolyCld‘𝑉))
43elfvexd 6790 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑉 ∈ V)
5 elmzpcl 40464 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
73, 6mpbid 231 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
87simprrd 770 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))
9 oveq1 7262 . . . . 5 (𝑓 = 𝐹 → (𝑓f + 𝑔) = (𝐹f + 𝑔))
109eleq1d 2823 . . . 4 (𝑓 = 𝐹 → ((𝑓f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝑔) ∈ 𝑃))
11 oveq1 7262 . . . . 5 (𝑓 = 𝐹 → (𝑓f · 𝑔) = (𝐹f · 𝑔))
1211eleq1d 2823 . . . 4 (𝑓 = 𝐹 → ((𝑓f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝑔) ∈ 𝑃))
1310, 12anbi12d 630 . . 3 (𝑓 = 𝐹 → (((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃)))
14 oveq2 7263 . . . . 5 (𝑔 = 𝐺 → (𝐹f + 𝑔) = (𝐹f + 𝐺))
1514eleq1d 2823 . . . 4 (𝑔 = 𝐺 → ((𝐹f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝐺) ∈ 𝑃))
16 oveq2 7263 . . . . 5 (𝑔 = 𝐺 → (𝐹f · 𝑔) = (𝐹f · 𝐺))
1716eleq1d 2823 . . . 4 (𝑔 = 𝐺 → ((𝐹f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝐺) ∈ 𝑃))
1815, 17anbi12d 630 . . 3 (𝑔 = 𝐺 → (((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃)))
1913, 18rspc2va 3563 . 2 (((𝐹𝑃𝐺𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
201, 2, 8, 19syl21anc 834 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  Vcvv 3422  wss 3883  {csn 4558  cmpt 5153   × cxp 5578  cfv 6418  (class class class)co 7255  f cof 7509  m cmap 8573   + caddc 10805   · cmul 10807  cz 12249  mzPolyCldcmzpcl 40459
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-ov 7258  df-mzpcl 40461
This theorem is referenced by:  mzpincl  40472  mzpadd  40476  mzpmul  40477
  Copyright terms: Public domain W3C validator