![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version |
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9046 | . . . 4 ⊢ {𝑋} ∈ Fin | |
2 | snopsuppss 8166 | . . . 4 ⊢ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋} | |
3 | 1, 2 | pm3.2i 471 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) |
4 | ssfi 9175 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin) |
6 | funsng 6599 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {⟨𝑋, 𝑌⟩}) | |
7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {⟨𝑋, 𝑌⟩}) |
8 | snex 5431 | . . . 4 ⊢ {⟨𝑋, 𝑌⟩} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} ∈ V) |
10 | simp3 1138 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
11 | funisfsupp 9369 | . . 3 ⊢ ((Fun {⟨𝑋, 𝑌⟩} ∧ {⟨𝑋, 𝑌⟩} ∈ V ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)) | |
12 | 7, 9, 10, 11 | syl3anc 1371 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)) |
13 | 5, 12 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 396 ∧ w3a 1087 ∈ wcel 2106 Vcvv 3474 ⊆ wss 3948 {csn 4628 ⟨cop 4634 class class class wbr 5148 Fun wfun 6537 (class class class)co 7411 supp csupp 8148 Fincfn 8941 finSupp cfsupp 9363 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7727 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3or 1088 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3377 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-pss 3967 df-nul 4323 df-if 4529 df-pw 4604 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-tr 5266 df-id 5574 df-eprel 5580 df-po 5588 df-so 5589 df-fr 5631 df-we 5633 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-ord 6367 df-on 6368 df-lim 6369 df-suc 6370 df-iota 6495 df-fun 6545 df-fn 6546 df-f 6547 df-f1 6548 df-fo 6549 df-f1o 6550 df-fv 6551 df-ov 7414 df-oprab 7415 df-mpo 7416 df-om 7858 df-supp 8149 df-1o 8468 df-en 8942 df-fin 8945 df-fsupp 9364 |
This theorem is referenced by: funsnfsupp 9389 |
Copyright terms: Public domain | W3C validator |