MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsvar Structured version   Visualization version   GIF version

Theorem evlsvar 22048
Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsvar.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvar.v 𝑉 = (𝐼 mVar 𝑈)
evlsvar.u 𝑈 = (𝑆s 𝑅)
evlsvar.b 𝐵 = (Base‘𝑆)
evlsvar.i (𝜑𝐼𝑊)
evlsvar.s (𝜑𝑆 ∈ CRing)
evlsvar.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvar.x (𝜑𝑋𝐼)
Assertion
Ref Expression
evlsvar (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐼   𝑅,𝑔   𝑆,𝑔   𝑔,𝑊   𝑔,𝑋
Allowed substitution hints:   𝜑(𝑔)   𝑄(𝑔)   𝑈(𝑔)   𝑉(𝑔)

Proof of Theorem evlsvar
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlsvar.i . . . . 5 (𝜑𝐼𝑊)
2 evlsvar.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsvar.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsvar.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 eqid 2735 . . . . . 6 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
6 evlsvar.v . . . . . 6 𝑉 = (𝐼 mVar 𝑈)
7 evlsvar.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2735 . . . . . 6 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
9 evlsvar.b . . . . . 6 𝐵 = (Base‘𝑆)
10 eqid 2735 . . . . . 6 (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈))
11 eqid 2735 . . . . . 6 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
12 eqid 2735 . . . . . 6 (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 22045 . . . . 5 ((𝐼𝑊𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))))
141, 2, 3, 13syl3anc 1373 . . . 4 (𝜑 → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))))
1514simprrd 773 . . 3 (𝜑 → (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))
1615fveq1d 6878 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋))
17 eqid 2735 . . . . 5 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
187subrgring 20534 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
193, 18syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
205, 6, 17, 1, 19mvrf2 21953 . . . 4 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPoly 𝑈)))
2120ffnd 6707 . . 3 (𝜑𝑉 Fn 𝐼)
22 evlsvar.x . . 3 (𝜑𝑋𝐼)
23 fvco2 6976 . . 3 ((𝑉 Fn 𝐼𝑋𝐼) → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
2421, 22, 23syl2anc 584 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
25 fveq2 6876 . . . . 5 (𝑥 = 𝑋 → (𝑔𝑥) = (𝑔𝑋))
2625mpteq2dv 5215 . . . 4 (𝑥 = 𝑋 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
27 ovex 7438 . . . . 5 (𝐵m 𝐼) ∈ V
2827mptex 7215 . . . 4 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)) ∈ V
2926, 12, 28fvmpt 6986 . . 3 (𝑋𝐼 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3022, 29syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3116, 24, 303eqtr3d 2778 1 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2108  {csn 4601  cmpt 5201   × cxp 5652  ccom 5658   Fn wfn 6526  cfv 6531  (class class class)co 7405  m cmap 8840  Basecbs 17228  s cress 17251  s cpws 17460  Ringcrg 20193  CRingccrg 20194   RingHom crh 20429  SubRingcsubrg 20529  algSccascl 21812   mVar cmvr 21865   mPoly cmpl 21866   evalSub ces 22030
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2707  ax-rep 5249  ax-sep 5266  ax-nul 5276  ax-pow 5335  ax-pr 5402  ax-un 7729  ax-cnex 11185  ax-resscn 11186  ax-1cn 11187  ax-icn 11188  ax-addcl 11189  ax-addrcl 11190  ax-mulcl 11191  ax-mulrcl 11192  ax-mulcom 11193  ax-addass 11194  ax-mulass 11195  ax-distr 11196  ax-i2m1 11197  ax-1ne0 11198  ax-1rid 11199  ax-rnegex 11200  ax-rrecex 11201  ax-cnre 11202  ax-pre-lttri 11203  ax-pre-lttrn 11204  ax-pre-ltadd 11205  ax-pre-mulgt0 11206
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2065  df-mo 2539  df-eu 2568  df-clab 2714  df-cleq 2727  df-clel 2809  df-nfc 2885  df-ne 2933  df-nel 3037  df-ral 3052  df-rex 3061  df-rmo 3359  df-reu 3360  df-rab 3416  df-v 3461  df-sbc 3766  df-csb 3875  df-dif 3929  df-un 3931  df-in 3933  df-ss 3943  df-pss 3946  df-nul 4309  df-if 4501  df-pw 4577  df-sn 4602  df-pr 4604  df-tp 4606  df-op 4608  df-uni 4884  df-int 4923  df-iun 4969  df-iin 4970  df-br 5120  df-opab 5182  df-mpt 5202  df-tr 5230  df-id 5548  df-eprel 5553  df-po 5561  df-so 5562  df-fr 5606  df-se 5607  df-we 5608  df-xp 5660  df-rel 5661  df-cnv 5662  df-co 5663  df-dm 5664  df-rn 5665  df-res 5666  df-ima 5667  df-pred 6290  df-ord 6355  df-on 6356  df-lim 6357  df-suc 6358  df-iota 6484  df-fun 6533  df-fn 6534  df-f 6535  df-f1 6536  df-fo 6537  df-f1o 6538  df-fv 6539  df-isom 6540  df-riota 7362  df-ov 7408  df-oprab 7409  df-mpo 7410  df-of 7671  df-ofr 7672  df-om 7862  df-1st 7988  df-2nd 7989  df-supp 8160  df-frecs 8280  df-wrecs 8311  df-recs 8385  df-rdg 8424  df-1o 8480  df-2o 8481  df-er 8719  df-map 8842  df-pm 8843  df-ixp 8912  df-en 8960  df-dom 8961  df-sdom 8962  df-fin 8963  df-fsupp 9374  df-sup 9454  df-oi 9524  df-card 9953  df-pnf 11271  df-mnf 11272  df-xr 11273  df-ltxr 11274  df-le 11275  df-sub 11468  df-neg 11469  df-nn 12241  df-2 12303  df-3 12304  df-4 12305  df-5 12306  df-6 12307  df-7 12308  df-8 12309  df-9 12310  df-n0 12502  df-z 12589  df-dec 12709  df-uz 12853  df-fz 13525  df-fzo 13672  df-seq 14020  df-hash 14349  df-struct 17166  df-sets 17183  df-slot 17201  df-ndx 17213  df-base 17229  df-ress 17252  df-plusg 17284  df-mulr 17285  df-sca 17287  df-vsca 17288  df-ip 17289  df-tset 17290  df-ple 17291  df-ds 17293  df-hom 17295  df-cco 17296  df-0g 17455  df-gsum 17456  df-prds 17461  df-pws 17463  df-mre 17598  df-mrc 17599  df-acs 17601  df-mgm 18618  df-sgrp 18697  df-mnd 18713  df-mhm 18761  df-submnd 18762  df-grp 18919  df-minusg 18920  df-sbg 18921  df-mulg 19051  df-subg 19106  df-ghm 19196  df-cntz 19300  df-cmn 19763  df-abl 19764  df-mgp 20101  df-rng 20113  df-ur 20142  df-srg 20147  df-ring 20195  df-cring 20196  df-rhm 20432  df-subrng 20506  df-subrg 20530  df-lmod 20819  df-lss 20889  df-lsp 20929  df-assa 21813  df-asp 21814  df-ascl 21815  df-psr 21869  df-mvr 21870  df-mpl 21871  df-evls 22032
This theorem is referenced by:  evlsvarsrng  22057  evlvar  22058  mpfproj  22060  mpfind  22065  evl1var  22274  evlsvarval  42588
  Copyright terms: Public domain W3C validator