Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssalgen Structured version   Visualization version   GIF version

Theorem sssalgen 43764
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
sssalgen.1 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
sssalgen (𝑋𝑉𝑋𝑆)

Proof of Theorem sssalgen
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssint 4892 . . . 4 (𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑋𝑡)
2 unieq 4847 . . . . . . . . 9 (𝑠 = 𝑡 𝑠 = 𝑡)
32eqeq1d 2740 . . . . . . . 8 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
4 sseq2 3943 . . . . . . . 8 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
53, 4anbi12d 630 . . . . . . 7 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
65elrab 3617 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
76biimpi 215 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
87simprrd 770 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑡)
91, 8mprgbir 3078 . . 3 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}
109a1i 11 . 2 (𝑋𝑉𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
11 sssalgen.1 . . 3 𝑆 = (SalGen‘𝑋)
12 salgenval 43752 . . 3 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1311, 12eqtr2id 2792 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑆)
1410, 13sseqtrd 3957 1 (𝑋𝑉𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1539  wcel 2108  {crab 3067  wss 3883   cuni 4836   cint 4876  cfv 6418  SAlgcsalg 43739  SalGencsalgen 43743
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-ral 3068  df-rex 3069  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-op 4565  df-uni 4837  df-int 4877  df-br 5071  df-opab 5133  df-mpt 5154  df-id 5480  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-iota 6376  df-fun 6420  df-fv 6426  df-salg 43740  df-salgen 43744
This theorem is referenced by:  dfsalgen2  43770  iooborel  43780  opnssborel  44063  cnfsmf  44163
  Copyright terms: Public domain W3C validator