Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  sssalgen Structured version   Visualization version   GIF version

Theorem sssalgen 46256
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.)
Hypothesis
Ref Expression
sssalgen.1 𝑆 = (SalGen‘𝑋)
Assertion
Ref Expression
sssalgen (𝑋𝑉𝑋𝑆)

Proof of Theorem sssalgen
Dummy variables 𝑠 𝑡 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 ssint 4988 . . . 4 (𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}𝑋𝑡)
2 unieq 4942 . . . . . . . . 9 (𝑠 = 𝑡 𝑠 = 𝑡)
32eqeq1d 2742 . . . . . . . 8 (𝑠 = 𝑡 → ( 𝑠 = 𝑋 𝑡 = 𝑋))
4 sseq2 4035 . . . . . . . 8 (𝑠 = 𝑡 → (𝑋𝑠𝑋𝑡))
53, 4anbi12d 631 . . . . . . 7 (𝑠 = 𝑡 → (( 𝑠 = 𝑋𝑋𝑠) ↔ ( 𝑡 = 𝑋𝑋𝑡)))
65elrab 3708 . . . . . 6 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} ↔ (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
76biimpi 216 . . . . 5 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → (𝑡 ∈ SAlg ∧ ( 𝑡 = 𝑋𝑋𝑡)))
87simprrd 773 . . . 4 (𝑡 ∈ {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} → 𝑋𝑡)
91, 8mprgbir 3074 . . 3 𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)}
109a1i 11 . 2 (𝑋𝑉𝑋 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
11 sssalgen.1 . . 3 𝑆 = (SalGen‘𝑋)
12 salgenval 46242 . . 3 (𝑋𝑉 → (SalGen‘𝑋) = {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)})
1311, 12eqtr2id 2793 . 2 (𝑋𝑉 {𝑠 ∈ SAlg ∣ ( 𝑠 = 𝑋𝑋𝑠)} = 𝑆)
1410, 13sseqtrd 4049 1 (𝑋𝑉𝑋𝑆)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  {crab 3443  wss 3976   cuni 4931   cint 4970  cfv 6573  SAlgcsalg 46229  SalGencsalgen 46233
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-int 4971  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-iota 6525  df-fun 6575  df-fv 6581  df-salg 46230  df-salgen 46234
This theorem is referenced by:  dfsalgen2  46262  iooborel  46272  opnssborel  46556  cnfsmf  46661
  Copyright terms: Public domain W3C validator