Users' Mathboxes Mathbox for Stefan O'Rear < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  mzpcl34 Structured version   Visualization version   GIF version

Theorem mzpcl34 42154
Description: Defining properties 3 and 4 of a polynomially closed function set 𝑃: it is closed under pointwise addition and multiplication. (Contributed by Stefan O'Rear, 4-Oct-2014.)
Assertion
Ref Expression
mzpcl34 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))

Proof of Theorem mzpcl34
Dummy variables 𝑓 𝑔 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp2 1134 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐹𝑃)
2 simp3 1135 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝐺𝑃)
3 simp1 1133 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑃 ∈ (mzPolyCld‘𝑉))
43elfvexd 6939 . . . . 5 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → 𝑉 ∈ V)
5 elmzpcl 42149 . . . . 5 (𝑉 ∈ V → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
64, 5syl 17 . . . 4 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ∈ (mzPolyCld‘𝑉) ↔ (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)))))
73, 6mpbid 231 . . 3 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → (𝑃 ⊆ (ℤ ↑m (ℤ ↑m 𝑉)) ∧ ((∀𝑓 ∈ ℤ ((ℤ ↑m 𝑉) × {𝑓}) ∈ 𝑃 ∧ ∀𝑓𝑉 (𝑔 ∈ (ℤ ↑m 𝑉) ↦ (𝑔𝑓)) ∈ 𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))))
87simprrd 772 . 2 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃))
9 oveq1 7431 . . . . 5 (𝑓 = 𝐹 → (𝑓f + 𝑔) = (𝐹f + 𝑔))
109eleq1d 2813 . . . 4 (𝑓 = 𝐹 → ((𝑓f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝑔) ∈ 𝑃))
11 oveq1 7431 . . . . 5 (𝑓 = 𝐹 → (𝑓f · 𝑔) = (𝐹f · 𝑔))
1211eleq1d 2813 . . . 4 (𝑓 = 𝐹 → ((𝑓f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝑔) ∈ 𝑃))
1310, 12anbi12d 630 . . 3 (𝑓 = 𝐹 → (((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃)))
14 oveq2 7432 . . . . 5 (𝑔 = 𝐺 → (𝐹f + 𝑔) = (𝐹f + 𝐺))
1514eleq1d 2813 . . . 4 (𝑔 = 𝐺 → ((𝐹f + 𝑔) ∈ 𝑃 ↔ (𝐹f + 𝐺) ∈ 𝑃))
16 oveq2 7432 . . . . 5 (𝑔 = 𝐺 → (𝐹f · 𝑔) = (𝐹f · 𝐺))
1716eleq1d 2813 . . . 4 (𝑔 = 𝐺 → ((𝐹f · 𝑔) ∈ 𝑃 ↔ (𝐹f · 𝐺) ∈ 𝑃))
1815, 17anbi12d 630 . . 3 (𝑔 = 𝐺 → (((𝐹f + 𝑔) ∈ 𝑃 ∧ (𝐹f · 𝑔) ∈ 𝑃) ↔ ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃)))
1913, 18rspc2va 3621 . 2 (((𝐹𝑃𝐺𝑃) ∧ ∀𝑓𝑃𝑔𝑃 ((𝑓f + 𝑔) ∈ 𝑃 ∧ (𝑓f · 𝑔) ∈ 𝑃)) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
201, 2, 8, 19syl21anc 836 1 ((𝑃 ∈ (mzPolyCld‘𝑉) ∧ 𝐹𝑃𝐺𝑃) → ((𝐹f + 𝐺) ∈ 𝑃 ∧ (𝐹f · 𝐺) ∈ 𝑃))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 394  w3a 1084   = wceq 1533  wcel 2098  wral 3057  Vcvv 3471  wss 3947  {csn 4630  cmpt 5233   × cxp 5678  cfv 6551  (class class class)co 7424  f cof 7687  m cmap 8849   + caddc 11147   · cmul 11149  cz 12594  mzPolyCldcmzpcl 42144
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1905  ax-6 1963  ax-7 2003  ax-8 2100  ax-9 2108  ax-10 2129  ax-11 2146  ax-12 2166  ax-ext 2698  ax-sep 5301  ax-nul 5308  ax-pow 5367  ax-pr 5431
This theorem depends on definitions:  df-bi 206  df-an 395  df-or 846  df-3an 1086  df-tru 1536  df-fal 1546  df-ex 1774  df-nf 1778  df-sb 2060  df-mo 2529  df-eu 2558  df-clab 2705  df-cleq 2719  df-clel 2805  df-nfc 2880  df-ne 2937  df-ral 3058  df-rex 3067  df-rab 3429  df-v 3473  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-nul 4325  df-if 4531  df-pw 4606  df-sn 4631  df-pr 4633  df-op 4637  df-uni 4911  df-br 5151  df-opab 5213  df-mpt 5234  df-id 5578  df-xp 5686  df-rel 5687  df-cnv 5688  df-co 5689  df-dm 5690  df-iota 6503  df-fun 6553  df-fv 6559  df-ov 7427  df-mzpcl 42146
This theorem is referenced by:  mzpincl  42157  mzpadd  42161  mzpmul  42162
  Copyright terms: Public domain W3C validator