Users' Mathboxes Mathbox for Glauco Siliprandi < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  fourierdlem12 Structured version   Visualization version   GIF version

Theorem fourierdlem12 44350
Description: A point of a partition is not an element of any open interval determined by the partition. (Contributed by Glauco Siliprandi, 11-Dec-2019.)
Hypotheses
Ref Expression
fourierdlem12.1 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
fourierdlem12.2 (𝜑𝑀 ∈ ℕ)
fourierdlem12.3 (𝜑𝑄 ∈ (𝑃𝑀))
fourierdlem12.4 (𝜑𝑋 ∈ ran 𝑄)
Assertion
Ref Expression
fourierdlem12 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Distinct variable groups:   𝐴,𝑚,𝑝   𝐵,𝑚,𝑝   𝑖,𝑀,𝑚,𝑝   𝑄,𝑖,𝑝   𝜑,𝑖
Allowed substitution hints:   𝜑(𝑚,𝑝)   𝐴(𝑖)   𝐵(𝑖)   𝑃(𝑖,𝑚,𝑝)   𝑄(𝑚)   𝑋(𝑖,𝑚,𝑝)

Proof of Theorem fourierdlem12
Dummy variables 𝑗 𝑤 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fourierdlem12.4 . . . 4 (𝜑𝑋 ∈ ran 𝑄)
2 fourierdlem12.3 . . . . . . . 8 (𝜑𝑄 ∈ (𝑃𝑀))
3 fourierdlem12.2 . . . . . . . . 9 (𝜑𝑀 ∈ ℕ)
4 fourierdlem12.1 . . . . . . . . . 10 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m (0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝𝑖) < (𝑝‘(𝑖 + 1)))})
54fourierdlem2 44340 . . . . . . . . 9 (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
63, 5syl 17 . . . . . . . 8 (𝜑 → (𝑄 ∈ (𝑃𝑀) ↔ (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1))))))
72, 6mpbid 231 . . . . . . 7 (𝜑 → (𝑄 ∈ (ℝ ↑m (0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))))
87simpld 495 . . . . . 6 (𝜑𝑄 ∈ (ℝ ↑m (0...𝑀)))
9 elmapi 8787 . . . . . 6 (𝑄 ∈ (ℝ ↑m (0...𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
10 ffn 6668 . . . . . 6 (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀))
118, 9, 103syl 18 . . . . 5 (𝜑𝑄 Fn (0...𝑀))
12 fvelrnb 6903 . . . . 5 (𝑄 Fn (0...𝑀) → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋))
1311, 12syl 17 . . . 4 (𝜑 → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋))
141, 13mpbid 231 . . 3 (𝜑 → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋)
1514adantr 481 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → ∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋)
168, 9syl 17 . . . . . . . . . . . 12 (𝜑𝑄:(0...𝑀)⟶ℝ)
1716adantr 481 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
18 fzofzp1 13669 . . . . . . . . . . . 12 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀))
1918adantl 482 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀))
2017, 19ffvelcdmd 7036 . . . . . . . . . 10 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
2120adantr 481 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
22213ad2antl1 1185 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ)
23 frn 6675 . . . . . . . . . . . 12 (𝑄:(0...𝑀)⟶ℝ → ran 𝑄 ⊆ ℝ)
2416, 23syl 17 . . . . . . . . . . 11 (𝜑 → ran 𝑄 ⊆ ℝ)
2524, 1sseldd 3945 . . . . . . . . . 10 (𝜑𝑋 ∈ ℝ)
2625ad2antrr 724 . . . . . . . . 9 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ)
27263ad2antl1 1185 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ)
2817ffvelcdmda 7035 . . . . . . . . . . 11 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
29283adant3 1132 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ∈ ℝ)
3029adantr 481 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄𝑗) ∈ ℝ)
31 simpr 485 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗)
32 elfzoelz 13572 . . . . . . . . . . . . . . . 16 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ)
3332ad2antrr 724 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ ℤ)
34 elfzelz 13441 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ)
3534ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ)
36 zltp1le 12553 . . . . . . . . . . . . . . 15 ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
3733, 35, 36syl2anc 584 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗))
3831, 37mpbid 231 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗)
3933peano2zd 12610 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ)
40 eluz 12777 . . . . . . . . . . . . . 14 (((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗))
4139, 35, 40syl2anc 584 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑗 ∈ (ℤ‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗))
4238, 41mpbird 256 . . . . . . . . . . . 12 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
4342adantlll 716 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ‘(𝑖 + 1)))
4417ad2antrr 724 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑄:(0...𝑀)⟶ℝ)
45 0zd 12511 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℤ)
46 elfzel2 13439 . . . . . . . . . . . . . . . 16 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ)
4746ad2antlr 725 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℤ)
48 elfzelz 13441 . . . . . . . . . . . . . . . 16 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℤ)
4948adantl 482 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℤ)
50 0red 11158 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℝ)
5148zred 12607 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℝ)
5251adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ)
5332peano2zd 12610 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℤ)
5453zred 12607 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℝ)
5554adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ∈ ℝ)
5632zred 12607 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ)
5756adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 ∈ ℝ)
58 elfzole1 13580 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 0 ≤ 𝑖)
5958adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑖)
6057ltp1d 12085 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 < (𝑖 + 1))
6150, 57, 55, 59, 60lelttrd 11313 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < (𝑖 + 1))
62 elfzle1 13444 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ((𝑖 + 1)...𝑗) → (𝑖 + 1) ≤ 𝑤)
6362adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ≤ 𝑤)
6450, 55, 52, 61, 63ltletrd 11315 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < 𝑤)
6550, 52, 64ltled 11303 . . . . . . . . . . . . . . . 16 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤)
6665adantlr 713 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤)
6751adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ)
6834zred 12607 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ)
6968adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗 ∈ ℝ)
7046zred 12607 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ)
7170adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℝ)
72 elfzle2 13445 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤𝑗)
7372adantl 482 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑗)
74 elfzle2 13445 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → 𝑗𝑀)
7574adantr 481 . . . . . . . . . . . . . . . . 17 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗𝑀)
7667, 69, 71, 73, 75letrd 11312 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑀)
7776adantll 712 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤𝑀)
7845, 47, 49, 66, 77elfzd 13432 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀))
7978adantlll 716 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀))
8044, 79ffvelcdmd 7036 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄𝑤) ∈ ℝ)
8180adantlr 713 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄𝑤) ∈ ℝ)
82 simp-4l 781 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝜑)
83 0red 11158 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℝ)
84 elfzelz 13441 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℤ)
8584zred 12607 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℝ)
8685adantl 482 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
87 0red 11158 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℝ)
8854adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ∈ ℝ)
8985adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
90 0red 11158 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 0 ∈ ℝ)
9156ltp1d 12085 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1))
9290, 56, 54, 58, 91lelttrd 11313 . . . . . . . . . . . . . . . . . . 19 (𝑖 ∈ (0..^𝑀) → 0 < (𝑖 + 1))
9392adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < (𝑖 + 1))
94 elfzle1 13444 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → (𝑖 + 1) ≤ 𝑤)
9594adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ≤ 𝑤)
9687, 88, 89, 93, 95ltletrd 11315 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤)
9796adantlr 713 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤)
9883, 86, 97ltled 11303 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
9998adantlll 716 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
10099adantlr 713 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤)
10185adantl 482 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ)
102 peano2rem 11468 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ ℝ → (𝑗 − 1) ∈ ℝ)
10368, 102syl 17 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ)
104103adantr 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ)
10570adantr 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℝ)
106 elfzle2 13445 . . . . . . . . . . . . . . . . 17 (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ≤ (𝑗 − 1))
107106adantl 482 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ≤ (𝑗 − 1))
108 zlem1lt 12555 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗𝑀 ↔ (𝑗 − 1) < 𝑀))
10934, 46, 108syl2anc 584 . . . . . . . . . . . . . . . . . 18 (𝑗 ∈ (0...𝑀) → (𝑗𝑀 ↔ (𝑗 − 1) < 𝑀))
11074, 109mpbid 231 . . . . . . . . . . . . . . . . 17 (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀)
111110adantr 481 . . . . . . . . . . . . . . . 16 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) < 𝑀)
112101, 104, 105, 107, 111lelttrd 11313 . . . . . . . . . . . . . . 15 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
113112adantlr 713 . . . . . . . . . . . . . 14 (((𝑗 ∈ (0...𝑀) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
114113adantlll 716 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀)
11584adantl 482 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℤ)
116 0zd 12511 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈ ℤ)
11746ad3antlr 729 . . . . . . . . . . . . . 14 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℤ)
118 elfzo 13574 . . . . . . . . . . . . . 14 ((𝑤 ∈ ℤ ∧ 0 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
119115, 116, 117, 118syl3anc 1371 . . . . . . . . . . . . 13 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
120100, 114, 119mpbir2and 711 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ (0..^𝑀))
12116adantr 481 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ)
122 elfzofz 13588 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀))
123122adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → 𝑤 ∈ (0...𝑀))
124121, 123ffvelcdmd 7036 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) ∈ ℝ)
125 fzofzp1 13669 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0..^𝑀) → (𝑤 + 1) ∈ (0...𝑀))
126125adantl 482 . . . . . . . . . . . . . 14 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑤 + 1) ∈ (0...𝑀))
127121, 126ffvelcdmd 7036 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄‘(𝑤 + 1)) ∈ ℝ)
128 eleq1w 2820 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑖 ∈ (0..^𝑀) ↔ 𝑤 ∈ (0..^𝑀)))
129128anbi2d 629 . . . . . . . . . . . . . . 15 (𝑖 = 𝑤 → ((𝜑𝑖 ∈ (0..^𝑀)) ↔ (𝜑𝑤 ∈ (0..^𝑀))))
130 fveq2 6842 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑄𝑖) = (𝑄𝑤))
131 oveq1 7364 . . . . . . . . . . . . . . . . 17 (𝑖 = 𝑤 → (𝑖 + 1) = (𝑤 + 1))
132131fveq2d 6846 . . . . . . . . . . . . . . . 16 (𝑖 = 𝑤 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑤 + 1)))
133130, 132breq12d 5118 . . . . . . . . . . . . . . 15 (𝑖 = 𝑤 → ((𝑄𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄𝑤) < (𝑄‘(𝑤 + 1))))
134129, 133imbi12d 344 . . . . . . . . . . . . . 14 (𝑖 = 𝑤 → (((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) < (𝑄‘(𝑤 + 1)))))
1357simprrd 772 . . . . . . . . . . . . . . 15 (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄𝑖) < (𝑄‘(𝑖 + 1)))
136135r19.21bi 3234 . . . . . . . . . . . . . 14 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) < (𝑄‘(𝑖 + 1)))
137134, 136chvarvv 2002 . . . . . . . . . . . . 13 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) < (𝑄‘(𝑤 + 1)))
138124, 127, 137ltled 11303 . . . . . . . . . . . 12 ((𝜑𝑤 ∈ (0..^𝑀)) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
13982, 120, 138syl2anc 584 . . . . . . . . . . 11 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
14043, 81, 139monoord 13938 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄𝑗))
1411403adantl3 1168 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄𝑗))
14216ffvelcdmda 7035 . . . . . . . . . . . . 13 ((𝜑𝑗 ∈ (0...𝑀)) → (𝑄𝑗) ∈ ℝ)
1431423adant3 1132 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ∈ ℝ)
144 simp3 1138 . . . . . . . . . . . 12 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) = 𝑋)
145143, 144eqled 11258 . . . . . . . . . . 11 ((𝜑𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ≤ 𝑋)
1461453adant1r 1177 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → (𝑄𝑗) ≤ 𝑋)
147146adantr 481 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄𝑗) ≤ 𝑋)
14822, 30, 27, 141, 147letrd 11312 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ 𝑋)
14922, 27, 148lensymd 11306 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ 𝑋 < (𝑄‘(𝑖 + 1)))
150149intnand 489 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
15168ad2antlr 725 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ)
15256ad3antlr 729 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ)
153 simpr 485 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗)
154151, 152, 153nltled 11305 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
1551543adantl3 1168 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → 𝑗𝑖)
156 eqcom 2743 . . . . . . . . . . . . 13 ((𝑄𝑗) = 𝑋𝑋 = (𝑄𝑗))
157156biimpi 215 . . . . . . . . . . . 12 ((𝑄𝑗) = 𝑋𝑋 = (𝑄𝑗))
158157adantr 481 . . . . . . . . . . 11 (((𝑄𝑗) = 𝑋𝑗𝑖) → 𝑋 = (𝑄𝑗))
1591583ad2antl3 1187 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → 𝑋 = (𝑄𝑗))
16034ad2antlr 725 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑗 ∈ ℤ)
16132ad2antrr 724 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ ℤ)
162 simpr 485 . . . . . . . . . . . . . 14 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑗𝑖)
163 eluz2 12769 . . . . . . . . . . . . . 14 (𝑖 ∈ (ℤ𝑗) ↔ (𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗𝑖))
164160, 161, 162, 163syl3anbrc 1343 . . . . . . . . . . . . 13 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ (ℤ𝑗))
165164adantlll 716 . . . . . . . . . . . 12 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → 𝑖 ∈ (ℤ𝑗))
16617ad2antrr 724 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑄:(0...𝑀)⟶ℝ)
167 0zd 12511 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℤ)
16846ad2antlr 725 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℤ)
169 elfzelz 13441 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℤ)
170169adantl 482 . . . . . . . . . . . . . . . . . 18 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℤ)
171167, 168, 1703jca 1128 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ))
172 0red 11158 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℝ)
17368adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗 ∈ ℝ)
174169zred 12607 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℝ)
175174adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ)
176 elfzle1 13444 . . . . . . . . . . . . . . . . . . . 20 (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗)
177176adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑗)
178 elfzle1 13444 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...𝑖) → 𝑗𝑤)
179178adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗𝑤)
180172, 173, 175, 177, 179letrd 11312 . . . . . . . . . . . . . . . . . 18 ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤)
181180adantll 712 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤)
182174adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ)
183 elfzoel2 13571 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℤ)
184183zred 12607 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℝ)
185184adantr 481 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℝ)
18656adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 ∈ ℝ)
187 elfzle2 13445 . . . . . . . . . . . . . . . . . . . . 21 (𝑤 ∈ (𝑗...𝑖) → 𝑤𝑖)
188187adantl 482 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑖)
189 elfzolt2 13581 . . . . . . . . . . . . . . . . . . . . 21 (𝑖 ∈ (0..^𝑀) → 𝑖 < 𝑀)
190189adantr 481 . . . . . . . . . . . . . . . . . . . 20 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 < 𝑀)
191182, 186, 185, 188, 190lelttrd 11313 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 < 𝑀)
192182, 185, 191ltled 11303 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑀)
193192adantlr 713 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤𝑀)
194171, 181, 193jca32 516 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
195194adantlll 716 . . . . . . . . . . . . . . 15 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
196 elfz2 13431 . . . . . . . . . . . . . . 15 (𝑤 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤ 𝑤𝑤𝑀)))
197195, 196sylibr 233 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ (0...𝑀))
198166, 197ffvelcdmd 7036 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄𝑤) ∈ ℝ)
199198adantlr 713 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄𝑤) ∈ ℝ)
200 simplll 773 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝜑)
201 0red 11158 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈ ℝ)
20268ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗 ∈ ℝ)
203 elfzelz 13441 . . . . . . . . . . . . . . . . . . 19 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℤ)
204203zred 12607 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℝ)
205204adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ)
206176ad2antlr 725 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑗)
207 elfzle1 13444 . . . . . . . . . . . . . . . . . 18 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑗𝑤)
208207adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗𝑤)
209201, 202, 205, 206, 208letrd 11312 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑤)
210204adantl 482 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ)
21156adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 ∈ ℝ)
212184adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℝ)
213 peano2rem 11468 . . . . . . . . . . . . . . . . . . . 20 (𝑖 ∈ ℝ → (𝑖 − 1) ∈ ℝ)
214211, 213syl 17 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ)
215 elfzle2 13445 . . . . . . . . . . . . . . . . . . . 20 (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ≤ (𝑖 − 1))
216215adantl 482 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ≤ (𝑖 − 1))
217211ltm1d 12087 . . . . . . . . . . . . . . . . . . 19 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) < 𝑖)
218210, 214, 211, 216, 217lelttrd 11313 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑖)
219189adantr 481 . . . . . . . . . . . . . . . . . 18 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 < 𝑀)
220210, 211, 212, 218, 219lttrd 11316 . . . . . . . . . . . . . . . . 17 ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀)
221220adantlr 713 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀)
222203adantl 482 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℤ)
223 0zd 12511 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈ ℤ)
224183ad2antrr 724 . . . . . . . . . . . . . . . . 17 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℤ)
225222, 223, 224, 118syl3anc 1371 . . . . . . . . . . . . . . . 16 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤𝑤 < 𝑀)))
226209, 221, 225mpbir2and 711 . . . . . . . . . . . . . . 15 (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀))
227226adantlll 716 . . . . . . . . . . . . . 14 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀))
228200, 227, 138syl2anc 584 . . . . . . . . . . . . 13 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
229228adantlr 713 . . . . . . . . . . . 12 (((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄𝑤) ≤ (𝑄‘(𝑤 + 1)))
230165, 199, 229monoord 13938 . . . . . . . . . . 11 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗𝑖) → (𝑄𝑗) ≤ (𝑄𝑖))
2312303adantl3 1168 . . . . . . . . . 10 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → (𝑄𝑗) ≤ (𝑄𝑖))
232159, 231eqbrtrd 5127 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → 𝑋 ≤ (𝑄𝑖))
23325adantr 481 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ)
234 elfzofz 13588 . . . . . . . . . . . . . 14 (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀))
235234adantl 482 . . . . . . . . . . . . 13 ((𝜑𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀))
23617, 235ffvelcdmd 7036 . . . . . . . . . . . 12 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑄𝑖) ∈ ℝ)
237233, 236lenltd 11301 . . . . . . . . . . 11 ((𝜑𝑖 ∈ (0..^𝑀)) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
238237adantr 481 . . . . . . . . . 10 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗𝑖) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
2392383ad2antl1 1185 . . . . . . . . 9 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → (𝑋 ≤ (𝑄𝑖) ↔ ¬ (𝑄𝑖) < 𝑋))
240232, 239mpbid 231 . . . . . . . 8 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ 𝑗𝑖) → ¬ (𝑄𝑖) < 𝑋)
241155, 240syldan 591 . . . . . . 7 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄𝑖) < 𝑋)
242241intnanrd 490 . . . . . 6 ((((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
243150, 242pm2.61dan 811 . . . . 5 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1))))
244243intnand 489 . . . 4 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1)))))
245 elioo3g 13293 . . . 4 (𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (((𝑄𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ*𝑋 ∈ ℝ*) ∧ ((𝑄𝑖) < 𝑋𝑋 < (𝑄‘(𝑖 + 1)))))
246244, 245sylnibr 328 . . 3 (((𝜑𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄𝑗) = 𝑋) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
247246rexlimdv3a 3156 . 2 ((𝜑𝑖 ∈ (0..^𝑀)) → (∃𝑗 ∈ (0...𝑀)(𝑄𝑗) = 𝑋 → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1)))))
24815, 247mpd 15 1 ((𝜑𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄𝑖)(,)(𝑄‘(𝑖 + 1))))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 205  wa 396  w3a 1087   = wceq 1541  wcel 2106  wral 3064  wrex 3073  {crab 3407  wss 3910   class class class wbr 5105  cmpt 5188  ran crn 5634   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cr 11050  0cc0 11051  1c1 11052   + caddc 11054  *cxr 11188   < clt 11189  cle 11190  cmin 11385  cn 12153  cz 12499  cuz 12763  (,)cioo 13264  ...cfz 13424  ..^cfzo 13567
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-er 8648  df-map 8767  df-en 8884  df-dom 8885  df-sdom 8886  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-nn 12154  df-n0 12414  df-z 12500  df-uz 12764  df-ioo 13268  df-fz 13425  df-fzo 13568
This theorem is referenced by:  fourierdlem38  44376  fourierdlem74  44411  fourierdlem75  44412  fourierdlem88  44425  fourierdlem103  44440  fourierdlem104  44441
  Copyright terms: Public domain W3C validator