Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > lmodvs1 | Structured version Visualization version GIF version |
Description: Scalar product with ring unit. (ax-hvmulid 29111 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
Ref | Expression |
---|---|
lmodvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
lmodvs1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
lmodvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
lmodvs1.u | ⊢ 1 = (1r‘𝐹) |
Ref | Expression |
---|---|
lmodvs1 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpl 486 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
2 | lmodvs1.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
3 | eqid 2738 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
4 | lmodvs1.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
5 | 2, 3, 4 | lmod1cl 19951 | . . 3 ⊢ (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹)) |
6 | 5 | adantr 484 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
7 | simpr 488 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
8 | lmodvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
9 | eqid 2738 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
10 | lmodvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
11 | eqid 2738 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
12 | eqid 2738 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 19929 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g‘𝑊)𝑋)) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋)) ∧ (( 1 (+g‘𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r‘𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋))) |
14 | 13 | simprrd 774 | . 2 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ( 1 · 𝑋) = 𝑋) |
15 | 1, 6, 6, 7, 7, 14 | syl122anc 1381 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 399 ∧ w3a 1089 = wceq 1543 ∈ wcel 2111 ‘cfv 6398 (class class class)co 7232 Basecbs 16785 +gcplusg 16827 .rcmulr 16828 Scalarcsca 16830 ·𝑠 cvsca 16831 1rcur 19541 LModclmod 19924 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1803 ax-4 1817 ax-5 1918 ax-6 1976 ax-7 2016 ax-8 2113 ax-9 2121 ax-10 2142 ax-11 2159 ax-12 2176 ax-ext 2709 ax-sep 5207 ax-nul 5214 ax-pow 5273 ax-pr 5337 ax-un 7542 ax-cnex 10810 ax-resscn 10811 ax-1cn 10812 ax-icn 10813 ax-addcl 10814 ax-addrcl 10815 ax-mulcl 10816 ax-mulrcl 10817 ax-mulcom 10818 ax-addass 10819 ax-mulass 10820 ax-distr 10821 ax-i2m1 10822 ax-1ne0 10823 ax-1rid 10824 ax-rnegex 10825 ax-rrecex 10826 ax-cnre 10827 ax-pre-lttri 10828 ax-pre-lttrn 10829 ax-pre-ltadd 10830 ax-pre-mulgt0 10831 |
This theorem depends on definitions: df-bi 210 df-an 400 df-or 848 df-3or 1090 df-3an 1091 df-tru 1546 df-fal 1556 df-ex 1788 df-nf 1792 df-sb 2072 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2887 df-ne 2942 df-nel 3048 df-ral 3067 df-rex 3068 df-reu 3069 df-rmo 3070 df-rab 3071 df-v 3423 df-sbc 3710 df-csb 3827 df-dif 3884 df-un 3886 df-in 3888 df-ss 3898 df-pss 3900 df-nul 4253 df-if 4455 df-pw 4530 df-sn 4557 df-pr 4559 df-tp 4561 df-op 4563 df-uni 4835 df-iun 4921 df-br 5069 df-opab 5131 df-mpt 5151 df-tr 5177 df-id 5470 df-eprel 5475 df-po 5483 df-so 5484 df-fr 5524 df-we 5526 df-xp 5572 df-rel 5573 df-cnv 5574 df-co 5575 df-dm 5576 df-rn 5577 df-res 5578 df-ima 5579 df-pred 6176 df-ord 6234 df-on 6235 df-lim 6236 df-suc 6237 df-iota 6356 df-fun 6400 df-fn 6401 df-f 6402 df-f1 6403 df-fo 6404 df-f1o 6405 df-fv 6406 df-riota 7189 df-ov 7235 df-oprab 7236 df-mpo 7237 df-om 7664 df-wrecs 8068 df-recs 8129 df-rdg 8167 df-er 8412 df-en 8648 df-dom 8649 df-sdom 8650 df-pnf 10894 df-mnf 10895 df-xr 10896 df-ltxr 10897 df-le 10898 df-sub 11089 df-neg 11090 df-nn 11856 df-2 11918 df-sets 16742 df-slot 16760 df-ndx 16770 df-base 16786 df-plusg 16840 df-0g 16971 df-mgm 18139 df-sgrp 18188 df-mnd 18199 df-mgp 19530 df-ur 19542 df-ring 19589 df-lmod 19926 |
This theorem is referenced by: lmodfopne 19962 lmodvneg1 19967 lmodcom 19970 lssvacl 20016 islss3 20021 prdslmodd 20031 lspsn 20064 islmhm2 20100 lbsind2 20143 lvecvs0or 20170 lssvs0or 20172 lvecinv 20175 lspsnvs 20176 lspsneq 20184 lspfixed 20190 lspexch 20191 lspsolv 20205 frlmup2 20786 lindfind2 20805 ascl1 20869 assamulgscmlem1 20883 coe1pwmul 21224 ply1scl1 21237 ply1idvr1 21238 scmatid 21435 scmatmhm 21455 matinv 21598 decpmatid 21691 idpm2idmp 21722 chfacfscmulgsum 21781 cpmadugsumlemF 21797 clmvs1 24014 deg1pwle 25041 deg1pw 25042 ply1remlem 25084 imaslmod 31291 lfl0 36843 lfladd 36844 dochfl1 39254 lcfl7lem 39277 mapdpglem21 39470 mapdpglem30 39480 mapdpglem31 39481 hgmapval1 39671 prjsperref 40182 mendlmod 40750 lmod0rng 45128 ply1vr1smo 45424 linc1 45468 ldepspr 45516 lincresunit3lem3 45517 islindeps2 45526 |
Copyright terms: Public domain | W3C validator |