MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  lmodvs1 Structured version   Visualization version   GIF version

Theorem lmodvs1 19387
Description: Scalar product with ring unit. (ax-hvmulid 28565 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.)
Hypotheses
Ref Expression
lmodvs1.v 𝑉 = (Base‘𝑊)
lmodvs1.f 𝐹 = (Scalar‘𝑊)
lmodvs1.s · = ( ·𝑠𝑊)
lmodvs1.u 1 = (1r𝐹)
Assertion
Ref Expression
lmodvs1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)

Proof of Theorem lmodvs1
StepHypRef Expression
1 simpl 475 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑊 ∈ LMod)
2 lmodvs1.f . . . 4 𝐹 = (Scalar‘𝑊)
3 eqid 2778 . . . 4 (Base‘𝐹) = (Base‘𝐹)
4 lmodvs1.u . . . 4 1 = (1r𝐹)
52, 3, 4lmod1cl 19386 . . 3 (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹))
65adantr 473 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 1 ∈ (Base‘𝐹))
7 simpr 477 . 2 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → 𝑋𝑉)
8 lmodvs1.v . . . 4 𝑉 = (Base‘𝑊)
9 eqid 2778 . . . 4 (+g𝑊) = (+g𝑊)
10 lmodvs1.s . . . 4 · = ( ·𝑠𝑊)
11 eqid 2778 . . . 4 (+g𝐹) = (+g𝐹)
12 eqid 2778 . . . 4 (.r𝐹) = (.r𝐹)
138, 9, 10, 2, 3, 11, 12, 4lmodlema 19364 . . 3 ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g𝑊)𝑋)) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋)) ∧ (( 1 (+g𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋)))
1413simprrd 761 . 2 ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋𝑉𝑋𝑉)) → ( 1 · 𝑋) = 𝑋)
151, 6, 6, 7, 7, 14syl122anc 1359 1 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → ( 1 · 𝑋) = 𝑋)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 387  w3a 1068   = wceq 1507  wcel 2050  cfv 6190  (class class class)co 6978  Basecbs 16342  +gcplusg 16424  .rcmulr 16425  Scalarcsca 16427   ·𝑠 cvsca 16428  1rcur 18977  LModclmod 19359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1758  ax-4 1772  ax-5 1869  ax-6 1928  ax-7 1965  ax-8 2052  ax-9 2059  ax-10 2079  ax-11 2093  ax-12 2106  ax-13 2301  ax-ext 2750  ax-sep 5061  ax-nul 5068  ax-pow 5120  ax-pr 5187  ax-un 7281  ax-cnex 10393  ax-resscn 10394  ax-1cn 10395  ax-icn 10396  ax-addcl 10397  ax-addrcl 10398  ax-mulcl 10399  ax-mulrcl 10400  ax-mulcom 10401  ax-addass 10402  ax-mulass 10403  ax-distr 10404  ax-i2m1 10405  ax-1ne0 10406  ax-1rid 10407  ax-rnegex 10408  ax-rrecex 10409  ax-cnre 10410  ax-pre-lttri 10411  ax-pre-lttrn 10412  ax-pre-ltadd 10413  ax-pre-mulgt0 10414
This theorem depends on definitions:  df-bi 199  df-an 388  df-or 834  df-3or 1069  df-3an 1070  df-tru 1510  df-ex 1743  df-nf 1747  df-sb 2016  df-mo 2547  df-eu 2583  df-clab 2759  df-cleq 2771  df-clel 2846  df-nfc 2918  df-ne 2968  df-nel 3074  df-ral 3093  df-rex 3094  df-reu 3095  df-rmo 3096  df-rab 3097  df-v 3417  df-sbc 3684  df-csb 3789  df-dif 3834  df-un 3836  df-in 3838  df-ss 3845  df-pss 3847  df-nul 4181  df-if 4352  df-pw 4425  df-sn 4443  df-pr 4445  df-tp 4447  df-op 4449  df-uni 4714  df-iun 4795  df-br 4931  df-opab 4993  df-mpt 5010  df-tr 5032  df-id 5313  df-eprel 5318  df-po 5327  df-so 5328  df-fr 5367  df-we 5369  df-xp 5414  df-rel 5415  df-cnv 5416  df-co 5417  df-dm 5418  df-rn 5419  df-res 5420  df-ima 5421  df-pred 5988  df-ord 6034  df-on 6035  df-lim 6036  df-suc 6037  df-iota 6154  df-fun 6192  df-fn 6193  df-f 6194  df-f1 6195  df-fo 6196  df-f1o 6197  df-fv 6198  df-riota 6939  df-ov 6981  df-oprab 6982  df-mpo 6983  df-om 7399  df-wrecs 7752  df-recs 7814  df-rdg 7852  df-er 8091  df-en 8309  df-dom 8310  df-sdom 8311  df-pnf 10478  df-mnf 10479  df-xr 10480  df-ltxr 10481  df-le 10482  df-sub 10674  df-neg 10675  df-nn 11442  df-2 11506  df-ndx 16345  df-slot 16346  df-base 16348  df-sets 16349  df-plusg 16437  df-0g 16574  df-mgm 17713  df-sgrp 17755  df-mnd 17766  df-mgp 18966  df-ur 18978  df-ring 19025  df-lmod 19361
This theorem is referenced by:  lmodfopne  19397  lmodvneg1  19402  lmodcom  19405  lssvacl  19451  islss3  19456  prdslmodd  19466  lspsn  19499  islmhm2  19535  lbsind2  19578  lvecvs0or  19605  lssvs0or  19607  lvecinv  19610  lspsnvs  19611  lspsneq  19619  lspfixed  19625  lspexch  19626  lspsolv  19640  asclrhm  19839  assamulgscmlem1  19845  coe1pwmul  20153  ply1scl1  20166  ply1idvr1  20167  frlmup2  20648  lindfind2  20667  scmatid  20830  scmatmhm  20850  matinv  20993  decpmatid  21085  idpm2idmp  21116  chfacfscmulgsum  21175  cpmadugsumlemF  21191  clmvs1  23403  deg1pwle  24419  deg1pw  24420  ply1remlem  24462  imaslmod  30601  lfl0  35646  lfladd  35647  dochfl1  38057  lcfl7lem  38080  mapdpglem21  38273  mapdpglem30  38283  mapdpglem31  38284  hgmapval1  38474  prjsperref  38663  mendlmod  39189  lmod0rng  43504  ascl1  43800  ply1vr1smo  43803  linc1  43848  ldepspr  43896  lincresunit3lem3  43897  islindeps2  43906
  Copyright terms: Public domain W3C validator