Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssalgen Structured version   Visualization version   GIF version

Theorem sssalgen 43874
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
sssalgen.1 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
sssalgen (𝑋𝑉𝑋𝑆)

Proof of Theorem sssalgen
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssint 4895 . . . 4 (𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑋𝑡)
2 unieq 4850 . . . . . . . . 9 (𝑠 = 𝑡 𝑠 = 𝑡)
32eqeq1d 2740 . . . . . . . 8 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
4 sseq2 3947 . . . . . . . 8 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
53, 4anbi12d 631 . . . . . . 7 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
65elrab 3624 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
76biimpi 215 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
87simprrd 771 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑡)
91, 8mprgbir 3079 . . 3 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}
109a1i 11 . 2 (𝑋𝑉𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
11 sssalgen.1 . . 3 𝑆 = (SalGen‘𝑋)
12 salgenval 43862 . . 3 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1311, 12eqtr2id 2791 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑆)
1410, 13sseqtrd 3961 1 (𝑋𝑉𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396   = wceq 1539  wcel 2106  {crab 3068  wss 3887   cuni 4839   cint 4879  cfv 6433  SAlgcsalg 43849  SalGencsalgen 43853
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pow 5288  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-rab 3073  df-v 3434  df-sbc 3717  df-csb 3833  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-int 4880  df-br 5075  df-opab 5137  df-mpt 5158  df-id 5489  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-iota 6391  df-fun 6435  df-fv 6441  df-salg 43850  df-salgen 43854
This theorem is referenced by:  dfsalgen2  43880  iooborel  43890  opnssborel  44173  cnfsmf  44276
  Copyright terms: Public domain W3C validator