![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssalgen | Structured version Visualization version GIF version |
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
sssalgen.1 | ⊢ 𝑆 = (SalGen‘𝑋) |
Ref | Expression |
---|---|
sssalgen | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4759 | . . . 4 ⊢ (𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}𝑋 ⊆ 𝑡) | |
2 | unieq 4714 | . . . . . . . . 9 ⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡) | |
3 | 2 | eqeq1d 2774 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋)) |
4 | sseq2 3879 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡)) | |
5 | 3, 4 | anbi12d 621 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
6 | 5 | elrab 3589 | . . . . . 6 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
7 | 6 | biimpi 208 | . . . . 5 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
8 | 7 | simprrd 761 | . . . 4 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → 𝑋 ⊆ 𝑡) |
9 | 1, 8 | mprgbir 3097 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} |
10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
11 | sssalgen.1 | . . 3 ⊢ 𝑆 = (SalGen‘𝑋) | |
12 | salgenval 41983 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
13 | 11, 12 | syl5req 2821 | . 2 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} = 𝑆) |
14 | 10, 13 | sseqtrd 3893 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 387 = wceq 1507 ∈ wcel 2048 {crab 3086 ⊆ wss 3825 ∪ cuni 4706 ∩ cint 4743 ‘cfv 6182 SAlgcsalg 41970 SalGencsalgen 41974 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1758 ax-4 1772 ax-5 1869 ax-6 1928 ax-7 1964 ax-8 2050 ax-9 2057 ax-10 2077 ax-11 2091 ax-12 2104 ax-13 2299 ax-ext 2745 ax-sep 5054 ax-nul 5061 ax-pow 5113 ax-pr 5180 ax-un 7273 |
This theorem depends on definitions: df-bi 199 df-an 388 df-or 834 df-3an 1070 df-tru 1510 df-ex 1743 df-nf 1747 df-sb 2014 df-mo 2544 df-eu 2580 df-clab 2754 df-cleq 2765 df-clel 2840 df-nfc 2912 df-ne 2962 df-ral 3087 df-rex 3088 df-rab 3091 df-v 3411 df-sbc 3678 df-csb 3783 df-dif 3828 df-un 3830 df-in 3832 df-ss 3839 df-nul 4174 df-if 4345 df-pw 4418 df-sn 4436 df-pr 4438 df-op 4442 df-uni 4707 df-int 4744 df-br 4924 df-opab 4986 df-mpt 5003 df-id 5305 df-xp 5406 df-rel 5407 df-cnv 5408 df-co 5409 df-dm 5410 df-iota 6146 df-fun 6184 df-fv 6190 df-salg 41971 df-salgen 41975 |
This theorem is referenced by: dfsalgen2 42001 iooborel 42011 opnssborel 42294 cnfsmf 42394 |
Copyright terms: Public domain | W3C validator |