MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopfsupp Structured version   Visualization version   GIF version

Theorem snopfsupp 8567
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
snopfsupp ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)

Proof of Theorem snopfsupp
StepHypRef Expression
1 snfi 8307 . . . 4 {𝑋} ∈ Fin
2 snopsuppss 7574 . . . 4 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}
31, 2pm3.2i 464 . . 3 ({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋})
4 ssfi 8449 . . 3 (({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
53, 4mp1i 13 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
6 funsng 6173 . . . 4 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
763adant3 1168 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → Fun {⟨𝑋, 𝑌⟩})
8 snex 5129 . . . 4 {⟨𝑋, 𝑌⟩} ∈ V
98a1i 11 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} ∈ V)
10 simp3 1174 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
11 funisfsupp 8549 . . 3 ((Fun {⟨𝑋, 𝑌⟩} ∧ {⟨𝑋, 𝑌⟩} ∈ V ∧ 𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
127, 9, 10, 11syl3anc 1496 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
135, 12mpbird 249 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 198  wa 386  w3a 1113  wcel 2166  Vcvv 3414  wss 3798  {csn 4397  cop 4403   class class class wbr 4873  Fun wfun 6117  (class class class)co 6905   supp csupp 7559  Fincfn 8222   finSupp cfsupp 8544
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1896  ax-4 1910  ax-5 2011  ax-6 2077  ax-7 2114  ax-8 2168  ax-9 2175  ax-10 2194  ax-11 2209  ax-12 2222  ax-13 2391  ax-ext 2803  ax-sep 5005  ax-nul 5013  ax-pow 5065  ax-pr 5127  ax-un 7209
This theorem depends on definitions:  df-bi 199  df-an 387  df-or 881  df-3or 1114  df-3an 1115  df-tru 1662  df-ex 1881  df-nf 1885  df-sb 2070  df-mo 2605  df-eu 2640  df-clab 2812  df-cleq 2818  df-clel 2821  df-nfc 2958  df-ne 3000  df-ral 3122  df-rex 3123  df-rab 3126  df-v 3416  df-sbc 3663  df-dif 3801  df-un 3803  df-in 3805  df-ss 3812  df-pss 3814  df-nul 4145  df-if 4307  df-pw 4380  df-sn 4398  df-pr 4400  df-tp 4402  df-op 4404  df-uni 4659  df-br 4874  df-opab 4936  df-tr 4976  df-id 5250  df-eprel 5255  df-po 5263  df-so 5264  df-fr 5301  df-we 5303  df-xp 5348  df-rel 5349  df-cnv 5350  df-co 5351  df-dm 5352  df-rn 5353  df-res 5354  df-ima 5355  df-ord 5966  df-on 5967  df-lim 5968  df-suc 5969  df-iota 6086  df-fun 6125  df-fn 6126  df-f 6127  df-f1 6128  df-fo 6129  df-f1o 6130  df-fv 6131  df-ov 6908  df-oprab 6909  df-mpt2 6910  df-om 7327  df-supp 7560  df-1o 7826  df-er 8009  df-en 8223  df-fin 8226  df-fsupp 8545
This theorem is referenced by:  funsnfsupp  8568
  Copyright terms: Public domain W3C validator