MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  mirbtwn Structured version   Visualization version   GIF version

Theorem mirbtwn 28592
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.)
Hypotheses
Ref Expression
mirval.p 𝑃 = (Base‘𝐺)
mirval.d = (dist‘𝐺)
mirval.i 𝐼 = (Itv‘𝐺)
mirval.l 𝐿 = (LineG‘𝐺)
mirval.s 𝑆 = (pInvG‘𝐺)
mirval.g (𝜑𝐺 ∈ TarskiG)
mirval.a (𝜑𝐴𝑃)
mirfv.m 𝑀 = (𝑆𝐴)
mirfv.b (𝜑𝐵𝑃)
Assertion
Ref Expression
mirbtwn (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))

Proof of Theorem mirbtwn
Dummy variable 𝑧 is distinct from all other variables.
StepHypRef Expression
1 mirval.p . . . . 5 𝑃 = (Base‘𝐺)
2 mirval.d . . . . 5 = (dist‘𝐺)
3 mirval.i . . . . 5 𝐼 = (Itv‘𝐺)
4 mirval.l . . . . 5 𝐿 = (LineG‘𝐺)
5 mirval.s . . . . 5 𝑆 = (pInvG‘𝐺)
6 mirval.g . . . . 5 (𝜑𝐺 ∈ TarskiG)
7 mirval.a . . . . 5 (𝜑𝐴𝑃)
8 mirfv.m . . . . 5 𝑀 = (𝑆𝐴)
9 mirfv.b . . . . 5 (𝜑𝐵𝑃)
101, 2, 3, 4, 5, 6, 7, 8, 9mirfv 28590 . . . 4 (𝜑 → (𝑀𝐵) = (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))))
111, 2, 3, 6, 9, 7mirreu3 28588 . . . . 5 (𝜑 → ∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)))
12 riotacl2 7363 . . . . 5 (∃!𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1311, 12syl 17 . . . 4 (𝜑 → (𝑧𝑃 ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
1410, 13eqeltrd 2829 . . 3 (𝜑 → (𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))})
15 oveq2 7398 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝐴 𝑧) = (𝐴 (𝑀𝐵)))
1615eqeq1d 2732 . . . . 5 (𝑧 = (𝑀𝐵) → ((𝐴 𝑧) = (𝐴 𝐵) ↔ (𝐴 (𝑀𝐵)) = (𝐴 𝐵)))
17 oveq1 7397 . . . . . 6 (𝑧 = (𝑀𝐵) → (𝑧𝐼𝐵) = ((𝑀𝐵)𝐼𝐵))
1817eleq2d 2815 . . . . 5 (𝑧 = (𝑀𝐵) → (𝐴 ∈ (𝑧𝐼𝐵) ↔ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵)))
1916, 18anbi12d 632 . . . 4 (𝑧 = (𝑀𝐵) → (((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵)) ↔ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2019elrab 3662 . . 3 ((𝑀𝐵) ∈ {𝑧𝑃 ∣ ((𝐴 𝑧) = (𝐴 𝐵) ∧ 𝐴 ∈ (𝑧𝐼𝐵))} ↔ ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2114, 20sylib 218 . 2 (𝜑 → ((𝑀𝐵) ∈ 𝑃 ∧ ((𝐴 (𝑀𝐵)) = (𝐴 𝐵) ∧ 𝐴 ∈ ((𝑀𝐵)𝐼𝐵))))
2221simprrd 773 1 (𝜑𝐴 ∈ ((𝑀𝐵)𝐼𝐵))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395   = wceq 1540  wcel 2109  ∃!wreu 3354  {crab 3408  cfv 6514  crio 7346  (class class class)co 7390  Basecbs 17186  distcds 17236  TarskiGcstrkg 28361  Itvcitv 28367  LineGclng 28368  pInvGcmir 28586
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5237  ax-sep 5254  ax-nul 5264  ax-pr 5390
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3757  df-csb 3866  df-dif 3920  df-un 3922  df-in 3924  df-ss 3934  df-nul 4300  df-if 4492  df-pw 4568  df-sn 4593  df-pr 4595  df-op 4599  df-uni 4875  df-iun 4960  df-br 5111  df-opab 5173  df-mpt 5192  df-id 5536  df-xp 5647  df-rel 5648  df-cnv 5649  df-co 5650  df-dm 5651  df-rn 5652  df-res 5653  df-ima 5654  df-iota 6467  df-fun 6516  df-fn 6517  df-f 6518  df-f1 6519  df-fo 6520  df-f1o 6521  df-fv 6522  df-riota 7347  df-ov 7393  df-trkgc 28382  df-trkgb 28383  df-trkgcb 28384  df-trkg 28387  df-mir 28587
This theorem is referenced by:  mirmir  28596  mirinv  28600  miriso  28604  mirmir2  28608  mirln  28610  mirln2  28611  mirconn  28612  mirhl2  28615  mircgrextend  28616  mirtrcgr  28617  mirauto  28618  miduniq  28619  krippenlem  28624  ragflat  28638  ragcgr  28641  footexALT  28652  footexlem1  28653  footexlem2  28654  colperpexlem1  28664  colperpexlem3  28666  mideulem2  28668  opphllem  28669  opphllem1  28681  opphllem2  28682  opphllem4  28684  colhp  28704  midbtwn  28713  lmieu  28718  lmiisolem  28730
  Copyright terms: Public domain W3C validator