| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version | ||
| Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi 9020 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 2 | snopsuppss 8167 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) |
| 4 | ssfi 9150 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) | |
| 5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) |
| 6 | funsng 6575 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {〈𝑋, 𝑌〉}) | |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {〈𝑋, 𝑌〉}) |
| 8 | snex 5399 | . . . 4 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} ∈ V) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
| 11 | funisfsupp 9336 | . . 3 ⊢ ((Fun {〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ∈ V ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) | |
| 12 | 7, 9, 10, 11 | syl3anc 1373 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) |
| 13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2109 Vcvv 3455 ⊆ wss 3922 {csn 4597 〈cop 4603 class class class wbr 5115 Fun wfun 6513 (class class class)co 7394 supp csupp 8148 Fincfn 8922 finSupp cfsupp 9330 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5259 ax-nul 5269 ax-pr 5395 ax-un 7718 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2880 df-ne 2928 df-ral 3047 df-rex 3056 df-reu 3358 df-rab 3412 df-v 3457 df-sbc 3762 df-dif 3925 df-un 3927 df-in 3929 df-ss 3939 df-pss 3942 df-nul 4305 df-if 4497 df-pw 4573 df-sn 4598 df-pr 4600 df-op 4604 df-uni 4880 df-br 5116 df-opab 5178 df-tr 5223 df-id 5541 df-eprel 5546 df-po 5554 df-so 5555 df-fr 5599 df-we 5601 df-xp 5652 df-rel 5653 df-cnv 5654 df-co 5655 df-dm 5656 df-rn 5657 df-res 5658 df-ima 5659 df-ord 6343 df-on 6344 df-lim 6345 df-suc 6346 df-iota 6472 df-fun 6521 df-fn 6522 df-f 6523 df-f1 6524 df-fo 6525 df-f1o 6526 df-fv 6527 df-ov 7397 df-oprab 7398 df-mpo 7399 df-om 7851 df-supp 8149 df-1o 8443 df-en 8923 df-fin 8926 df-fsupp 9331 |
| This theorem is referenced by: funsnfsupp 9361 |
| Copyright terms: Public domain | W3C validator |