Users' Mathboxes Mathbox for Jeff Madsen < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  rngorn1eq Structured version   Visualization version   GIF version

Theorem rngorn1eq 36019
Description: In a unital ring the range of the addition equals the range of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.)
Hypotheses
Ref Expression
rnplrnml0.1 𝐻 = (2nd𝑅)
rnplrnml0.2 𝐺 = (1st𝑅)
Assertion
Ref Expression
rngorn1eq (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)

Proof of Theorem rngorn1eq
Dummy variables 𝑥 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 rnplrnml0.2 . . . 4 𝐺 = (1st𝑅)
2 rnplrnml0.1 . . . 4 𝐻 = (2nd𝑅)
3 eqid 2738 . . . 4 ran 𝐺 = ran 𝐺
41, 2, 3rngosm 35985 . . 3 (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺)
51, 2, 3rngoi 35984 . . . 4 (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))))
65simprrd 770 . . 3 (𝑅 ∈ RingOps → ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦))
7 rngmgmbs4 36016 . . 3 ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∃𝑥 ∈ ran 𝐺𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) → ran 𝐻 = ran 𝐺)
84, 6, 7syl2anc 583 . 2 (𝑅 ∈ RingOps → ran 𝐻 = ran 𝐺)
98eqcomd 2744 1 (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wcel 2108  wral 3063  wrex 3064   × cxp 5578  ran crn 5581  wf 6414  cfv 6418  (class class class)co 7255  1st c1st 7802  2nd c2nd 7803  AbelOpcablo 28807  RingOpscrngo 35979
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-fo 6424  df-fv 6426  df-ov 7258  df-1st 7804  df-2nd 7805  df-rngo 35980
This theorem is referenced by:  rngoidmlem  36021  rngo1cl  36024  isdrngo2  36043
  Copyright terms: Public domain W3C validator