MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  snopfsupp Structured version   Visualization version   GIF version

Theorem snopfsupp 9438
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.)
Assertion
Ref Expression
snopfsupp ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)

Proof of Theorem snopfsupp
StepHypRef Expression
1 snfi 9091 . . . 4 {𝑋} ∈ Fin
2 snopsuppss 8212 . . . 4 ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}
31, 2pm3.2i 470 . . 3 ({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋})
4 ssfi 9221 . . 3 (({𝑋} ∈ Fin ∧ ({⟨𝑋, 𝑌⟩} supp 𝑍) ⊆ {𝑋}) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
53, 4mp1i 13 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin)
6 funsng 6625 . . . 4 ((𝑋𝑉𝑌𝑊) → Fun {⟨𝑋, 𝑌⟩})
763adant3 1133 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → Fun {⟨𝑋, 𝑌⟩})
8 snex 5445 . . . 4 {⟨𝑋, 𝑌⟩} ∈ V
98a1i 11 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} ∈ V)
10 simp3 1139 . . 3 ((𝑋𝑉𝑌𝑊𝑍𝑈) → 𝑍𝑈)
11 funisfsupp 9414 . . 3 ((Fun {⟨𝑋, 𝑌⟩} ∧ {⟨𝑋, 𝑌⟩} ∈ V ∧ 𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
127, 9, 10, 11syl3anc 1372 . 2 ((𝑋𝑉𝑌𝑊𝑍𝑈) → ({⟨𝑋, 𝑌⟩} finSupp 𝑍 ↔ ({⟨𝑋, 𝑌⟩} supp 𝑍) ∈ Fin))
135, 12mpbird 257 1 ((𝑋𝑉𝑌𝑊𝑍𝑈) → {⟨𝑋, 𝑌⟩} finSupp 𝑍)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  w3a 1087  wcel 2108  Vcvv 3481  wss 3966  {csn 4634  cop 4640   class class class wbr 5151  Fun wfun 6563  (class class class)co 7438   supp csupp 8193  Fincfn 8993   finSupp cfsupp 9408
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1794  ax-4 1808  ax-5 1910  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2157  ax-12 2177  ax-ext 2708  ax-sep 5305  ax-nul 5315  ax-pr 5441  ax-un 7761
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 849  df-3or 1088  df-3an 1089  df-tru 1542  df-fal 1552  df-ex 1779  df-nf 1783  df-sb 2065  df-mo 2540  df-eu 2569  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2892  df-ne 2941  df-ral 3062  df-rex 3071  df-reu 3381  df-rab 3437  df-v 3483  df-sbc 3795  df-dif 3969  df-un 3971  df-in 3973  df-ss 3983  df-pss 3986  df-nul 4343  df-if 4535  df-pw 4610  df-sn 4635  df-pr 4637  df-op 4641  df-uni 4916  df-br 5152  df-opab 5214  df-tr 5269  df-id 5587  df-eprel 5593  df-po 5601  df-so 5602  df-fr 5645  df-we 5647  df-xp 5699  df-rel 5700  df-cnv 5701  df-co 5702  df-dm 5703  df-rn 5704  df-res 5705  df-ima 5706  df-ord 6395  df-on 6396  df-lim 6397  df-suc 6398  df-iota 6522  df-fun 6571  df-fn 6572  df-f 6573  df-f1 6574  df-fo 6575  df-f1o 6576  df-fv 6577  df-ov 7441  df-oprab 7442  df-mpo 7443  df-om 7895  df-supp 8194  df-1o 8514  df-en 8994  df-fin 8997  df-fsupp 9409
This theorem is referenced by:  funsnfsupp  9439
  Copyright terms: Public domain W3C validator