MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwn Structured version   Visualization version   GIF version

Theorem mirbtwn 28684
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirbtwn (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))

Proof of Theorem mirbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . . 5 (𝜑𝐴𝑃)
8 mirfv.m . . . . 5 𝑀 = (𝑆𝐴)
9 mirfv.b . . . . 5 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 28682 . . . 4 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
111, 2, 3, 6, 9, 7mirreu3 28680 . . . . 5 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
12 riotacl2 7421 . . . . 5 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1311, 12syl 17 . . . 4 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1410, 13eqeltrd 2844 . . 3 (𝜑 → (𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
15 oveq2 7456 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝐴 𝑧) = (𝐴 (𝑀𝐵)))
1615eqeq1d 2742 . . . . 5 (𝑧 = (𝑀𝐵) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐵)) = (𝐴 𝐵)))
17 oveq1 7455 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝑧𝐼𝐵) = ((𝑀𝐵)𝐼𝐵))
1817eleq2d 2830 . . . . 5 (𝑧 = (𝑀𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵)))
1916, 18anbi12d 631 . . . 4 (𝑧 = (𝑀𝐵) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2019elrab 3708 . . 3 ((𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2114, 20sylib 218 . 2 (𝜑 → ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2221simprrd 773 1 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1537  wcel 2108  ∃!wreu 3386  {crab 3443  cfv 6573  crio 7403  (class class class)co 7448  Basecbs 17258  distcds 17320  TarskiGcstrkg 28453  Itvcitv 28459  LineGclng 28460  pInvGcmir 28678
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pr 5447
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-trkgc 28474  df-trkgb 28475  df-trkgcb 28476  df-trkg 28479  df-mir 28679
This theorem is referenced by:  mirmir  28688  mirinv  28692  miriso  28696  mirmir2  28700  mirln  28702  mirln2  28703  mirconn  28704  mirhl2  28707  mircgrextend  28708  mirtrcgr  28709  mirauto  28710  miduniq  28711  krippenlem  28716  ragflat  28730  ragcgr  28733  footexALT  28744  footexlem1  28745  footexlem2  28746  colperpexlem1  28756  colperpexlem3  28758  mideulem2  28760  opphllem  28761  opphllem1  28773  opphllem2  28774  opphllem4  28776  colhp  28796  midbtwn  28805  lmieu  28810  lmiisolem  28822
  Copyright terms: Public domain W3C validator