![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version |
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9044 | . . . 4 ⊢ {𝑋} ∈ Fin | |
2 | snopsuppss 8164 | . . . 4 ⊢ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋} | |
3 | 1, 2 | pm3.2i 472 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) |
4 | ssfi 9173 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin) |
6 | funsng 6600 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {⟨𝑋, 𝑌⟩}) | |
7 | 6 | 3adant3 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {⟨𝑋, 𝑌⟩}) |
8 | snex 5432 | . . . 4 ⊢ {⟨𝑋, 𝑌⟩} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} ∈ V) |
10 | simp3 1139 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
11 | funisfsupp 9367 | . . 3 ⊢ ((Fun {⟨𝑋, 𝑌⟩} ∧ {⟨𝑋, 𝑌⟩} ∈ V ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)) | |
12 | 7, 9, 10, 11 | syl3anc 1372 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)) |
13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 397 ∧ w3a 1088 ∈ wcel 2107 Vcvv 3475 ⊆ wss 3949 {csn 4629 ⟨cop 4635 class class class wbr 5149 Fun wfun 6538 (class class class)co 7409 supp csupp 8146 Fincfn 8939 finSupp cfsupp 9361 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-sep 5300 ax-nul 5307 ax-pr 5428 ax-un 7725 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-br 5150 df-opab 5212 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-supp 8147 df-1o 8466 df-en 8940 df-fin 8943 df-fsupp 9362 |
This theorem is referenced by: funsnfsupp 9387 |
Copyright terms: Public domain | W3C validator |