Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem12 Structured version   Visualization version   GIF version

Theorem fourierdlem12 46040
Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem12.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem12.2 (𝜑𝑀 ∈ ℕ)
fourierdlem12.3 (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem12.4 (𝜑𝑋 ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑋(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem12
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem12.4 . . . 4 (𝜑𝑋 ∈ ran 𝑄)
2 fourierdlem12.3 . . . . . . 7 (𝜑𝑄 ∈ (𝑃𝑀))
3 fourierdlem12.2 . . . . . . . 8 (𝜑𝑀 ∈ ℕ)
4 fourierdlem12.1 . . . . . . . . 9 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
54fourierdlem2 46030 . . . . . . . 8 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
63, 5syl 17 . . . . . . 7 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
72, 6mpbid 232 . . . . . 6 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
87simpld 494 . . . . 5 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
9 elmapi 8907 . . . . 5 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
10 ffn 6747 . . . . 5 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
11 fvelrnb 6982 . . . . 5 (𝑄 Fn (0...𝑀) → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋))
128, 9, 10, 114syl 19 . . . 4 (𝜑 → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋))
131, 12mpbid 232 . . 3 (𝜑 → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋)
1413adantr 480 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋)
158, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
1615adantr 480 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
17 fzofzp1 13814 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
1817adantl 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
1916, 18ffvelcdmd 7119 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2019adantr 480 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
21203ad2antl1 1185 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
22 frn 6754 . . . . . . . . . . . 12 (𝑄:(0...𝑀)⟶ℝ → ran 𝑄 ⊆ ℝ)
2315, 22syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ⊆ ℝ)
2423, 1sseldd 4009 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2524ad2antrr 725 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ)
26253ad2antl1 1185 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ)
2716ffvelcdmda 7118 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
28273adant3 1132 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ∈ ℝ)
2928adantr 480 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄𝑗) ∈ ℝ)
30 simpr 484 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
31 elfzoelz 13716 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
3231ad2antrr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ ℤ)
33 elfzelz 13584 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3433ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
35 zltp1le 12693 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
3632, 34, 35syl2anc 583 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
3730, 36mpbid 232 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗)
3832peano2zd 12750 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ)
39 eluz 12917 . . . . . . . . . . . . . 14 (((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗))
4038, 34, 39syl2anc 583 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗))
4137, 40mpbird 257 . . . . . . . . . . . 12 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
4241adantlll 717 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
4316ad2antrr 725 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑄:(0...𝑀)⟶ℝ)
44 0zd 12651 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℤ)
45 elfzel2 13582 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4645ad2antlr 726 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℤ)
47 elfzelz 13584 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℤ)
4847adantl 481 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℤ)
49 0red 11293 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℝ)
5047zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℝ)
5150adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ)
5231peano2zd 12750 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℤ)
5352zred 12747 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℝ)
5453adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ∈ ℝ)
5531zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
5655adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 ∈ ℝ)
57 elfzole1 13724 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 0 ≤ 𝑖)
5857adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑖)
5956ltp1d 12225 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 < (𝑖 + 1))
6049, 56, 54, 58, 59lelttrd 11448 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < (𝑖 + 1))
61 elfzle1 13587 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ((𝑖 + 1)...𝑗) → (𝑖 + 1) ≤ 𝑤)
6261adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ≤ 𝑤)
6349, 54, 51, 60, 62ltletrd 11450 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < 𝑤)
6449, 51, 63ltled 11438 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤)
6564adantlr 714 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤)
6650adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ)
6733zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
6867adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗 ∈ ℝ)
6945zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
7069adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℝ)
71 elfzle2 13588 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤𝑗)
7271adantl 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑗)
73 elfzle2 13588 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
7473adantr 480 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗𝑀)
7566, 68, 70, 72, 74letrd 11447 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑀)
7675adantll 713 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑀)
7744, 46, 48, 65, 76elfzd 13575 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀))
7877adantlll 717 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀))
7943, 78ffvelcdmd 7119 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄𝑤) ∈ ℝ)
8079adantlr 714 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄𝑤) ∈ ℝ)
81 simp-4l 782 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝜑)
82 0red 11293 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℝ)
83 elfzelz 13584 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℤ)
8483zred 12747 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℝ)
8584adantl 481 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
86 0red 11293 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℝ)
8753adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ∈ ℝ)
8884adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
89 0red 11293 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 0 ∈ ℝ)
9055ltp1d 12225 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
9189, 55, 53, 57, 90lelttrd 11448 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → 0 < (𝑖 + 1))
9291adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < (𝑖 + 1))
93 elfzle1 13587 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → (𝑖 + 1) ≤ 𝑤)
9493adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ≤ 𝑤)
9586, 87, 88, 92, 94ltletrd 11450 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤)
9695adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤)
9782, 85, 96ltled 11438 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
9897adantlll 717 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
9998adantlr 714 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
10084adantl 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
101 peano2rem 11603 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
10267, 101syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
103102adantr 480 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ)
10469adantr 480 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℝ)
105 elfzle2 13588 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ≤ (𝑗 − 1))
106105adantl 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ≤ (𝑗 − 1))
107 zlem1lt 12695 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗𝑀 ↔ (𝑗 − 1) < 𝑀))
10833, 45, 107syl2anc 583 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗𝑀 ↔ (𝑗 − 1) < 𝑀))
10973, 108mpbid 232 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
110109adantr 480 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) < 𝑀)
111100, 103, 104, 106, 110lelttrd 11448 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
112111adantlr 714 . . . . . . . . . . . . . 14 (((𝑗 ∈ (0...𝑀) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
113112adantlll 717 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
11483adantl 481 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℤ)
115 0zd 12651 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℤ)
11645ad3antlr 730 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℤ)
117 elfzo 13718 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
118114, 115, 116, 117syl3anc 1371 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
11999, 113, 118mpbir2and 712 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ (0..^𝑀))
12015adantr 480 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
121 elfzofz 13732 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
122121adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → 𝑤 ∈ (0...𝑀))
123120, 122ffvelcdmd 7119 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) ∈ ℝ)
124 fzofzp1 13814 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0..^𝑀) → (𝑤 + 1) ∈ (0...𝑀))
125124adantl 481 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑤 + 1) ∈ (0...𝑀))
126120, 125ffvelcdmd 7119 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄‘(𝑤 + 1)) ∈ ℝ)
127 eleq1w 2827 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑖 ∈ (0..^𝑀) ↔ 𝑤 ∈ (0..^𝑀)))
128127anbi2d 629 . . . . . . . . . . . . . . 15 (𝑖 = 𝑤 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑤 ∈ (0..^𝑀))))
129 fveq2 6920 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑄𝑖) = (𝑄𝑤))
130 oveq1 7455 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑤 → (𝑖 + 1) = (𝑤 + 1))
131130fveq2d 6924 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑤 + 1)))
132129, 131breq12d 5179 . . . . . . . . . . . . . . 15 (𝑖 = 𝑤 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑤) < (𝑄‘(𝑤 + 1))))
133128, 132imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = 𝑤 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) < (𝑄‘(𝑤 + 1)))))
1347simprrd 773 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
135134r19.21bi 3257 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
136133, 135chvarvv 1998 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) < (𝑄‘(𝑤 + 1)))
137123, 126, 136ltled 11438 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
13881, 119, 137syl2anc 583 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
13942, 80, 138monoord 14083 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄𝑗))
1401393adantl3 1168 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄𝑗))
14115ffvelcdmda 7118 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
1421413adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ∈ ℝ)
143 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) = 𝑋)
144142, 143eqled 11393 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ≤ 𝑋)
1451443adant1r 1177 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ≤ 𝑋)
146145adantr 480 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄𝑗) ≤ 𝑋)
14721, 29, 26, 140, 146letrd 11447 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ 𝑋)
14821, 26, 147lensymd 11441 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ 𝑋 < (𝑄‘(𝑖 + 1)))
149148intnand 488 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
15067ad2antlr 726 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ)
15155ad3antlr 730 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ)
152 simpr 484 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗)
153150, 151, 152nltled 11440 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
1541533adantl3 1168 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
155 eqcom 2747 . . . . . . . . . . . . 13 ((𝑄𝑗) = 𝑋𝑋 = (𝑄𝑗))
156155biimpi 216 . . . . . . . . . . . 12 ((𝑄𝑗) = 𝑋𝑋 = (𝑄𝑗))
157156adantr 480 . . . . . . . . . . 11 (((𝑄𝑗) = 𝑋𝑗𝑖) → 𝑋 = (𝑄𝑗))
1581573ad2antl3 1187 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → 𝑋 = (𝑄𝑗))
15933ad2antlr 726 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑗 ∈ ℤ)
16031ad2antrr 725 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ ℤ)
161 simpr 484 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑗𝑖)
162 eluz2 12909 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗𝑖))
163159, 160, 161, 162syl3anbrc 1343 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ (ℤ𝑗))
164163adantlll 717 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ (ℤ𝑗))
16516ad2antrr 725 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
166 0zd 12651 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℤ)
16745ad2antlr 726 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℤ)
168 elfzelz 13584 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℤ)
169168adantl 481 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℤ)
170166, 167, 1693jca 1128 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ))
171 0red 11293 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℝ)
17267adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗 ∈ ℝ)
173168zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℝ)
174173adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ)
175 elfzle1 13587 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
176175adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑗)
177 elfzle1 13587 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...𝑖) → 𝑗𝑤)
178177adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗𝑤)
179171, 172, 174, 176, 178letrd 11447 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤)
180179adantll 713 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤)
181173adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ)
182 elfzoel2 13715 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
183182zred 12747 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℝ)
184183adantr 480 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℝ)
18555adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 ∈ ℝ)
186 elfzle2 13588 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑗...𝑖) → 𝑤𝑖)
187186adantl 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑖)
188 elfzolt2 13725 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 < 𝑀)
189188adantr 480 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 < 𝑀)
190181, 185, 184, 187, 189lelttrd 11448 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 < 𝑀)
191181, 184, 190ltled 11438 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑀)
192191adantlr 714 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑀)
193170, 180, 192jca32 515 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
194193adantlll 717 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
195 elfz2 13574 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
196194, 195sylibr 234 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ (0...𝑀))
197165, 196ffvelcdmd 7119 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄𝑤) ∈ ℝ)
198197adantlr 714 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄𝑤) ∈ ℝ)
199 simplll 774 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝜑)
200 0red 11293 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈ ℝ)
20167ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗 ∈ ℝ)
202 elfzelz 13584 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℤ)
203202zred 12747 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℝ)
204203adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ)
205175ad2antlr 726 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑗)
206 elfzle1 13587 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑗𝑤)
207206adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗𝑤)
208200, 201, 204, 205, 207letrd 11447 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑤)
209203adantl 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ)
21055adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 ∈ ℝ)
211183adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℝ)
212 peano2rem 11603 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
213210, 212syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
214 elfzle2 13588 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ≤ (𝑖 − 1))
215214adantl 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ≤ (𝑖 − 1))
216210ltm1d 12227 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
217209, 213, 210, 215, 216lelttrd 11448 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑖)
218188adantr 480 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 < 𝑀)
219209, 210, 211, 217, 218lttrd 11451 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀)
220219adantlr 714 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀)
221202adantl 481 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℤ)
222 0zd 12651 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈ ℤ)
223182ad2antrr 725 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℤ)
224221, 222, 223, 117syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
225208, 220, 224mpbir2and 712 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀))
226225adantlll 717 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀))
227199, 226, 137syl2anc 583 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
228227adantlr 714 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
229164, 198, 228monoord 14083 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → (𝑄𝑗) ≤ (𝑄𝑖))
2302293adantl3 1168 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → (𝑄𝑗) ≤ (𝑄𝑖))
231158, 230eqbrtrd 5188 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → 𝑋 ≤ (𝑄𝑖))
23224adantr 480 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
233 elfzofz 13732 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
234233adantl 481 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
23516, 234ffvelcdmd 7119 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
236232, 235lenltd 11436 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
237236adantr 480 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗𝑖) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
2382373ad2antl1 1185 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
239231, 238mpbid 232 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → ¬ (𝑄𝑖) < 𝑋)
240154, 239syldan 590 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄𝑖) < 𝑋)
241240intnanrd 489 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
242149, 241pm2.61dan 812 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
243242intnand 488 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1)))))
244 elioo3g 13436 . . . 4 (𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1)))))
245243, 244sylnibr 329 . . 3 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
246245rexlimdv3a 3165 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋 → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
24714, 246mpd 15 1 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 206  wa 395  w3a 1087   = wceq 1537  wcel 2108  wral 3067  wrex 3076  {crab 3443  wss 3976   class class class wbr 5166  cmpt 5249  ran crn 5701   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cr 11183  0cc0 11184  1c1 11185   + caddc 11187  *cxr 11323   < clt 11324  cle 11325  cmin 11520  cn 12293  cz 12639  cuz 12903  (,)cioo 13407  ...cfz 13567  ..^cfzo 13711
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-er 8763  df-map 8886  df-en 9004  df-dom 9005  df-sdom 9006  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-n0 12554  df-z 12640  df-uz 12904  df-ioo 13411  df-fz 13568  df-fzo 13712
This theorem is referenced by:  fourierdlem38  46066  fourierdlem74  46101  fourierdlem75  46102  fourierdlem88  46115  fourierdlem103  46130  fourierdlem104  46131
  Copyright terms: Public domain W3C validator