| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > lmodvs1 | Structured version Visualization version GIF version | ||
| Description: Scalar product with the ring unity. (ax-hvmulid 30984 analog.) (Contributed by NM, 10-Jan-2014.) (Revised by Mario Carneiro, 19-Jun-2014.) |
| Ref | Expression |
|---|---|
| lmodvs1.v | ⊢ 𝑉 = (Base‘𝑊) |
| lmodvs1.f | ⊢ 𝐹 = (Scalar‘𝑊) |
| lmodvs1.s | ⊢ · = ( ·𝑠 ‘𝑊) |
| lmodvs1.u | ⊢ 1 = (1r‘𝐹) |
| Ref | Expression |
|---|---|
| lmodvs1 | ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl 482 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑊 ∈ LMod) | |
| 2 | lmodvs1.f | . . . 4 ⊢ 𝐹 = (Scalar‘𝑊) | |
| 3 | eqid 2731 | . . . 4 ⊢ (Base‘𝐹) = (Base‘𝐹) | |
| 4 | lmodvs1.u | . . . 4 ⊢ 1 = (1r‘𝐹) | |
| 5 | 2, 3, 4 | lmod1cl 20823 | . . 3 ⊢ (𝑊 ∈ LMod → 1 ∈ (Base‘𝐹)) |
| 6 | 5 | adantr 480 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 1 ∈ (Base‘𝐹)) |
| 7 | simpr 484 | . 2 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → 𝑋 ∈ 𝑉) | |
| 8 | lmodvs1.v | . . . 4 ⊢ 𝑉 = (Base‘𝑊) | |
| 9 | eqid 2731 | . . . 4 ⊢ (+g‘𝑊) = (+g‘𝑊) | |
| 10 | lmodvs1.s | . . . 4 ⊢ · = ( ·𝑠 ‘𝑊) | |
| 11 | eqid 2731 | . . . 4 ⊢ (+g‘𝐹) = (+g‘𝐹) | |
| 12 | eqid 2731 | . . . 4 ⊢ (.r‘𝐹) = (.r‘𝐹) | |
| 13 | 8, 9, 10, 2, 3, 11, 12, 4 | lmodlema 20799 | . . 3 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ((( 1 · 𝑋) ∈ 𝑉 ∧ ( 1 · (𝑋(+g‘𝑊)𝑋)) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋)) ∧ (( 1 (+g‘𝐹) 1 ) · 𝑋) = (( 1 · 𝑋)(+g‘𝑊)( 1 · 𝑋))) ∧ ((( 1 (.r‘𝐹) 1 ) · 𝑋) = ( 1 · ( 1 · 𝑋)) ∧ ( 1 · 𝑋) = 𝑋))) |
| 14 | 13 | simprrd 773 | . 2 ⊢ ((𝑊 ∈ LMod ∧ ( 1 ∈ (Base‘𝐹) ∧ 1 ∈ (Base‘𝐹)) ∧ (𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉)) → ( 1 · 𝑋) = 𝑋) |
| 15 | 1, 6, 6, 7, 7, 14 | syl122anc 1381 | 1 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → ( 1 · 𝑋) = 𝑋) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 ∧ w3a 1086 = wceq 1541 ∈ wcel 2111 ‘cfv 6481 (class class class)co 7346 Basecbs 17120 +gcplusg 17161 .rcmulr 17162 Scalarcsca 17164 ·𝑠 cvsca 17165 1rcur 20100 LModclmod 20794 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5234 ax-nul 5244 ax-pow 5303 ax-pr 5370 ax-un 7668 ax-cnex 11062 ax-resscn 11063 ax-1cn 11064 ax-icn 11065 ax-addcl 11066 ax-addrcl 11067 ax-mulcl 11068 ax-mulrcl 11069 ax-mulcom 11070 ax-addass 11071 ax-mulass 11072 ax-distr 11073 ax-i2m1 11074 ax-1ne0 11075 ax-1rid 11076 ax-rnegex 11077 ax-rrecex 11078 ax-cnre 11079 ax-pre-lttri 11080 ax-pre-lttrn 11081 ax-pre-ltadd 11082 ax-pre-mulgt0 11083 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-nel 3033 df-ral 3048 df-rex 3057 df-rmo 3346 df-reu 3347 df-rab 3396 df-v 3438 df-sbc 3742 df-csb 3851 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-pss 3922 df-nul 4284 df-if 4476 df-pw 4552 df-sn 4577 df-pr 4579 df-op 4583 df-uni 4860 df-iun 4943 df-br 5092 df-opab 5154 df-mpt 5173 df-tr 5199 df-id 5511 df-eprel 5516 df-po 5524 df-so 5525 df-fr 5569 df-we 5571 df-xp 5622 df-rel 5623 df-cnv 5624 df-co 5625 df-dm 5626 df-rn 5627 df-res 5628 df-ima 5629 df-pred 6248 df-ord 6309 df-on 6310 df-lim 6311 df-suc 6312 df-iota 6437 df-fun 6483 df-fn 6484 df-f 6485 df-f1 6486 df-fo 6487 df-f1o 6488 df-fv 6489 df-riota 7303 df-ov 7349 df-oprab 7350 df-mpo 7351 df-om 7797 df-2nd 7922 df-frecs 8211 df-wrecs 8242 df-recs 8291 df-rdg 8329 df-er 8622 df-en 8870 df-dom 8871 df-sdom 8872 df-pnf 11148 df-mnf 11149 df-xr 11150 df-ltxr 11151 df-le 11152 df-sub 11346 df-neg 11347 df-nn 12126 df-2 12188 df-sets 17075 df-slot 17093 df-ndx 17105 df-base 17121 df-plusg 17174 df-0g 17345 df-mgm 18548 df-sgrp 18627 df-mnd 18643 df-mgp 20060 df-ur 20101 df-ring 20154 df-lmod 20796 |
| This theorem is referenced by: lmodfopne 20834 lmodvneg1 20839 lmodcom 20842 lssvacl 20877 islss3 20893 prdslmodd 20903 lspsn 20936 islmhm2 20973 lbsind2 21016 lvecvs0or 21046 lssvs0or 21048 lvecinv 21051 lspsnvs 21052 lspsneq 21060 lspfixed 21066 lspexch 21067 lspsolv 21081 frlmup2 21737 lindfind2 21756 ascl1 21823 assamulgscmlem1 21837 coe1pwmul 22194 ply1scl1OLD 22209 ply1idvr1OLD 22211 scmatid 22430 scmatmhm 22450 matinv 22593 decpmatid 22686 idpm2idmp 22717 chfacfscmulgsum 22776 cpmadugsumlemF 22792 clmvs1 25021 deg1pwle 26053 deg1pw 26054 ply1remlem 26098 imaslmod 33316 coe1mon 33547 deg1vr 33551 lfl0 39110 lfladd 39111 dochfl1 41521 lcfl7lem 41544 mapdpglem21 41737 mapdpglem30 41747 mapdpglem31 41748 hgmapval1 41938 prjsperref 42645 mendlmod 43228 lmod0rng 48266 ply1vr1smo 48420 linc1 48463 ldepspr 48511 lincresunit3lem3 48512 islindeps2 48521 |
| Copyright terms: Public domain | W3C validator |