Mathbox for Jeff Madsen |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > Mathboxes > rngorn1eq | Structured version Visualization version GIF version |
Description: In a unital ring the range of the addition equals the range of the multiplication. (Contributed by FL, 24-Jan-2010.) (New usage is discouraged.) |
Ref | Expression |
---|---|
rnplrnml0.1 | ⊢ 𝐻 = (2nd ‘𝑅) |
rnplrnml0.2 | ⊢ 𝐺 = (1st ‘𝑅) |
Ref | Expression |
---|---|
rngorn1eq | ⊢ (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | rnplrnml0.2 | . . . 4 ⊢ 𝐺 = (1st ‘𝑅) | |
2 | rnplrnml0.1 | . . . 4 ⊢ 𝐻 = (2nd ‘𝑅) | |
3 | eqid 2740 | . . . 4 ⊢ ran 𝐺 = ran 𝐺 | |
4 | 1, 2, 3 | rngosm 36052 | . . 3 ⊢ (𝑅 ∈ RingOps → 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) |
5 | 1, 2, 3 | rngoi 36051 | . . . 4 ⊢ (𝑅 ∈ RingOps → ((𝐺 ∈ AbelOp ∧ 𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺) ∧ (∀𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺∀𝑧 ∈ ran 𝐺(((𝑥𝐻𝑦)𝐻𝑧) = (𝑥𝐻(𝑦𝐻𝑧)) ∧ (𝑥𝐻(𝑦𝐺𝑧)) = ((𝑥𝐻𝑦)𝐺(𝑥𝐻𝑧)) ∧ ((𝑥𝐺𝑦)𝐻𝑧) = ((𝑥𝐻𝑧)𝐺(𝑦𝐻𝑧))) ∧ ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)))) |
6 | 5 | simprrd 771 | . . 3 ⊢ (𝑅 ∈ RingOps → ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) |
7 | rngmgmbs4 36083 | . . 3 ⊢ ((𝐻:(ran 𝐺 × ran 𝐺)⟶ran 𝐺 ∧ ∃𝑥 ∈ ran 𝐺∀𝑦 ∈ ran 𝐺((𝑥𝐻𝑦) = 𝑦 ∧ (𝑦𝐻𝑥) = 𝑦)) → ran 𝐻 = ran 𝐺) | |
8 | 4, 6, 7 | syl2anc 584 | . 2 ⊢ (𝑅 ∈ RingOps → ran 𝐻 = ran 𝐺) |
9 | 8 | eqcomd 2746 | 1 ⊢ (𝑅 ∈ RingOps → ran 𝐺 = ran 𝐻) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 396 ∧ w3a 1086 = wceq 1542 ∈ wcel 2110 ∀wral 3066 ∃wrex 3067 × cxp 5587 ran crn 5590 ⟶wf 6427 ‘cfv 6431 (class class class)co 7269 1st c1st 7820 2nd c2nd 7821 AbelOpcablo 28900 RingOpscrngo 36046 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1802 ax-4 1816 ax-5 1917 ax-6 1975 ax-7 2015 ax-8 2112 ax-9 2120 ax-10 2141 ax-11 2158 ax-12 2175 ax-ext 2711 ax-sep 5227 ax-nul 5234 ax-pr 5356 ax-un 7580 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1545 df-fal 1555 df-ex 1787 df-nf 1791 df-sb 2072 df-mo 2542 df-eu 2571 df-clab 2718 df-cleq 2732 df-clel 2818 df-nfc 2891 df-ne 2946 df-ral 3071 df-rex 3072 df-rab 3075 df-v 3433 df-sbc 3721 df-csb 3838 df-dif 3895 df-un 3897 df-in 3899 df-ss 3909 df-nul 4263 df-if 4466 df-sn 4568 df-pr 4570 df-op 4574 df-uni 4846 df-iun 4932 df-br 5080 df-opab 5142 df-mpt 5163 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-iota 6389 df-fun 6433 df-fn 6434 df-f 6435 df-fo 6437 df-fv 6439 df-ov 7272 df-1st 7822 df-2nd 7823 df-rngo 36047 |
This theorem is referenced by: rngoidmlem 36088 rngo1cl 36091 isdrngo2 36110 |
Copyright terms: Public domain | W3C validator |