| Step | Hyp | Ref
| Expression |
| 1 | | fourierdlem12.4 |
. . . 4
⊢ (𝜑 → 𝑋 ∈ ran 𝑄) |
| 2 | | fourierdlem12.3 |
. . . . . . 7
⊢ (𝜑 → 𝑄 ∈ (𝑃‘𝑀)) |
| 3 | | fourierdlem12.2 |
. . . . . . . 8
⊢ (𝜑 → 𝑀 ∈ ℕ) |
| 4 | | fourierdlem12.1 |
. . . . . . . . 9
⊢ 𝑃 = (𝑚 ∈ ℕ ↦ {𝑝 ∈ (ℝ ↑m
(0...𝑚)) ∣ (((𝑝‘0) = 𝐴 ∧ (𝑝‘𝑚) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑚)(𝑝‘𝑖) < (𝑝‘(𝑖 + 1)))}) |
| 5 | 4 | fourierdlem2 46124 |
. . . . . . . 8
⊢ (𝑀 ∈ ℕ → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 6 | 3, 5 | syl 17 |
. . . . . . 7
⊢ (𝜑 → (𝑄 ∈ (𝑃‘𝑀) ↔ (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1)))))) |
| 7 | 2, 6 | mpbid 232 |
. . . . . 6
⊢ (𝜑 → (𝑄 ∈ (ℝ ↑m
(0...𝑀)) ∧ (((𝑄‘0) = 𝐴 ∧ (𝑄‘𝑀) = 𝐵) ∧ ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))))) |
| 8 | 7 | simpld 494 |
. . . . 5
⊢ (𝜑 → 𝑄 ∈ (ℝ ↑m
(0...𝑀))) |
| 9 | | elmapi 8889 |
. . . . 5
⊢ (𝑄 ∈ (ℝ
↑m (0...𝑀))
→ 𝑄:(0...𝑀)⟶ℝ) |
| 10 | | ffn 6736 |
. . . . 5
⊢ (𝑄:(0...𝑀)⟶ℝ → 𝑄 Fn (0...𝑀)) |
| 11 | | fvelrnb 6969 |
. . . . 5
⊢ (𝑄 Fn (0...𝑀) → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑋)) |
| 12 | 8, 9, 10, 11 | 4syl 19 |
. . . 4
⊢ (𝜑 → (𝑋 ∈ ran 𝑄 ↔ ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑋)) |
| 13 | 1, 12 | mpbid 232 |
. . 3
⊢ (𝜑 → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑋) |
| 14 | 13 | adantr 480 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑋) |
| 15 | 8, 9 | syl 17 |
. . . . . . . . . . . 12
⊢ (𝜑 → 𝑄:(0...𝑀)⟶ℝ) |
| 16 | 15 | adantr 480 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 17 | | fzofzp1 13803 |
. . . . . . . . . . . 12
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ (0...𝑀)) |
| 18 | 17 | adantl 481 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑖 + 1) ∈ (0...𝑀)) |
| 19 | 16, 18 | ffvelcdmd 7105 |
. . . . . . . . . 10
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 20 | 19 | adantr 480 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 21 | 20 | 3ad2antl1 1186 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ∈ ℝ) |
| 22 | | frn 6743 |
. . . . . . . . . . . 12
⊢ (𝑄:(0...𝑀)⟶ℝ → ran 𝑄 ⊆
ℝ) |
| 23 | 15, 22 | syl 17 |
. . . . . . . . . . 11
⊢ (𝜑 → ran 𝑄 ⊆ ℝ) |
| 24 | 23, 1 | sseldd 3984 |
. . . . . . . . . 10
⊢ (𝜑 → 𝑋 ∈ ℝ) |
| 25 | 24 | ad2antrr 726 |
. . . . . . . . 9
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ) |
| 26 | 25 | 3ad2antl1 1186 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → 𝑋 ∈ ℝ) |
| 27 | 16 | ffvelcdmda 7104 |
. . . . . . . . . . 11
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 28 | 27 | 3adant3 1133 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → (𝑄‘𝑗) ∈ ℝ) |
| 29 | 28 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘𝑗) ∈ ℝ) |
| 30 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 < 𝑗) |
| 31 | | elfzoelz 13699 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℤ) |
| 32 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑖 ∈ ℤ) |
| 33 | | elfzelz 13564 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℤ) |
| 34 | 33 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ ℤ) |
| 35 | | zltp1le 12667 |
. . . . . . . . . . . . . . 15
⊢ ((𝑖 ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
| 36 | 32, 34, 35 | syl2anc 584 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 < 𝑗 ↔ (𝑖 + 1) ≤ 𝑗)) |
| 37 | 30, 36 | mpbid 232 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ≤ 𝑗) |
| 38 | 32 | peano2zd 12725 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑖 + 1) ∈ ℤ) |
| 39 | | eluz 12892 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 + 1) ∈ ℤ ∧ 𝑗 ∈ ℤ) → (𝑗 ∈
(ℤ≥‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗)) |
| 40 | 38, 34, 39 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑗 ∈ (ℤ≥‘(𝑖 + 1)) ↔ (𝑖 + 1) ≤ 𝑗)) |
| 41 | 37, 40 | mpbird 257 |
. . . . . . . . . . . 12
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ≥‘(𝑖 + 1))) |
| 42 | 41 | adantlll 718 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → 𝑗 ∈ (ℤ≥‘(𝑖 + 1))) |
| 43 | 16 | ad2antrr 726 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑄:(0...𝑀)⟶ℝ) |
| 44 | | 0zd 12625 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℤ) |
| 45 | | elfzel2 13562 |
. . . . . . . . . . . . . . . 16
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℤ) |
| 46 | 45 | ad2antlr 727 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℤ) |
| 47 | | elfzelz 13564 |
. . . . . . . . . . . . . . . 16
⊢ (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℤ) |
| 48 | 47 | adantl 481 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℤ) |
| 49 | | 0red 11264 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ∈ ℝ) |
| 50 | 47 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ∈ ℝ) |
| 51 | 50 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ) |
| 52 | 31 | peano2zd 12725 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℤ) |
| 53 | 52 | zred 12722 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑀) → (𝑖 + 1) ∈ ℝ) |
| 54 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ∈ ℝ) |
| 55 | 31 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ ℝ) |
| 56 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 ∈ ℝ) |
| 57 | | elfzole1 13707 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → 0 ≤ 𝑖) |
| 58 | 57 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑖) |
| 59 | 56 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑖 < (𝑖 + 1)) |
| 60 | 49, 56, 54, 58, 59 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < (𝑖 + 1)) |
| 61 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ((𝑖 + 1)...𝑗) → (𝑖 + 1) ≤ 𝑤) |
| 62 | 61 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑖 + 1) ≤ 𝑤) |
| 63 | 49, 54, 51, 60, 62 | ltletrd 11421 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 < 𝑤) |
| 64 | 49, 51, 63 | ltled 11409 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤) |
| 65 | 64 | adantlr 715 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 0 ≤ 𝑤) |
| 66 | 50 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ ℝ) |
| 67 | 33 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ∈ ℝ) |
| 68 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗 ∈ ℝ) |
| 69 | 45 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → 𝑀 ∈ ℝ) |
| 70 | 69 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑀 ∈ ℝ) |
| 71 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ((𝑖 + 1)...𝑗) → 𝑤 ≤ 𝑗) |
| 72 | 71 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ≤ 𝑗) |
| 73 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → 𝑗 ≤ 𝑀) |
| 74 | 73 | adantr 480 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑗 ≤ 𝑀) |
| 75 | 66, 68, 70, 72, 74 | letrd 11418 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ≤ 𝑀) |
| 76 | 75 | adantll 714 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ≤ 𝑀) |
| 77 | 44, 46, 48, 65, 76 | elfzd 13555 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀)) |
| 78 | 77 | adantlll 718 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → 𝑤 ∈ (0...𝑀)) |
| 79 | 43, 78 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄‘𝑤) ∈ ℝ) |
| 80 | 79 | adantlr 715 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...𝑗)) → (𝑄‘𝑤) ∈ ℝ) |
| 81 | | simp-4l 783 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝜑) |
| 82 | | 0red 11264 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈
ℝ) |
| 83 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℤ) |
| 84 | 83 | zred 12722 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ∈ ℝ) |
| 85 | 84 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ) |
| 86 | | 0red 11264 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈
ℝ) |
| 87 | 53 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ∈ ℝ) |
| 88 | 84 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ) |
| 89 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → 0 ∈ ℝ) |
| 90 | 55 | ltp1d 12198 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 < (𝑖 + 1)) |
| 91 | 89, 55, 53, 57, 90 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑖 ∈ (0..^𝑀) → 0 < (𝑖 + 1)) |
| 92 | 91 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < (𝑖 + 1)) |
| 93 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → (𝑖 + 1) ≤ 𝑤) |
| 94 | 93 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑖 + 1) ≤ 𝑤) |
| 95 | 86, 87, 88, 92, 94 | ltletrd 11421 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤) |
| 96 | 95 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 < 𝑤) |
| 97 | 82, 85, 96 | ltled 11409 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤) |
| 98 | 97 | adantlll 718 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤) |
| 99 | 98 | adantlr 715 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ≤ 𝑤) |
| 100 | 84 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℝ) |
| 101 | | peano2rem 11576 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ ℝ → (𝑗 − 1) ∈
ℝ) |
| 102 | 67, 101 | syl 17 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) ∈ ℝ) |
| 103 | 102 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) ∈ ℝ) |
| 104 | 69 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℝ) |
| 105 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1)) → 𝑤 ≤ (𝑗 − 1)) |
| 106 | 105 | adantl 481 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ≤ (𝑗 − 1)) |
| 107 | | zlem1lt 12669 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ ℤ ∧ 𝑀 ∈ ℤ) → (𝑗 ≤ 𝑀 ↔ (𝑗 − 1) < 𝑀)) |
| 108 | 33, 45, 107 | syl2anc 584 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 ≤ 𝑀 ↔ (𝑗 − 1) < 𝑀)) |
| 109 | 73, 108 | mpbid 232 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑗 ∈ (0...𝑀) → (𝑗 − 1) < 𝑀) |
| 110 | 109 | adantr 480 |
. . . . . . . . . . . . . . . 16
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑗 − 1) < 𝑀) |
| 111 | 100, 103,
104, 106, 110 | lelttrd 11419 |
. . . . . . . . . . . . . . 15
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀) |
| 112 | 111 | adantlr 715 |
. . . . . . . . . . . . . 14
⊢ (((𝑗 ∈ (0...𝑀) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀) |
| 113 | 112 | adantlll 718 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 < 𝑀) |
| 114 | 83 | adantl 481 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ ℤ) |
| 115 | | 0zd 12625 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 0 ∈
ℤ) |
| 116 | 45 | ad3antlr 731 |
. . . . . . . . . . . . . 14
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑀 ∈ ℤ) |
| 117 | | elfzo 13701 |
. . . . . . . . . . . . . 14
⊢ ((𝑤 ∈ ℤ ∧ 0 ∈
ℤ ∧ 𝑀 ∈
ℤ) → (𝑤 ∈
(0..^𝑀) ↔ (0 ≤
𝑤 ∧ 𝑤 < 𝑀))) |
| 118 | 114, 115,
116, 117 | syl3anc 1373 |
. . . . . . . . . . . . 13
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤 ∧ 𝑤 < 𝑀))) |
| 119 | 99, 113, 118 | mpbir2and 713 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → 𝑤 ∈ (0..^𝑀)) |
| 120 | 15 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → 𝑄:(0...𝑀)⟶ℝ) |
| 121 | | elfzofz 13715 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (0..^𝑀) → 𝑤 ∈ (0...𝑀)) |
| 122 | 121 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → 𝑤 ∈ (0...𝑀)) |
| 123 | 120, 122 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑄‘𝑤) ∈ ℝ) |
| 124 | | fzofzp1 13803 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (0..^𝑀) → (𝑤 + 1) ∈ (0...𝑀)) |
| 125 | 124 | adantl 481 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑤 + 1) ∈ (0...𝑀)) |
| 126 | 120, 125 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑄‘(𝑤 + 1)) ∈ ℝ) |
| 127 | | eleq1w 2824 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑤 → (𝑖 ∈ (0..^𝑀) ↔ 𝑤 ∈ (0..^𝑀))) |
| 128 | 127 | anbi2d 630 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑤 → ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ↔ (𝜑 ∧ 𝑤 ∈ (0..^𝑀)))) |
| 129 | | fveq2 6906 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑤 → (𝑄‘𝑖) = (𝑄‘𝑤)) |
| 130 | | oveq1 7438 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑖 = 𝑤 → (𝑖 + 1) = (𝑤 + 1)) |
| 131 | 130 | fveq2d 6910 |
. . . . . . . . . . . . . . . 16
⊢ (𝑖 = 𝑤 → (𝑄‘(𝑖 + 1)) = (𝑄‘(𝑤 + 1))) |
| 132 | 129, 131 | breq12d 5156 |
. . . . . . . . . . . . . . 15
⊢ (𝑖 = 𝑤 → ((𝑄‘𝑖) < (𝑄‘(𝑖 + 1)) ↔ (𝑄‘𝑤) < (𝑄‘(𝑤 + 1)))) |
| 133 | 128, 132 | imbi12d 344 |
. . . . . . . . . . . . . 14
⊢ (𝑖 = 𝑤 → (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) ↔ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑄‘𝑤) < (𝑄‘(𝑤 + 1))))) |
| 134 | 7 | simprrd 774 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → ∀𝑖 ∈ (0..^𝑀)(𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 135 | 134 | r19.21bi 3251 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) < (𝑄‘(𝑖 + 1))) |
| 136 | 133, 135 | chvarvv 1998 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑄‘𝑤) < (𝑄‘(𝑤 + 1))) |
| 137 | 123, 126,
136 | ltled 11409 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑤 ∈ (0..^𝑀)) → (𝑄‘𝑤) ≤ (𝑄‘(𝑤 + 1))) |
| 138 | 81, 119, 137 | syl2anc 584 |
. . . . . . . . . . 11
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) ∧ 𝑤 ∈ ((𝑖 + 1)...(𝑗 − 1))) → (𝑄‘𝑤) ≤ (𝑄‘(𝑤 + 1))) |
| 139 | 42, 80, 138 | monoord 14073 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄‘𝑗)) |
| 140 | 139 | 3adantl3 1169 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ (𝑄‘𝑗)) |
| 141 | 15 | ffvelcdmda 7104 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀)) → (𝑄‘𝑗) ∈ ℝ) |
| 142 | 141 | 3adant3 1133 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → (𝑄‘𝑗) ∈ ℝ) |
| 143 | | simp3 1139 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → (𝑄‘𝑗) = 𝑋) |
| 144 | 142, 143 | eqled 11364 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → (𝑄‘𝑗) ≤ 𝑋) |
| 145 | 144 | 3adant1r 1178 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → (𝑄‘𝑗) ≤ 𝑋) |
| 146 | 145 | adantr 480 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘𝑗) ≤ 𝑋) |
| 147 | 21, 29, 26, 140, 146 | letrd 11418 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → (𝑄‘(𝑖 + 1)) ≤ 𝑋) |
| 148 | 21, 26, 147 | lensymd 11412 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ 𝑋 < (𝑄‘(𝑖 + 1))) |
| 149 | 148 | intnand 488 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑖 < 𝑗) → ¬ ((𝑄‘𝑖) < 𝑋 ∧ 𝑋 < (𝑄‘(𝑖 + 1)))) |
| 150 | 67 | ad2antlr 727 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ∈ ℝ) |
| 151 | 55 | ad3antlr 731 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑖 ∈ ℝ) |
| 152 | | simpr 484 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → ¬ 𝑖 < 𝑗) |
| 153 | 150, 151,
152 | nltled 11411 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ≤ 𝑖) |
| 154 | 153 | 3adantl3 1169 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → 𝑗 ≤ 𝑖) |
| 155 | | eqcom 2744 |
. . . . . . . . . . . . 13
⊢ ((𝑄‘𝑗) = 𝑋 ↔ 𝑋 = (𝑄‘𝑗)) |
| 156 | 155 | biimpi 216 |
. . . . . . . . . . . 12
⊢ ((𝑄‘𝑗) = 𝑋 → 𝑋 = (𝑄‘𝑗)) |
| 157 | 156 | adantr 480 |
. . . . . . . . . . 11
⊢ (((𝑄‘𝑗) = 𝑋 ∧ 𝑗 ≤ 𝑖) → 𝑋 = (𝑄‘𝑗)) |
| 158 | 157 | 3ad2antl3 1188 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑗 ≤ 𝑖) → 𝑋 = (𝑄‘𝑗)) |
| 159 | 33 | ad2antlr 727 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → 𝑗 ∈ ℤ) |
| 160 | 31 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → 𝑖 ∈ ℤ) |
| 161 | | simpr 484 |
. . . . . . . . . . . . . 14
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → 𝑗 ≤ 𝑖) |
| 162 | | eluz2 12884 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈
(ℤ≥‘𝑗) ↔ (𝑗 ∈ ℤ ∧ 𝑖 ∈ ℤ ∧ 𝑗 ≤ 𝑖)) |
| 163 | 159, 160,
161, 162 | syl3anbrc 1344 |
. . . . . . . . . . . . 13
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → 𝑖 ∈ (ℤ≥‘𝑗)) |
| 164 | 163 | adantlll 718 |
. . . . . . . . . . . 12
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → 𝑖 ∈ (ℤ≥‘𝑗)) |
| 165 | 16 | ad2antrr 726 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑄:(0...𝑀)⟶ℝ) |
| 166 | | 0zd 12625 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℤ) |
| 167 | 45 | ad2antlr 727 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℤ) |
| 168 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℤ) |
| 169 | 168 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℤ) |
| 170 | 166, 167,
169 | 3jca 1129 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈
ℤ)) |
| 171 | | 0red 11264 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ∈ ℝ) |
| 172 | 67 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗 ∈ ℝ) |
| 173 | 168 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝑗...𝑖) → 𝑤 ∈ ℝ) |
| 174 | 173 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ) |
| 175 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑗 ∈ (0...𝑀) → 0 ≤ 𝑗) |
| 176 | 175 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑗) |
| 177 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝑗...𝑖) → 𝑗 ≤ 𝑤) |
| 178 | 177 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑗 ≤ 𝑤) |
| 179 | 171, 172,
174, 176, 178 | letrd 11418 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑗 ∈ (0...𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤) |
| 180 | 179 | adantll 714 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 0 ≤ 𝑤) |
| 181 | 173 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ ℝ) |
| 182 | | elfzoel2 13698 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℤ) |
| 183 | 182 | zred 12722 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ (0..^𝑀) → 𝑀 ∈ ℝ) |
| 184 | 183 | adantr 480 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑀 ∈ ℝ) |
| 185 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 ∈ ℝ) |
| 186 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑤 ∈ (𝑗...𝑖) → 𝑤 ≤ 𝑖) |
| 187 | 186 | adantl 481 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ≤ 𝑖) |
| 188 | | elfzolt2 13708 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 < 𝑀) |
| 189 | 188 | adantr 480 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑖 < 𝑀) |
| 190 | 181, 185,
184, 187, 189 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 < 𝑀) |
| 191 | 181, 184,
190 | ltled 11409 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ≤ 𝑀) |
| 192 | 191 | adantlr 715 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ≤ 𝑀) |
| 193 | 170, 180,
192 | jca32 515 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤
𝑤 ∧ 𝑤 ≤ 𝑀))) |
| 194 | 193 | adantlll 718 |
. . . . . . . . . . . . . . 15
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤
𝑤 ∧ 𝑤 ≤ 𝑀))) |
| 195 | | elfz2 13554 |
. . . . . . . . . . . . . . 15
⊢ (𝑤 ∈ (0...𝑀) ↔ ((0 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑤 ∈ ℤ) ∧ (0 ≤
𝑤 ∧ 𝑤 ≤ 𝑀))) |
| 196 | 194, 195 | sylibr 234 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → 𝑤 ∈ (0...𝑀)) |
| 197 | 165, 196 | ffvelcdmd 7105 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄‘𝑤) ∈ ℝ) |
| 198 | 197 | adantlr 715 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) ∧ 𝑤 ∈ (𝑗...𝑖)) → (𝑄‘𝑤) ∈ ℝ) |
| 199 | | simplll 775 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝜑) |
| 200 | | 0red 11264 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈
ℝ) |
| 201 | 67 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗 ∈ ℝ) |
| 202 | | elfzelz 13564 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℤ) |
| 203 | 202 | zred 12722 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ∈ ℝ) |
| 204 | 203 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ) |
| 205 | 175 | ad2antlr 727 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑗) |
| 206 | | elfzle1 13567 |
. . . . . . . . . . . . . . . . . 18
⊢ (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑗 ≤ 𝑤) |
| 207 | 206 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑗 ≤ 𝑤) |
| 208 | 200, 201,
204, 205, 207 | letrd 11418 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ≤ 𝑤) |
| 209 | 203 | adantl 481 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℝ) |
| 210 | 55 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 ∈ ℝ) |
| 211 | 183 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℝ) |
| 212 | | peano2rem 11576 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑖 ∈ ℝ → (𝑖 − 1) ∈
ℝ) |
| 213 | 210, 212 | syl 17 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) ∈ ℝ) |
| 214 | | elfzle2 13568 |
. . . . . . . . . . . . . . . . . . . 20
⊢ (𝑤 ∈ (𝑗...(𝑖 − 1)) → 𝑤 ≤ (𝑖 − 1)) |
| 215 | 214 | adantl 481 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ≤ (𝑖 − 1)) |
| 216 | 210 | ltm1d 12200 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑖 − 1) < 𝑖) |
| 217 | 209, 213,
210, 215, 216 | lelttrd 11419 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑖) |
| 218 | 188 | adantr 480 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑖 < 𝑀) |
| 219 | 209, 210,
211, 217, 218 | lttrd 11422 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝑖 ∈ (0..^𝑀) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀) |
| 220 | 219 | adantlr 715 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 < 𝑀) |
| 221 | 202 | adantl 481 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ ℤ) |
| 222 | | 0zd 12625 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 0 ∈
ℤ) |
| 223 | 182 | ad2antrr 726 |
. . . . . . . . . . . . . . . . 17
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑀 ∈ ℤ) |
| 224 | 221, 222,
223, 117 | syl3anc 1373 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑤 ∈ (0..^𝑀) ↔ (0 ≤ 𝑤 ∧ 𝑤 < 𝑀))) |
| 225 | 208, 220,
224 | mpbir2and 713 |
. . . . . . . . . . . . . . 15
⊢ (((𝑖 ∈ (0..^𝑀) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀)) |
| 226 | 225 | adantlll 718 |
. . . . . . . . . . . . . 14
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → 𝑤 ∈ (0..^𝑀)) |
| 227 | 199, 226,
137 | syl2anc 584 |
. . . . . . . . . . . . 13
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄‘𝑤) ≤ (𝑄‘(𝑤 + 1))) |
| 228 | 227 | adantlr 715 |
. . . . . . . . . . . 12
⊢
(((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) ∧ 𝑤 ∈ (𝑗...(𝑖 − 1))) → (𝑄‘𝑤) ≤ (𝑄‘(𝑤 + 1))) |
| 229 | 164, 198,
228 | monoord 14073 |
. . . . . . . . . . 11
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀)) ∧ 𝑗 ≤ 𝑖) → (𝑄‘𝑗) ≤ (𝑄‘𝑖)) |
| 230 | 229 | 3adantl3 1169 |
. . . . . . . . . 10
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑗 ≤ 𝑖) → (𝑄‘𝑗) ≤ (𝑄‘𝑖)) |
| 231 | 158, 230 | eqbrtrd 5165 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑗 ≤ 𝑖) → 𝑋 ≤ (𝑄‘𝑖)) |
| 232 | 24 | adantr 480 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑋 ∈ ℝ) |
| 233 | | elfzofz 13715 |
. . . . . . . . . . . . . 14
⊢ (𝑖 ∈ (0..^𝑀) → 𝑖 ∈ (0...𝑀)) |
| 234 | 233 | adantl 481 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → 𝑖 ∈ (0...𝑀)) |
| 235 | 16, 234 | ffvelcdmd 7105 |
. . . . . . . . . . . 12
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑄‘𝑖) ∈ ℝ) |
| 236 | 232, 235 | lenltd 11407 |
. . . . . . . . . . 11
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (𝑋 ≤ (𝑄‘𝑖) ↔ ¬ (𝑄‘𝑖) < 𝑋)) |
| 237 | 236 | adantr 480 |
. . . . . . . . . 10
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ≤ 𝑖) → (𝑋 ≤ (𝑄‘𝑖) ↔ ¬ (𝑄‘𝑖) < 𝑋)) |
| 238 | 237 | 3ad2antl1 1186 |
. . . . . . . . 9
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑗 ≤ 𝑖) → (𝑋 ≤ (𝑄‘𝑖) ↔ ¬ (𝑄‘𝑖) < 𝑋)) |
| 239 | 231, 238 | mpbid 232 |
. . . . . . . 8
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ 𝑗 ≤ 𝑖) → ¬ (𝑄‘𝑖) < 𝑋) |
| 240 | 154, 239 | syldan 591 |
. . . . . . 7
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ (𝑄‘𝑖) < 𝑋) |
| 241 | 240 | intnanrd 489 |
. . . . . 6
⊢ ((((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) ∧ ¬ 𝑖 < 𝑗) → ¬ ((𝑄‘𝑖) < 𝑋 ∧ 𝑋 < (𝑄‘(𝑖 + 1)))) |
| 242 | 149, 241 | pm2.61dan 813 |
. . . . 5
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → ¬ ((𝑄‘𝑖) < 𝑋 ∧ 𝑋 < (𝑄‘(𝑖 + 1)))) |
| 243 | 242 | intnand 488 |
. . . 4
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → ¬ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*)
∧ ((𝑄‘𝑖) < 𝑋 ∧ 𝑋 < (𝑄‘(𝑖 + 1))))) |
| 244 | | elioo3g 13416 |
. . . 4
⊢ (𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))) ↔ (((𝑄‘𝑖) ∈ ℝ* ∧ (𝑄‘(𝑖 + 1)) ∈ ℝ* ∧ 𝑋 ∈ ℝ*)
∧ ((𝑄‘𝑖) < 𝑋 ∧ 𝑋 < (𝑄‘(𝑖 + 1))))) |
| 245 | 243, 244 | sylnibr 329 |
. . 3
⊢ (((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) ∧ 𝑗 ∈ (0...𝑀) ∧ (𝑄‘𝑗) = 𝑋) → ¬ 𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |
| 246 | 245 | rexlimdv3a 3159 |
. 2
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → (∃𝑗 ∈ (0...𝑀)(𝑄‘𝑗) = 𝑋 → ¬ 𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1))))) |
| 247 | 14, 246 | mpd 15 |
1
⊢ ((𝜑 ∧ 𝑖 ∈ (0..^𝑀)) → ¬ 𝑋 ∈ ((𝑄‘𝑖)(,)(𝑄‘(𝑖 + 1)))) |