![]() |
Mathbox for Glauco Siliprandi |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > sssalgen | Structured version Visualization version GIF version |
Description: A set is a subset of the sigma-algebra it generates. (Contributed by Glauco Siliprandi, 3-Jan-2021.) |
Ref | Expression |
---|---|
sssalgen.1 | β’ π = (SalGenβπ) |
Ref | Expression |
---|---|
sssalgen | β’ (π β π β π β π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssint 4967 | . . . 4 β’ (π β β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} β βπ‘ β {π β SAlg β£ (βͺ π = βͺ π β§ π β π )}π β π‘) | |
2 | unieq 4918 | . . . . . . . . 9 β’ (π = π‘ β βͺ π = βͺ π‘) | |
3 | 2 | eqeq1d 2732 | . . . . . . . 8 β’ (π = π‘ β (βͺ π = βͺ π β βͺ π‘ = βͺ π)) |
4 | sseq2 4007 | . . . . . . . 8 β’ (π = π‘ β (π β π β π β π‘)) | |
5 | 3, 4 | anbi12d 629 | . . . . . . 7 β’ (π = π‘ β ((βͺ π = βͺ π β§ π β π ) β (βͺ π‘ = βͺ π β§ π β π‘))) |
6 | 5 | elrab 3682 | . . . . . 6 β’ (π‘ β {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} β (π‘ β SAlg β§ (βͺ π‘ = βͺ π β§ π β π‘))) |
7 | 6 | biimpi 215 | . . . . 5 β’ (π‘ β {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} β (π‘ β SAlg β§ (βͺ π‘ = βͺ π β§ π β π‘))) |
8 | 7 | simprrd 770 | . . . 4 β’ (π‘ β {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} β π β π‘) |
9 | 1, 8 | mprgbir 3066 | . . 3 β’ π β β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} |
10 | 9 | a1i 11 | . 2 β’ (π β π β π β β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )}) |
11 | sssalgen.1 | . . 3 β’ π = (SalGenβπ) | |
12 | salgenval 45335 | . . 3 β’ (π β π β (SalGenβπ) = β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )}) | |
13 | 11, 12 | eqtr2id 2783 | . 2 β’ (π β π β β© {π β SAlg β£ (βͺ π = βͺ π β§ π β π )} = π) |
14 | 10, 13 | sseqtrd 4021 | 1 β’ (π β π β π β π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 394 = wceq 1539 β wcel 2104 {crab 3430 β wss 3947 βͺ cuni 4907 β© cint 4949 βcfv 6542 SAlgcsalg 45322 SalGencsalgen 45326 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1911 ax-6 1969 ax-7 2009 ax-8 2106 ax-9 2114 ax-10 2135 ax-11 2152 ax-12 2169 ax-ext 2701 ax-sep 5298 ax-nul 5305 ax-pow 5362 ax-pr 5426 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2532 df-eu 2561 df-clab 2708 df-cleq 2722 df-clel 2808 df-nfc 2883 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3431 df-v 3474 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-int 4950 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-iota 6494 df-fun 6544 df-fv 6550 df-salg 45323 df-salgen 45327 |
This theorem is referenced by: dfsalgen2 45355 iooborel 45365 opnssborel 45649 cnfsmf 45754 |
Copyright terms: Public domain | W3C validator |