Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version |
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 8788 | . . . 4 ⊢ {𝑋} ∈ Fin | |
2 | snopsuppss 7966 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | |
3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) |
4 | ssfi 8918 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) |
6 | funsng 6469 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {〈𝑋, 𝑌〉}) | |
7 | 6 | 3adant3 1130 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {〈𝑋, 𝑌〉}) |
8 | snex 5349 | . . . 4 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} ∈ V) |
10 | simp3 1136 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
11 | funisfsupp 9063 | . . 3 ⊢ ((Fun {〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ∈ V ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) | |
12 | 7, 9, 10, 11 | syl3anc 1369 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) |
13 | 5, 12 | mpbird 256 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 205 ∧ wa 395 ∧ w3a 1085 ∈ wcel 2108 Vcvv 3422 ⊆ wss 3883 {csn 4558 〈cop 4564 class class class wbr 5070 Fun wfun 6412 (class class class)co 7255 supp csupp 7948 Fincfn 8691 finSupp cfsupp 9058 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3or 1086 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-reu 3070 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-pss 3902 df-nul 4254 df-if 4457 df-pw 4532 df-sn 4559 df-pr 4561 df-tp 4563 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-tr 5188 df-id 5480 df-eprel 5486 df-po 5494 df-so 5495 df-fr 5535 df-we 5537 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-ord 6254 df-on 6255 df-lim 6256 df-suc 6257 df-iota 6376 df-fun 6420 df-fn 6421 df-f 6422 df-f1 6423 df-fo 6424 df-f1o 6425 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-om 7688 df-supp 7949 df-1o 8267 df-en 8692 df-fin 8695 df-fsupp 9059 |
This theorem is referenced by: funsnfsupp 9082 |
Copyright terms: Public domain | W3C validator |