| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvs1 | Structured version Visualization version GIF version | ||
| Description: Scalar product with the ring unity. (ax-hvmulid 31026 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvs1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvs1.u | ⊢ 1 = (1r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvs1 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmodvs1.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2736 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | lmodvs1.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | 2, 3, 4 | lmod1cl 20888 | . . 3 ⊢ (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
| 7 | simpr 484 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | lmodvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | eqid 2736 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | lmodvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | eqid 2736 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 12 | eqid 2736 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 20864 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g‘𝑊)𝑋)) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋)) ∧ (( 1 (+g‘𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r‘𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋))) |
| 14 | 13 | simprrd 773 | . 2 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ( 1 · 𝑋) = 𝑋) |
| 15 | 1, 6, 6, 7, 7, 14 | syl122anc 1380 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1539 ∈ wcel 2107 ‘cfv 6560 (class class class)co 7432 Basecbs 17248 +gcplusg 17298 .rcmulr 17299 Scalarcsca 17301 ·𝑠 cvsca 17302 1rcur 20179 LModclmod 20859 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-sep 5295 ax-nul 5305 ax-pow 5364 ax-pr 5431 ax-un 7756 ax-cnex 11212 ax-resscn 11213 ax-1cn 11214 ax-icn 11215 ax-addcl 11216 ax-addrcl 11217 ax-mulcl 11218 ax-mulrcl 11219 ax-mulcom 11220 ax-addass 11221 ax-mulass 11222 ax-distr 11223 ax-i2m1 11224 ax-1ne0 11225 ax-1rid 11226 ax-rnegex 11227 ax-rrecex 11228 ax-cnre 11229 ax-pre-lttri 11230 ax-pre-lttrn 11231 ax-pre-ltadd 11232 ax-pre-mulgt0 11233 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3436 df-v 3481 df-sbc 3788 df-csb 3899 df-dif 3953 df-un 3955 df-in 3957 df-ss 3967 df-pss 3970 df-nul 4333 df-if 4525 df-pw 4601 df-sn 4626 df-pr 4628 df-op 4632 df-uni 4907 df-iun 4992 df-br 5143 df-opab 5205 df-mpt 5225 df-tr 5259 df-id 5577 df-eprel 5583 df-po 5591 df-so 5592 df-fr 5636 df-we 5638 df-xp 5690 df-rel 5691 df-cnv 5692 df-co 5693 df-dm 5694 df-rn 5695 df-res 5696 df-ima 5697 df-pred 6320 df-ord 6386 df-on 6387 df-lim 6388 df-suc 6389 df-iota 6513 df-fun 6562 df-fn 6563 df-f 6564 df-f1 6565 df-fo 6566 df-f1o 6567 df-fv 6568 df-riota 7389 df-ov 7435 df-oprab 7436 df-mpo 7437 df-om 7889 df-2nd 8016 df-frecs 8307 df-wrecs 8338 df-recs 8412 df-rdg 8451 df-er 8746 df-en 8987 df-dom 8988 df-sdom 8989 df-pnf 11298 df-mnf 11299 df-xr 11300 df-ltxr 11301 df-le 11302 df-sub 11495 df-neg 11496 df-nn 12268 df-2 12330 df-sets 17202 df-slot 17220 df-ndx 17232 df-base 17249 df-plusg 17311 df-0g 17487 df-mgm 18654 df-sgrp 18733 df-mnd 18749 df-mgp 20139 df-ur 20180 df-ring 20233 df-lmod 20861 |
| This theorem is referenced by: lmodfopne 20899 lmodvneg1 20904 lmodcom 20907 lssvacl 20942 islss3 20958 prdslmodd 20968 lspsn 21001 islmhm2 21038 lbsind2 21081 lvecvs0or 21111 lssvs0or 21113 lvecinv 21116 lspsnvs 21117 lspsneq 21125 lspfixed 21131 lspexch 21132 lspsolv 21146 frlmup2 21820 lindfind2 21839 ascl1 21906 assamulgscmlem1 21920 coe1pwmul 22283 ply1scl1OLD 22298 ply1idvr1OLD 22300 scmatid 22521 scmatmhm 22541 matinv 22684 decpmatid 22777 idpm2idmp 22808 chfacfscmulgsum 22867 cpmadugsumlemF 22883 clmvs1 25127 deg1pwle 26160 deg1pw 26161 ply1remlem 26205 imaslmod 33382 coe1mon 33611 deg1vr 33615 lfl0 39067 lfladd 39068 dochfl1 41479 lcfl7lem 41502 mapdpglem21 41695 mapdpglem30 41705 mapdpglem31 41706 hgmapval1 41896 prjsperref 42621 mendlmod 43206 lmod0rng 48150 ply1vr1smo 48304 linc1 48347 ldepspr 48395 lincresunit3lem3 48396 islindeps2 48405 |
| Copyright terms: Public domain | W3C validator |