Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > evlsvar | Structured version Visualization version GIF version |
Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.) |
Ref | Expression |
---|---|
evlsvar.q | ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) |
evlsvar.v | ⊢ 𝑉 = (𝐼 mVar 𝑈) |
evlsvar.u | ⊢ 𝑈 = (𝑆 ↾s 𝑅) |
evlsvar.b | ⊢ 𝐵 = (Base‘𝑆) |
evlsvar.i | ⊢ (𝜑 → 𝐼 ∈ 𝑊) |
evlsvar.s | ⊢ (𝜑 → 𝑆 ∈ CRing) |
evlsvar.r | ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) |
evlsvar.x | ⊢ (𝜑 → 𝑋 ∈ 𝐼) |
Ref | Expression |
---|---|
evlsvar | ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | evlsvar.i | . . . . 5 ⊢ (𝜑 → 𝐼 ∈ 𝑊) | |
2 | evlsvar.s | . . . . 5 ⊢ (𝜑 → 𝑆 ∈ CRing) | |
3 | evlsvar.r | . . . . 5 ⊢ (𝜑 → 𝑅 ∈ (SubRing‘𝑆)) | |
4 | evlsvar.q | . . . . . 6 ⊢ 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅) | |
5 | eqid 2738 | . . . . . 6 ⊢ (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈) | |
6 | evlsvar.v | . . . . . 6 ⊢ 𝑉 = (𝐼 mVar 𝑈) | |
7 | evlsvar.u | . . . . . 6 ⊢ 𝑈 = (𝑆 ↾s 𝑅) | |
8 | eqid 2738 | . . . . . 6 ⊢ (𝑆 ↑s (𝐵 ↑m 𝐼)) = (𝑆 ↑s (𝐵 ↑m 𝐼)) | |
9 | evlsvar.b | . . . . . 6 ⊢ 𝐵 = (Base‘𝑆) | |
10 | eqid 2738 | . . . . . 6 ⊢ (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈)) | |
11 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) | |
12 | eqid 2738 | . . . . . 6 ⊢ (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥))) | |
13 | 4, 5, 6, 7, 8, 9, 10, 11, 12 | evlsval2 21207 | . . . . 5 ⊢ ((𝐼 ∈ 𝑊 ∧ 𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
14 | 1, 2, 3, 13 | syl3anc 1369 | . . . 4 ⊢ (𝜑 → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆 ↑s (𝐵 ↑m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥 ∈ 𝑅 ↦ ((𝐵 ↑m 𝐼) × {𝑥})) ∧ (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))))) |
15 | 14 | simprrd 770 | . . 3 ⊢ (𝜑 → (𝑄 ∘ 𝑉) = (𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))) |
16 | 15 | fveq1d 6758 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝑉)‘𝑋) = ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋)) |
17 | eqid 2738 | . . . . 5 ⊢ (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈)) | |
18 | 7 | subrgring 19942 | . . . . . 6 ⊢ (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring) |
19 | 3, 18 | syl 17 | . . . . 5 ⊢ (𝜑 → 𝑈 ∈ Ring) |
20 | 5, 6, 17, 1, 19 | mvrf2 21178 | . . . 4 ⊢ (𝜑 → 𝑉:𝐼⟶(Base‘(𝐼 mPoly 𝑈))) |
21 | 20 | ffnd 6585 | . . 3 ⊢ (𝜑 → 𝑉 Fn 𝐼) |
22 | evlsvar.x | . . 3 ⊢ (𝜑 → 𝑋 ∈ 𝐼) | |
23 | fvco2 6847 | . . 3 ⊢ ((𝑉 Fn 𝐼 ∧ 𝑋 ∈ 𝐼) → ((𝑄 ∘ 𝑉)‘𝑋) = (𝑄‘(𝑉‘𝑋))) | |
24 | 21, 22, 23 | syl2anc 583 | . 2 ⊢ (𝜑 → ((𝑄 ∘ 𝑉)‘𝑋) = (𝑄‘(𝑉‘𝑋))) |
25 | fveq2 6756 | . . . . 5 ⊢ (𝑥 = 𝑋 → (𝑔‘𝑥) = (𝑔‘𝑋)) | |
26 | 25 | mpteq2dv 5172 | . . . 4 ⊢ (𝑥 = 𝑋 → (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
27 | ovex 7288 | . . . . 5 ⊢ (𝐵 ↑m 𝐼) ∈ V | |
28 | 27 | mptex 7081 | . . . 4 ⊢ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋)) ∈ V |
29 | 26, 12, 28 | fvmpt 6857 | . . 3 ⊢ (𝑋 ∈ 𝐼 → ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
30 | 22, 29 | syl 17 | . 2 ⊢ (𝜑 → ((𝑥 ∈ 𝐼 ↦ (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑥)))‘𝑋) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
31 | 16, 24, 30 | 3eqtr3d 2786 | 1 ⊢ (𝜑 → (𝑄‘(𝑉‘𝑋)) = (𝑔 ∈ (𝐵 ↑m 𝐼) ↦ (𝑔‘𝑋))) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 395 = wceq 1539 ∈ wcel 2108 {csn 4558 ↦ cmpt 5153 × cxp 5578 ∘ ccom 5584 Fn wfn 6413 ‘cfv 6418 (class class class)co 7255 ↑m cmap 8573 Basecbs 16840 ↾s cress 16867 ↑s cpws 17074 Ringcrg 19698 CRingccrg 19699 RingHom crh 19871 SubRingcsubrg 19935 algSccascl 20969 mVar cmvr 21018 mPoly cmpl 21019 evalSub ces 21190 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-rep 5205 ax-sep 5218 ax-nul 5225 ax-pow 5283 ax-pr 5347 ax-un 7566 ax-cnex 10858 ax-resscn 10859 ax-1cn 10860 ax-icn 10861 ax-addcl 10862 ax-addrcl 10863 ax-mulcl 10864 ax-mulrcl 10865 ax-mulcom 10866 ax-addass 10867 ax-mulass 10868 ax-distr 10869 ax-i2m1 10870 ax-1ne0 10871 ax-1rid 10872 ax-rnegex 10873 ax-rrecex 10874 ax-cnre 10875 ax-pre-lttri 10876 ax-pre-lttrn 10877 ax-pre-ltadd 10878 ax-pre-mulgt0 10879 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-nel 3049 df-ral 3068 df-rex 3069 df-reu 3070 df-rmo 3071 df-rab 3072 df-v 3424 df-sbc 3712 df-csb 3829 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-int 4877 df-iun 4923 df-iin 4924 df-br 5071 df-opab 5133 df-mpt 5154 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-se 5536 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-pred 6191 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-isom 6427 df-riota 7212 df-ov 7258 df-oprab 7259 df-mpo 7260 df-of 7511 df-ofr 7512 df-om 7688 df-1st 7804 df-2nd 7805 df-supp 7949 df-frecs 8068 df-wrecs 8099 df-recs 8173 df-rdg 8212 df-1o 8267 df-er 8456 df-map 8575 df-pm 8576 df-ixp 8644 df-en 8692 df-dom 8693 df-sdom 8694 df-fin 8695 df-fsupp 9059 df-sup 9131 df-oi 9199 df-card 9628 df-pnf 10942 df-mnf 10943 df-xr 10944 df-ltxr 10945 df-le 10946 df-sub 11137 df-neg 11138 df-nn 11904 df-2 11966 df-3 11967 df-4 11968 df-5 11969 df-6 11970 df-7 11971 df-8 11972 df-9 11973 df-n0 12164 df-z 12250 df-dec 12367 df-uz 12512 df-fz 13169 df-fzo 13312 df-seq 13650 df-hash 13973 df-struct 16776 df-sets 16793 df-slot 16811 df-ndx 16823 df-base 16841 df-ress 16868 df-plusg 16901 df-mulr 16902 df-sca 16904 df-vsca 16905 df-ip 16906 df-tset 16907 df-ple 16908 df-ds 16910 df-hom 16912 df-cco 16913 df-0g 17069 df-gsum 17070 df-prds 17075 df-pws 17077 df-mre 17212 df-mrc 17213 df-acs 17215 df-mgm 18241 df-sgrp 18290 df-mnd 18301 df-mhm 18345 df-submnd 18346 df-grp 18495 df-minusg 18496 df-sbg 18497 df-mulg 18616 df-subg 18667 df-ghm 18747 df-cntz 18838 df-cmn 19303 df-abl 19304 df-mgp 19636 df-ur 19653 df-srg 19657 df-ring 19700 df-cring 19701 df-rnghom 19874 df-subrg 19937 df-lmod 20040 df-lss 20109 df-lsp 20149 df-assa 20970 df-asp 20971 df-ascl 20972 df-psr 21022 df-mvr 21023 df-mpl 21024 df-evls 21192 |
This theorem is referenced by: evlsvarsrng 21219 evlvar 21220 mpfproj 21222 mpfind 21227 evl1var 21412 evlsvarval 40197 |
Copyright terms: Public domain | W3C validator |