Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssalgen Structured version   Visualization version   GIF version

Theorem sssalgen 46340
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
sssalgen.1 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
sssalgen (𝑋𝑉𝑋𝑆)

Proof of Theorem sssalgen
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssint 4931 . . . 4 (𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑋𝑡)
2 unieq 4885 . . . . . . . . 9 (𝑠 = 𝑡 𝑠 = 𝑡)
32eqeq1d 2732 . . . . . . . 8 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
4 sseq2 3976 . . . . . . . 8 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
53, 4anbi12d 632 . . . . . . 7 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
65elrab 3662 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
76biimpi 216 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
87simprrd 773 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑡)
91, 8mprgbir 3052 . . 3 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}
109a1i 11 . 2 (𝑋𝑉𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
11 sssalgen.1 . . 3 𝑆 = (SalGen‘𝑋)
12 salgenval 46326 . . 3 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1311, 12eqtr2id 2778 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑆)
1410, 13sseqtrd 3986 1 (𝑋𝑉𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  {crab 3408  wss 3917   cuni 4874   cint 4913  cfv 6514  SAlgcsalg 46313  SalGencsalgen 46317
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-sep 5254  ax-nul 5264  ax-pow 5323  ax-pr 5390  ax-un 7714
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-int 4914  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-iota 6467  df-fun 6516  df-fv 6522  df-salg 46314  df-salgen 46318
This theorem is referenced by:  dfsalgen2  46346  iooborel  46356  opnssborel  46640  cnfsmf  46745
  Copyright terms: Public domain W3C validator