MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  evlsvar Structured version   Visualization version   GIF version

Theorem evlsvar 21300
Description: Polynomial evaluation maps variables to projections. (Contributed by Stefan O'Rear, 12-Mar-2015.) (Proof shortened by AV, 18-Sep-2021.)
Hypotheses
Ref Expression
evlsvar.q 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
evlsvar.v 𝑉 = (𝐼 mVar 𝑈)
evlsvar.u 𝑈 = (𝑆s 𝑅)
evlsvar.b 𝐵 = (Base‘𝑆)
evlsvar.i (𝜑𝐼𝑊)
evlsvar.s (𝜑𝑆 ∈ CRing)
evlsvar.r (𝜑𝑅 ∈ (SubRing‘𝑆))
evlsvar.x (𝜑𝑋𝐼)
Assertion
Ref Expression
evlsvar (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
Distinct variable groups:   𝐵,𝑔   𝑔,𝐼   𝑅,𝑔   𝑆,𝑔   𝑔,𝑊   𝑔,𝑋
Allowed substitution hints:   𝜑(𝑔)   𝑄(𝑔)   𝑈(𝑔)   𝑉(𝑔)

Proof of Theorem evlsvar
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 evlsvar.i . . . . 5 (𝜑𝐼𝑊)
2 evlsvar.s . . . . 5 (𝜑𝑆 ∈ CRing)
3 evlsvar.r . . . . 5 (𝜑𝑅 ∈ (SubRing‘𝑆))
4 evlsvar.q . . . . . 6 𝑄 = ((𝐼 evalSub 𝑆)‘𝑅)
5 eqid 2738 . . . . . 6 (𝐼 mPoly 𝑈) = (𝐼 mPoly 𝑈)
6 evlsvar.v . . . . . 6 𝑉 = (𝐼 mVar 𝑈)
7 evlsvar.u . . . . . 6 𝑈 = (𝑆s 𝑅)
8 eqid 2738 . . . . . 6 (𝑆s (𝐵m 𝐼)) = (𝑆s (𝐵m 𝐼))
9 evlsvar.b . . . . . 6 𝐵 = (Base‘𝑆)
10 eqid 2738 . . . . . 6 (algSc‘(𝐼 mPoly 𝑈)) = (algSc‘(𝐼 mPoly 𝑈))
11 eqid 2738 . . . . . 6 (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥}))
12 eqid 2738 . . . . . 6 (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))
134, 5, 6, 7, 8, 9, 10, 11, 12evlsval2 21297 . . . . 5 ((𝐼𝑊𝑆 ∈ CRing ∧ 𝑅 ∈ (SubRing‘𝑆)) → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))))
141, 2, 3, 13syl3anc 1370 . . . 4 (𝜑 → (𝑄 ∈ ((𝐼 mPoly 𝑈) RingHom (𝑆s (𝐵m 𝐼))) ∧ ((𝑄 ∘ (algSc‘(𝐼 mPoly 𝑈))) = (𝑥𝑅 ↦ ((𝐵m 𝐼) × {𝑥})) ∧ (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))))
1514simprrd 771 . . 3 (𝜑 → (𝑄𝑉) = (𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥))))
1615fveq1d 6776 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋))
17 eqid 2738 . . . . 5 (Base‘(𝐼 mPoly 𝑈)) = (Base‘(𝐼 mPoly 𝑈))
187subrgring 20027 . . . . . 6 (𝑅 ∈ (SubRing‘𝑆) → 𝑈 ∈ Ring)
193, 18syl 17 . . . . 5 (𝜑𝑈 ∈ Ring)
205, 6, 17, 1, 19mvrf2 21268 . . . 4 (𝜑𝑉:𝐼⟶(Base‘(𝐼 mPoly 𝑈)))
2120ffnd 6601 . . 3 (𝜑𝑉 Fn 𝐼)
22 evlsvar.x . . 3 (𝜑𝑋𝐼)
23 fvco2 6865 . . 3 ((𝑉 Fn 𝐼𝑋𝐼) → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
2421, 22, 23syl2anc 584 . 2 (𝜑 → ((𝑄𝑉)‘𝑋) = (𝑄‘(𝑉𝑋)))
25 fveq2 6774 . . . . 5 (𝑥 = 𝑋 → (𝑔𝑥) = (𝑔𝑋))
2625mpteq2dv 5176 . . . 4 (𝑥 = 𝑋 → (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
27 ovex 7308 . . . . 5 (𝐵m 𝐼) ∈ V
2827mptex 7099 . . . 4 (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)) ∈ V
2926, 12, 28fvmpt 6875 . . 3 (𝑋𝐼 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3022, 29syl 17 . 2 (𝜑 → ((𝑥𝐼 ↦ (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑥)))‘𝑋) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
3116, 24, 303eqtr3d 2786 1 (𝜑 → (𝑄‘(𝑉𝑋)) = (𝑔 ∈ (𝐵m 𝐼) ↦ (𝑔𝑋)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {csn 4561  cmpt 5157   × cxp 5587  ccom 5593   Fn wfn 6428  cfv 6433  (class class class)co 7275  m cmap 8615  Basecbs 16912  s cress 16941  s cpws 17157  Ringcrg 19783  CRingccrg 19784   RingHom crh 19956  SubRingcsubrg 20020  algSccascl 21059   mVar cmvr 21108   mPoly cmpl 21109   evalSub ces 21280
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-rep 5209  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588  ax-cnex 10927  ax-resscn 10928  ax-1cn 10929  ax-icn 10930  ax-addcl 10931  ax-addrcl 10932  ax-mulcl 10933  ax-mulrcl 10934  ax-mulcom 10935  ax-addass 10936  ax-mulass 10937  ax-distr 10938  ax-i2m1 10939  ax-1ne0 10940  ax-1rid 10941  ax-rnegex 10942  ax-rrecex 10943  ax-cnre 10944  ax-pre-lttri 10945  ax-pre-lttrn 10946  ax-pre-ltadd 10947  ax-pre-mulgt0 10948
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3069  df-rex 3070  df-rmo 3071  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-tp 4566  df-op 4568  df-uni 4840  df-int 4880  df-iun 4926  df-iin 4927  df-br 5075  df-opab 5137  df-mpt 5158  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-se 5545  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-pred 6202  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-isom 6442  df-riota 7232  df-ov 7278  df-oprab 7279  df-mpo 7280  df-of 7533  df-ofr 7534  df-om 7713  df-1st 7831  df-2nd 7832  df-supp 7978  df-frecs 8097  df-wrecs 8128  df-recs 8202  df-rdg 8241  df-1o 8297  df-er 8498  df-map 8617  df-pm 8618  df-ixp 8686  df-en 8734  df-dom 8735  df-sdom 8736  df-fin 8737  df-fsupp 9129  df-sup 9201  df-oi 9269  df-card 9697  df-pnf 11011  df-mnf 11012  df-xr 11013  df-ltxr 11014  df-le 11015  df-sub 11207  df-neg 11208  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12438  df-uz 12583  df-fz 13240  df-fzo 13383  df-seq 13722  df-hash 14045  df-struct 16848  df-sets 16865  df-slot 16883  df-ndx 16895  df-base 16913  df-ress 16942  df-plusg 16975  df-mulr 16976  df-sca 16978  df-vsca 16979  df-ip 16980  df-tset 16981  df-ple 16982  df-ds 16984  df-hom 16986  df-cco 16987  df-0g 17152  df-gsum 17153  df-prds 17158  df-pws 17160  df-mre 17295  df-mrc 17296  df-acs 17298  df-mgm 18326  df-sgrp 18375  df-mnd 18386  df-mhm 18430  df-submnd 18431  df-grp 18580  df-minusg 18581  df-sbg 18582  df-mulg 18701  df-subg 18752  df-ghm 18832  df-cntz 18923  df-cmn 19388  df-abl 19389  df-mgp 19721  df-ur 19738  df-srg 19742  df-ring 19785  df-cring 19786  df-rnghom 19959  df-subrg 20022  df-lmod 20125  df-lss 20194  df-lsp 20234  df-assa 21060  df-asp 21061  df-ascl 21062  df-psr 21112  df-mvr 21113  df-mpl 21114  df-evls 21282
This theorem is referenced by:  evlsvarsrng  21309  evlvar  21310  mpfproj  21312  mpfind  21317  evl1var  21502  evlsvarval  40274
  Copyright terms: Public domain W3C validator