![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > evlsvar | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
Ref | Expression |
---|---|
evlsvar.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsvar.v | ⊢ 𝑉 = (𝐼 mVar 𝑈) |
evlsvar.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsvar.b | ⊢ 𝐵 = (Base‘𝑆) |
evlsvar.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
evlsvar.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsvar.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsvar.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
evlsvar | ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvar.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | evlsvar.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlsvar.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlsvar.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | eqid 2740 | . . . . . 6 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
6 | evlsvar.v | . . . . . 6 ⊢ 𝑉 = (𝐼 mVar 𝑈) | |
7 | evlsvar.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
8 | eqid 2740 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
9 | evlsvar.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
10 | eqid 2740 | . . . . . 6 ⊢ (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈)) | |
11 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | |
12 | eqid 2740 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval2 22134 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
14 | 1, 2, 3, 13 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
15 | 14 | simprrd 773 | . . 3 ⊢ (𝜑 → (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
16 | 15 | fveq1d 6922 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝑉)‘𝑋) = ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋)) |
17 | eqid 2740 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
18 | 7 | subrgring 20602 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
19 | 3, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Ring) |
20 | 5, 6, 17, 1, 19 | mvrf2 22036 | . . . 4 ⊢ (𝜑 → 𝑉:𝐼⟶(Base‘(𝐼 mPoly 𝑈))) |
21 | 20 | ffnd 6748 | . . 3 ⊢ (𝜑 → 𝑉 Fn 𝐼) |
22 | evlsvar.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
23 | fvco2 7019 | . . 3 ⊢ ((𝑉 Fn 𝐼 ∧ 𝑋 ∈ 𝐼) → ((𝑄 ∘ 𝑉)‘𝑋) = (𝑄‘(𝑉‘𝑋))) | |
24 | 21, 22, 23 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝑉)‘𝑋) = (𝑄‘(𝑉‘𝑋))) |
25 | fveq2 6920 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑔‘𝑥) = (𝑔‘𝑋)) | |
26 | 25 | mpteq2dv 5268 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
27 | ovex 7481 | . . . . 5 ⊢ (𝐵 ↑m 𝐼) ∈ V | |
28 | 27 | mptex 7260 | . . . 4 ⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋)) ∈ V |
29 | 26, 12, 28 | fvmpt 7029 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
30 | 22, 29 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
31 | 16, 24, 30 | 3eqtr3d 2788 | 1 ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1537 ∈ wcel 2108 {csn 4648 ↦ cmpt 5249 × cxp 5698 ∘ ccom 5704 Fn wfn 6568 ‘cfv 6573 (class class class)co 7448 ↑m cmap 8884 Basecbs 17258 ↾s cress 17287 ↑s cpws 17506 Ringcrg 20260 CRingccrg 20261 RingHom crh 20495 SubRingcsubrg 20595 algSccascl 21895 mVar cmvr 21948 mPoly cmpl 21949 evalSub ces 22119 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-rep 5303 ax-sep 5317 ax-nul 5324 ax-pow 5383 ax-pr 5447 ax-un 7770 ax-cnex 11240 ax-resscn 11241 ax-1cn 11242 ax-icn 11243 ax-addcl 11244 ax-addrcl 11245 ax-mulcl 11246 ax-mulrcl 11247 ax-mulcom 11248 ax-addass 11249 ax-mulass 11250 ax-distr 11251 ax-i2m1 11252 ax-1ne0 11253 ax-1rid 11254 ax-rnegex 11255 ax-rrecex 11256 ax-cnre 11257 ax-pre-lttri 11258 ax-pre-lttrn 11259 ax-pre-ltadd 11260 ax-pre-mulgt0 11261 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3or 1088 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-nel 3053 df-ral 3068 df-rex 3077 df-rmo 3388 df-reu 3389 df-rab 3444 df-v 3490 df-sbc 3805 df-csb 3922 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-pss 3996 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-tp 4653 df-op 4655 df-uni 4932 df-int 4971 df-iun 5017 df-iin 5018 df-br 5167 df-opab 5229 df-mpt 5250 df-tr 5284 df-id 5593 df-eprel 5599 df-po 5607 df-so 5608 df-fr 5652 df-se 5653 df-we 5654 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-pred 6332 df-ord 6398 df-on 6399 df-lim 6400 df-suc 6401 df-iota 6525 df-fun 6575 df-fn 6576 df-f 6577 df-f1 6578 df-fo 6579 df-f1o 6580 df-fv 6581 df-isom 6582 df-riota 7404 df-ov 7451 df-oprab 7452 df-mpo 7453 df-of 7714 df-ofr 7715 df-om 7904 df-1st 8030 df-2nd 8031 df-supp 8202 df-frecs 8322 df-wrecs 8353 df-recs 8427 df-rdg 8466 df-1o 8522 df-2o 8523 df-er 8763 df-map 8886 df-pm 8887 df-ixp 8956 df-en 9004 df-dom 9005 df-sdom 9006 df-fin 9007 df-fsupp 9432 df-sup 9511 df-oi 9579 df-card 10008 df-pnf 11326 df-mnf 11327 df-xr 11328 df-ltxr 11329 df-le 11330 df-sub 11522 df-neg 11523 df-nn 12294 df-2 12356 df-3 12357 df-4 12358 df-5 12359 df-6 12360 df-7 12361 df-8 12362 df-9 12363 df-n0 12554 df-z 12640 df-dec 12759 df-uz 12904 df-fz 13568 df-fzo 13712 df-seq 14053 df-hash 14380 df-struct 17194 df-sets 17211 df-slot 17229 df-ndx 17241 df-base 17259 df-ress 17288 df-plusg 17324 df-mulr 17325 df-sca 17327 df-vsca 17328 df-ip 17329 df-tset 17330 df-ple 17331 df-ds 17333 df-hom 17335 df-cco 17336 df-0g 17501 df-gsum 17502 df-prds 17507 df-pws 17509 df-mre 17644 df-mrc 17645 df-acs 17647 df-mgm 18678 df-sgrp 18757 df-mnd 18773 df-mhm 18818 df-submnd 18819 df-grp 18976 df-minusg 18977 df-sbg 18978 df-mulg 19108 df-subg 19163 df-ghm 19253 df-cntz 19357 df-cmn 19824 df-abl 19825 df-mgp 20162 df-rng 20180 df-ur 20209 df-srg 20214 df-ring 20262 df-cring 20263 df-rhm 20498 df-subrng 20572 df-subrg 20597 df-lmod 20882 df-lss 20953 df-lsp 20993 df-assa 21896 df-asp 21897 df-ascl 21898 df-psr 21952 df-mvr 21953 df-mpl 21954 df-evls 22121 |
This theorem is referenced by: evlsvarsrng 22146 evlvar 22147 mpfproj 22149 mpfind 22154 evl1var 22361 evlsvarval 42520 |
Copyright terms: Public domain | W3C validator |