| Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > sssalgen | Structured version Visualization version GIF version | ||
| Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
| Ref | Expression |
|---|---|
| sssalgen.1 | ⊢ 𝑆 = (SalGen‘𝑋) |
| Ref | Expression |
|---|---|
| sssalgen | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssint 4909 | . . . 4 ⊢ (𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}𝑋 ⊆ 𝑡) | |
| 2 | unieq 4865 | . . . . . . . . 9 ⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡) | |
| 3 | 2 | eqeq1d 2733 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋)) |
| 4 | sseq2 3956 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡)) | |
| 5 | 3, 4 | anbi12d 632 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 6 | 5 | elrab 3642 | . . . . . 6 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 7 | 6 | biimpi 216 | . . . . 5 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
| 8 | 7 | simprrd 773 | . . . 4 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → 𝑋 ⊆ 𝑡) |
| 9 | 1, 8 | mprgbir 3054 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} |
| 10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
| 11 | sssalgen.1 | . . 3 ⊢ 𝑆 = (SalGen‘𝑋) | |
| 12 | salgenval 46359 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
| 13 | 11, 12 | eqtr2id 2779 | . 2 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} = 𝑆) |
| 14 | 10, 13 | sseqtrd 3966 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2111 {crab 3395 ⊆ wss 3897 ∪ cuni 4854 ∩ cint 4892 ‘cfv 6476 SAlgcsalg 46346 SalGencsalgen 46350 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5229 ax-nul 5239 ax-pow 5298 ax-pr 5365 ax-un 7663 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-csb 3846 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4279 df-if 4471 df-pw 4547 df-sn 4572 df-pr 4574 df-op 4578 df-uni 4855 df-int 4893 df-br 5087 df-opab 5149 df-mpt 5168 df-id 5506 df-xp 5617 df-rel 5618 df-cnv 5619 df-co 5620 df-dm 5621 df-iota 6432 df-fun 6478 df-fv 6484 df-salg 46347 df-salgen 46351 |
| This theorem is referenced by: dfsalgen2 46379 iooborel 46389 opnssborel 46673 cnfsmf 46778 |
| Copyright terms: Public domain | W3C validator |