MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopfsupp Structured version   Visualization version   GIF version

Theorem snopfsupp 9151
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
snopfsupp ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)

Proof of Theorem snopfsupp
StepHypRef Expression
1 snfi 8834 . . . 4 {𝑋} ∈ Fin
2 snopsuppss 7995 . . . 4 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}
31, 2pm3.2i 471 . . 3 ({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋})
4 ssfi 8956 . . 3 (({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
53, 4mp1i 13 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
6 funsng 6485 . . . 4 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
763adant3 1131 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → Fun {⟨𝑋, 𝑌⟩})
8 snex 5354 . . . 4 {⟨𝑋, 𝑌⟩} ∈ V
98a1i 11 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} ∈ V)
10 simp3 1137 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
11 funisfsupp 9133 . . 3 ((Fun {⟨𝑋, 𝑌⟩} ∧ {⟨𝑋, 𝑌⟩} ∈ V ∧ 𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
127, 9, 10, 11syl3anc 1370 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
135, 12mpbird 256 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  w3a 1086  wcel 2106  Vcvv 3432  wss 3887  {csn 4561  cop 4567   class class class wbr 5074  Fun wfun 6427  (class class class)co 7275   supp csupp 7977  Fincfn 8733   finSupp cfsupp 9128
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1798  ax-4 1812  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2709  ax-sep 5223  ax-nul 5230  ax-pr 5352  ax-un 7588
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1542  df-fal 1552  df-ex 1783  df-nf 1787  df-sb 2068  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2816  df-nfc 2889  df-ne 2944  df-ral 3069  df-rex 3070  df-reu 3072  df-rab 3073  df-v 3434  df-sbc 3717  df-dif 3890  df-un 3892  df-in 3894  df-ss 3904  df-pss 3906  df-nul 4257  df-if 4460  df-pw 4535  df-sn 4562  df-pr 4564  df-op 4568  df-uni 4840  df-br 5075  df-opab 5137  df-tr 5192  df-id 5489  df-eprel 5495  df-po 5503  df-so 5504  df-fr 5544  df-we 5546  df-xp 5595  df-rel 5596  df-cnv 5597  df-co 5598  df-dm 5599  df-rn 5600  df-res 5601  df-ima 5602  df-ord 6269  df-on 6270  df-lim 6271  df-suc 6272  df-iota 6391  df-fun 6435  df-fn 6436  df-f 6437  df-f1 6438  df-fo 6439  df-f1o 6440  df-fv 6441  df-ov 7278  df-oprab 7279  df-mpo 7280  df-om 7713  df-supp 7978  df-1o 8297  df-en 8734  df-fin 8737  df-fsupp 9129
This theorem is referenced by:  funsnfsupp  9152
  Copyright terms: Public domain W3C validator