| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version | ||
| Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
| Ref | Expression |
|---|---|
| snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | snfi 9064 | . . . 4 ⊢ {𝑋} ∈ Fin | |
| 2 | snopsuppss 8185 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | |
| 3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) |
| 4 | ssfi 9194 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) | |
| 5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) |
| 6 | funsng 6596 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {〈𝑋, 𝑌〉}) | |
| 7 | 6 | 3adant3 1132 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {〈𝑋, 𝑌〉}) |
| 8 | snex 5416 | . . . 4 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
| 9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} ∈ V) |
| 10 | simp3 1138 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
| 11 | funisfsupp 9388 | . . 3 ⊢ ((Fun {〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ∈ V ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) | |
| 12 | 7, 9, 10, 11 | syl3anc 1372 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) |
| 13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1086 ∈ wcel 2107 Vcvv 3463 ⊆ wss 3931 {csn 4606 〈cop 4612 class class class wbr 5123 Fun wfun 6534 (class class class)co 7412 supp csupp 8166 Fincfn 8966 finSupp cfsupp 9382 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-sep 5276 ax-nul 5286 ax-pr 5412 ax-un 7736 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-ral 3051 df-rex 3060 df-reu 3364 df-rab 3420 df-v 3465 df-sbc 3771 df-dif 3934 df-un 3936 df-in 3938 df-ss 3948 df-pss 3951 df-nul 4314 df-if 4506 df-pw 4582 df-sn 4607 df-pr 4609 df-op 4613 df-uni 4888 df-br 5124 df-opab 5186 df-tr 5240 df-id 5558 df-eprel 5564 df-po 5572 df-so 5573 df-fr 5617 df-we 5619 df-xp 5671 df-rel 5672 df-cnv 5673 df-co 5674 df-dm 5675 df-rn 5676 df-res 5677 df-ima 5678 df-ord 6366 df-on 6367 df-lim 6368 df-suc 6369 df-iota 6493 df-fun 6542 df-fn 6543 df-f 6544 df-f1 6545 df-fo 6546 df-f1o 6547 df-fv 6548 df-ov 7415 df-oprab 7416 df-mpo 7417 df-om 7869 df-supp 8167 df-1o 8487 df-en 8967 df-fin 8970 df-fsupp 9383 |
| This theorem is referenced by: funsnfsupp 9413 |
| Copyright terms: Public domain | W3C validator |