Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorn1eq Structured version   Visualization version   GIF version

Theorem rngorn1eq 37963
Description: In a unital ring the range of the addition equals the range of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngorn1eq (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)

Proof of Theorem rngorn1eq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
2 rnplrnml0.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2736 . . . 4 ran 𝐺 = ran 𝐺
41, 2, 3rngosm 37929 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
51, 2, 3rngoi 37928 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
65simprrd 773 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
7 rngmgmbs4 37960 . . 3 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) → ran 𝐻 = ran 𝐺)
84, 6, 7syl2anc 584 . 2 (𝑅 ∈ RingOps → ran 𝐻 = ran 𝐺)
98eqcomd 2742 1 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1540  wcel 2109  wral 3052  wrex 3061   × cxp 5657  ran crn 5660  wf 6532  cfv 6536  (class class class)co 7410  1st c1st 7991  2nd c2nd 7992  AbelOpcablo 30530  RingOpscrngo 37923
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2708  ax-sep 5271  ax-nul 5281  ax-pr 5407  ax-un 7734
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2728  df-clel 2810  df-nfc 2886  df-ne 2934  df-ral 3053  df-rex 3062  df-rab 3421  df-v 3466  df-sbc 3771  df-csb 3880  df-dif 3934  df-un 3936  df-in 3938  df-ss 3948  df-nul 4314  df-if 4506  df-sn 4607  df-pr 4609  df-op 4613  df-uni 4889  df-iun 4974  df-br 5125  df-opab 5187  df-mpt 5207  df-id 5553  df-xp 5665  df-rel 5666  df-cnv 5667  df-co 5668  df-dm 5669  df-rn 5670  df-iota 6489  df-fun 6538  df-fn 6539  df-f 6540  df-fo 6542  df-fv 6544  df-ov 7413  df-1st 7993  df-2nd 7994  df-rngo 37924
This theorem is referenced by:  rngoidmlem  37965  rngo1cl  37968  isdrngo2  37987
  Copyright terms: Public domain W3C validator