![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > snopfsupp | Structured version Visualization version GIF version |
Description: A singleton containing an ordered pair is a finitely supported function. (Contributed by AV, 19-Jul-2019.) |
Ref | Expression |
---|---|
snopfsupp | ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snfi 9091 | . . . 4 ⊢ {𝑋} ∈ Fin | |
2 | snopsuppss 8212 | . . . 4 ⊢ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋} | |
3 | 1, 2 | pm3.2i 470 | . . 3 ⊢ ({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) |
4 | ssfi 9221 | . . 3 ⊢ (({𝑋} ∈ Fin ∧ ({〈𝑋, 𝑌〉} supp 𝑍) ⊆ {𝑋}) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) | |
5 | 3, 4 | mp1i 13 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin) |
6 | funsng 6625 | . . . 4 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊) → Fun {〈𝑋, 𝑌〉}) | |
7 | 6 | 3adant3 1133 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → Fun {〈𝑋, 𝑌〉}) |
8 | snex 5445 | . . . 4 ⊢ {〈𝑋, 𝑌〉} ∈ V | |
9 | 8 | a1i 11 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} ∈ V) |
10 | simp3 1139 | . . 3 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → 𝑍 ∈ 𝑈) | |
11 | funisfsupp 9414 | . . 3 ⊢ ((Fun {〈𝑋, 𝑌〉} ∧ {〈𝑋, 𝑌〉} ∈ V ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) | |
12 | 7, 9, 10, 11 | syl3anc 1372 | . 2 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → ({〈𝑋, 𝑌〉} finSupp 𝑍 ↔ ({〈𝑋, 𝑌〉} supp 𝑍) ∈ Fin)) |
13 | 5, 12 | mpbird 257 | 1 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑊 ∧ 𝑍 ∈ 𝑈) → {〈𝑋, 𝑌〉} finSupp 𝑍) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ↔ wb 206 ∧ wa 395 ∧ w3a 1087 ∈ wcel 2108 Vcvv 3481 ⊆ wss 3966 {csn 4634 〈cop 4640 class class class wbr 5151 Fun wfun 6563 (class class class)co 7438 supp csupp 8193 Fincfn 8993 finSupp cfsupp 9408 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2708 ax-sep 5305 ax-nul 5315 ax-pr 5441 ax-un 7761 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 849 df-3or 1088 df-3an 1089 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2065 df-mo 2540 df-eu 2569 df-clab 2715 df-cleq 2729 df-clel 2816 df-nfc 2892 df-ne 2941 df-ral 3062 df-rex 3071 df-reu 3381 df-rab 3437 df-v 3483 df-sbc 3795 df-dif 3969 df-un 3971 df-in 3973 df-ss 3983 df-pss 3986 df-nul 4343 df-if 4535 df-pw 4610 df-sn 4635 df-pr 4637 df-op 4641 df-uni 4916 df-br 5152 df-opab 5214 df-tr 5269 df-id 5587 df-eprel 5593 df-po 5601 df-so 5602 df-fr 5645 df-we 5647 df-xp 5699 df-rel 5700 df-cnv 5701 df-co 5702 df-dm 5703 df-rn 5704 df-res 5705 df-ima 5706 df-ord 6395 df-on 6396 df-lim 6397 df-suc 6398 df-iota 6522 df-fun 6571 df-fn 6572 df-f 6573 df-f1 6574 df-fo 6575 df-f1o 6576 df-fv 6577 df-ov 7441 df-oprab 7442 df-mpo 7443 df-om 7895 df-supp 8194 df-1o 8514 df-en 8994 df-fin 8997 df-fsupp 9409 |
This theorem is referenced by: funsnfsupp 9439 |
Copyright terms: Public domain | W3C validator |