MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwn Structured version   Visualization version   GIF version

Theorem mirbtwn 28561
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirbtwn (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))

Proof of Theorem mirbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . . 5 (𝜑𝐴𝑃)
8 mirfv.m . . . . 5 𝑀 = (𝑆𝐴)
9 mirfv.b . . . . 5 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 28559 . . . 4 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
111, 2, 3, 6, 9, 7mirreu3 28557 . . . . 5 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
12 riotacl2 7342 . . . . 5 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1311, 12syl 17 . . . 4 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1410, 13eqeltrd 2828 . . 3 (𝜑 → (𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
15 oveq2 7377 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝐴 𝑧) = (𝐴 (𝑀𝐵)))
1615eqeq1d 2731 . . . . 5 (𝑧 = (𝑀𝐵) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐵)) = (𝐴 𝐵)))
17 oveq1 7376 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝑧𝐼𝐵) = ((𝑀𝐵)𝐼𝐵))
1817eleq2d 2814 . . . . 5 (𝑧 = (𝑀𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵)))
1916, 18anbi12d 632 . . . 4 (𝑧 = (𝑀𝐵) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2019elrab 3656 . . 3 ((𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2114, 20sylib 218 . 2 (𝜑 → ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2221simprrd 773 1 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3349  {crab 3402  cfv 6499  crio 7325  (class class class)co 7369  Basecbs 17155  distcds 17205  TarskiGcstrkg 28330  Itvcitv 28336  LineGclng 28337  pInvGcmir 28555
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5229  ax-sep 5246  ax-nul 5256  ax-pr 5382
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3351  df-reu 3352  df-rab 3403  df-v 3446  df-sbc 3751  df-csb 3860  df-dif 3914  df-un 3916  df-in 3918  df-ss 3928  df-nul 4293  df-if 4485  df-pw 4561  df-sn 4586  df-pr 4588  df-op 4592  df-uni 4868  df-iun 4953  df-br 5103  df-opab 5165  df-mpt 5184  df-id 5526  df-xp 5637  df-rel 5638  df-cnv 5639  df-co 5640  df-dm 5641  df-rn 5642  df-res 5643  df-ima 5644  df-iota 6452  df-fun 6501  df-fn 6502  df-f 6503  df-f1 6504  df-fo 6505  df-f1o 6506  df-fv 6507  df-riota 7326  df-ov 7372  df-trkgc 28351  df-trkgb 28352  df-trkgcb 28353  df-trkg 28356  df-mir 28556
This theorem is referenced by:  mirmir  28565  mirinv  28569  miriso  28573  mirmir2  28577  mirln  28579  mirln2  28580  mirconn  28581  mirhl2  28584  mircgrextend  28585  mirtrcgr  28586  mirauto  28587  miduniq  28588  krippenlem  28593  ragflat  28607  ragcgr  28610  footexALT  28621  footexlem1  28622  footexlem2  28623  colperpexlem1  28633  colperpexlem3  28635  mideulem2  28637  opphllem  28638  opphllem1  28650  opphllem2  28651  opphllem4  28653  colhp  28673  midbtwn  28682  lmieu  28687  lmiisolem  28699
  Copyright terms: Public domain W3C validator