![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > mirbtwn | Structured version Visualization version GIF version |
Description: Property of the image by the point inversion function. Definition 7.5 of [Schwabhauser] p. 49. (Contributed by Thierry Arnoux, 3-Jun-2019.) |
Ref | Expression |
---|---|
mirval.p | β’ π = (BaseβπΊ) |
mirval.d | β’ β = (distβπΊ) |
mirval.i | β’ πΌ = (ItvβπΊ) |
mirval.l | β’ πΏ = (LineGβπΊ) |
mirval.s | β’ π = (pInvGβπΊ) |
mirval.g | β’ (π β πΊ β TarskiG) |
mirval.a | β’ (π β π΄ β π) |
mirfv.m | β’ π = (πβπ΄) |
mirfv.b | β’ (π β π΅ β π) |
Ref | Expression |
---|---|
mirbtwn | β’ (π β π΄ β ((πβπ΅)πΌπ΅)) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mirval.p | . . . . 5 β’ π = (BaseβπΊ) | |
2 | mirval.d | . . . . 5 β’ β = (distβπΊ) | |
3 | mirval.i | . . . . 5 β’ πΌ = (ItvβπΊ) | |
4 | mirval.l | . . . . 5 β’ πΏ = (LineGβπΊ) | |
5 | mirval.s | . . . . 5 β’ π = (pInvGβπΊ) | |
6 | mirval.g | . . . . 5 β’ (π β πΊ β TarskiG) | |
7 | mirval.a | . . . . 5 β’ (π β π΄ β π) | |
8 | mirfv.m | . . . . 5 β’ π = (πβπ΄) | |
9 | mirfv.b | . . . . 5 β’ (π β π΅ β π) | |
10 | 1, 2, 3, 4, 5, 6, 7, 8, 9 | mirfv 27896 | . . . 4 β’ (π β (πβπ΅) = (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)))) |
11 | 1, 2, 3, 6, 9, 7 | mirreu3 27894 | . . . . 5 β’ (π β β!π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) |
12 | riotacl2 7378 | . . . . 5 β’ (β!π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)) β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) β {π§ β π β£ ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))}) | |
13 | 11, 12 | syl 17 | . . . 4 β’ (π β (β©π§ β π ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))) β {π§ β π β£ ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))}) |
14 | 10, 13 | eqeltrd 2833 | . . 3 β’ (π β (πβπ΅) β {π§ β π β£ ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))}) |
15 | oveq2 7413 | . . . . . 6 β’ (π§ = (πβπ΅) β (π΄ β π§) = (π΄ β (πβπ΅))) | |
16 | 15 | eqeq1d 2734 | . . . . 5 β’ (π§ = (πβπ΅) β ((π΄ β π§) = (π΄ β π΅) β (π΄ β (πβπ΅)) = (π΄ β π΅))) |
17 | oveq1 7412 | . . . . . 6 β’ (π§ = (πβπ΅) β (π§πΌπ΅) = ((πβπ΅)πΌπ΅)) | |
18 | 17 | eleq2d 2819 | . . . . 5 β’ (π§ = (πβπ΅) β (π΄ β (π§πΌπ΅) β π΄ β ((πβπ΅)πΌπ΅))) |
19 | 16, 18 | anbi12d 631 | . . . 4 β’ (π§ = (πβπ΅) β (((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅)) β ((π΄ β (πβπ΅)) = (π΄ β π΅) β§ π΄ β ((πβπ΅)πΌπ΅)))) |
20 | 19 | elrab 3682 | . . 3 β’ ((πβπ΅) β {π§ β π β£ ((π΄ β π§) = (π΄ β π΅) β§ π΄ β (π§πΌπ΅))} β ((πβπ΅) β π β§ ((π΄ β (πβπ΅)) = (π΄ β π΅) β§ π΄ β ((πβπ΅)πΌπ΅)))) |
21 | 14, 20 | sylib 217 | . 2 β’ (π β ((πβπ΅) β π β§ ((π΄ β (πβπ΅)) = (π΄ β π΅) β§ π΄ β ((πβπ΅)πΌπ΅)))) |
22 | 21 | simprrd 772 | 1 β’ (π β π΄ β ((πβπ΅)πΌπ΅)) |
Colors of variables: wff setvar class |
Syntax hints: β wi 4 β§ wa 396 = wceq 1541 β wcel 2106 β!wreu 3374 {crab 3432 βcfv 6540 β©crio 7360 (class class class)co 7405 Basecbs 17140 distcds 17202 TarskiGcstrkg 27667 Itvcitv 27673 LineGclng 27674 pInvGcmir 27892 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-rep 5284 ax-sep 5298 ax-nul 5305 ax-pr 5426 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rmo 3376 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3777 df-csb 3893 df-dif 3950 df-un 3952 df-in 3954 df-ss 3964 df-nul 4322 df-if 4528 df-pw 4603 df-sn 4628 df-pr 4630 df-op 4634 df-uni 4908 df-iun 4998 df-br 5148 df-opab 5210 df-mpt 5231 df-id 5573 df-xp 5681 df-rel 5682 df-cnv 5683 df-co 5684 df-dm 5685 df-rn 5686 df-res 5687 df-ima 5688 df-iota 6492 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-riota 7361 df-ov 7408 df-trkgc 27688 df-trkgb 27689 df-trkgcb 27690 df-trkg 27693 df-mir 27893 |
This theorem is referenced by: mirmir 27902 mirinv 27906 miriso 27910 mirmir2 27914 mirln 27916 mirln2 27917 mirconn 27918 mirhl2 27921 mircgrextend 27922 mirtrcgr 27923 mirauto 27924 miduniq 27925 krippenlem 27930 ragflat 27944 ragcgr 27947 footexALT 27958 footexlem1 27959 footexlem2 27960 colperpexlem1 27970 colperpexlem3 27972 mideulem2 27974 opphllem 27975 opphllem1 27987 opphllem2 27988 opphllem4 27990 colhp 28010 midbtwn 28019 lmieu 28024 lmiisolem 28036 |
Copyright terms: Public domain | W3C validator |