![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > lmodvs1 | Structured version Visualization version GIF version |
Description: Scalar product with the ring unity. (ax-hvmulid 30514 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs1.v | β’ π = (Baseβπ) |
lmodvs1.f | β’ πΉ = (Scalarβπ) |
lmodvs1.s | β’ Β· = ( Β·π βπ) |
lmodvs1.u | β’ 1 = (1rβπΉ) |
Ref | Expression |
---|---|
lmodvs1 | β’ ((π β LMod β§ π β π) β ( 1 Β· π) = π) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 483 | . 2 β’ ((π β LMod β§ π β π) β π β LMod) | |
2 | lmodvs1.f | . . . 4 β’ πΉ = (Scalarβπ) | |
3 | eqid 2732 | . . . 4 β’ (BaseβπΉ) = (BaseβπΉ) | |
4 | lmodvs1.u | . . . 4 β’ 1 = (1rβπΉ) | |
5 | 2, 3, 4 | lmod1cl 20643 | . . 3 β’ (π β LMod β 1 β (BaseβπΉ)) |
6 | 5 | adantr 481 | . 2 β’ ((π β LMod β§ π β π) β 1 β (BaseβπΉ)) |
7 | simpr 485 | . 2 β’ ((π β LMod β§ π β π) β π β π) | |
8 | lmodvs1.v | . . . 4 β’ π = (Baseβπ) | |
9 | eqid 2732 | . . . 4 β’ (+gβπ) = (+gβπ) | |
10 | lmodvs1.s | . . . 4 β’ Β· = ( Β·π βπ) | |
11 | eqid 2732 | . . . 4 β’ (+gβπΉ) = (+gβπΉ) | |
12 | eqid 2732 | . . . 4 β’ (.rβπΉ) = (.rβπΉ) | |
13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 20619 | . . 3 β’ ((π β LMod β§ ( 1 β (BaseβπΉ) β§ 1 β (BaseβπΉ)) β§ (π β π β§ π β π)) β ((( 1 Β· π) β π β§ ( 1 Β· (π(+gβπ)π)) = (( 1 Β· π)(+gβπ)( 1 Β· π)) β§ (( 1 (+gβπΉ) 1 ) Β· π) = (( 1 Β· π)(+gβπ)( 1 Β· π))) β§ ((( 1 (.rβπΉ) 1 ) Β· π) = ( 1 Β· ( 1 Β· π)) β§ ( 1 Β· π) = π))) |
14 | 13 | simprrd 772 | . 2 β’ ((π β LMod β§ ( 1 β (BaseβπΉ) β§ 1 β (BaseβπΉ)) β§ (π β π β§ π β π)) β ( 1 Β· π) = π) |
15 | 1, 6, 6, 7, 7, 14 | syl122anc 1379 | 1 β’ ((π β LMod β§ π β π) β ( 1 Β· π) = π) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 β§ w3a 1087 = wceq 1541 β wcel 2106 βcfv 6543 (class class class)co 7411 Basecbs 17148 +gcplusg 17201 .rcmulr 17202 Scalarcsca 17204 Β·π cvsca 17205 1rcur 20075 LModclmod 20614 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pow 5363 ax-pr 5427 ax-un 7727 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-nel 3047 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-csb 3894 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-iun 4999 df-br 5149 df-opab 5211 df-mpt 5232 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-pred 6300 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-riota 7367 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-2nd 7978 df-frecs 8268 df-wrecs 8299 df-recs 8373 df-rdg 8412 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-sets 17101 df-slot 17119 df-ndx 17131 df-base 17149 df-plusg 17214 df-0g 17391 df-mgm 18565 df-sgrp 18644 df-mnd 18660 df-mgp 20029 df-ur 20076 df-ring 20129 df-lmod 20616 |
This theorem is referenced by: lmodfopne 20654 lmodvneg1 20659 lmodcom 20662 lssvacl 20709 islss3 20714 prdslmodd 20724 lspsn 20757 islmhm2 20793 lbsind2 20836 lvecvs0or 20866 lssvs0or 20868 lvecinv 20871 lspsnvs 20872 lspsneq 20880 lspfixed 20886 lspexch 20887 lspsolv 20901 frlmup2 21573 lindfind2 21592 ascl1 21658 assamulgscmlem1 21672 coe1pwmul 22021 ply1scl1OLD 22036 ply1idvr1 22037 scmatid 22236 scmatmhm 22256 matinv 22399 decpmatid 22492 idpm2idmp 22523 chfacfscmulgsum 22582 cpmadugsumlemF 22598 clmvs1 24833 deg1pwle 25861 deg1pw 25862 ply1remlem 25904 imaslmod 32726 coe1mon 32926 lfl0 38238 lfladd 38239 dochfl1 40650 lcfl7lem 40673 mapdpglem21 40866 mapdpglem30 40876 mapdpglem31 40877 hgmapval1 41067 prjsperref 41650 mendlmod 42237 lmod0rng 46909 ply1vr1smo 47151 linc1 47194 ldepspr 47242 lincresunit3lem3 47243 islindeps2 47252 |
Copyright terms: Public domain | W3C validator |