![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssalgen | Structured version Visualization version GIF version |
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
sssalgen.1 | ⊢ 𝑆 = (SalGen‘𝑋) |
Ref | Expression |
---|---|
sssalgen | ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4972 | . . . 4 ⊢ (𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ ∀𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}𝑋 ⊆ 𝑡) | |
2 | unieq 4924 | . . . . . . . . 9 ⊢ (𝑠 = 𝑡 → ∪ 𝑠 = ∪ 𝑡) | |
3 | 2 | eqeq1d 2728 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (∪ 𝑠 = ∪ 𝑋 ↔ ∪ 𝑡 = ∪ 𝑋)) |
4 | sseq2 4006 | . . . . . . . 8 ⊢ (𝑠 = 𝑡 → (𝑋 ⊆ 𝑠 ↔ 𝑋 ⊆ 𝑡)) | |
5 | 3, 4 | anbi12d 630 | . . . . . . 7 ⊢ (𝑠 = 𝑡 → ((∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠) ↔ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
6 | 5 | elrab 3681 | . . . . . 6 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} ↔ (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
7 | 6 | biimpi 215 | . . . . 5 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → (𝑡 ∈ SAlg ∧ (∪ 𝑡 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑡))) |
8 | 7 | simprrd 772 | . . . 4 ⊢ (𝑡 ∈ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} → 𝑋 ⊆ 𝑡) |
9 | 1, 8 | mprgbir 3058 | . . 3 ⊢ 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} |
10 | 9 | a1i 11 | . 2 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) |
11 | sssalgen.1 | . . 3 ⊢ 𝑆 = (SalGen‘𝑋) | |
12 | salgenval 45942 | . . 3 ⊢ (𝑋 ∈ 𝑉 → (SalGen‘𝑋) = ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)}) | |
13 | 11, 12 | eqtr2id 2779 | . 2 ⊢ (𝑋 ∈ 𝑉 → ∩ {𝑠 ∈ SAlg ∣ (∪ 𝑠 = ∪ 𝑋 ∧ 𝑋 ⊆ 𝑠)} = 𝑆) |
14 | 10, 13 | sseqtrd 4020 | 1 ⊢ (𝑋 ∈ 𝑉 → 𝑋 ⊆ 𝑆) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1534 ∈ wcel 2099 {crab 3419 ⊆ wss 3947 ∪ cuni 4913 ∩ cint 4954 ‘cfv 6554 SAlgcsalg 45929 SalGencsalgen 45933 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1790 ax-4 1804 ax-5 1906 ax-6 1964 ax-7 2004 ax-8 2101 ax-9 2109 ax-10 2130 ax-11 2147 ax-12 2167 ax-ext 2697 ax-sep 5304 ax-nul 5311 ax-pow 5369 ax-pr 5433 ax-un 7746 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3an 1086 df-tru 1537 df-fal 1547 df-ex 1775 df-nf 1779 df-sb 2061 df-mo 2529 df-eu 2558 df-clab 2704 df-cleq 2718 df-clel 2803 df-nfc 2878 df-ne 2931 df-ral 3052 df-rex 3061 df-rab 3420 df-v 3464 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4326 df-if 4534 df-pw 4609 df-sn 4634 df-pr 4636 df-op 4640 df-uni 4914 df-int 4955 df-br 5154 df-opab 5216 df-mpt 5237 df-id 5580 df-xp 5688 df-rel 5689 df-cnv 5690 df-co 5691 df-dm 5692 df-iota 6506 df-fun 6556 df-fv 6562 df-salg 45930 df-salgen 45934 |
This theorem is referenced by: dfsalgen2 45962 iooborel 45972 opnssborel 46256 cnfsmf 46361 |
Copyright terms: Public domain | W3C validator |