| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8118 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4039 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3988 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8119 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3988 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {csn 4585 dom cdm 5631 “ cima 5634 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: snopsuppss 8135 wemapso2lem 9481 cantnfcl 9596 cantnfle 9600 cantnflt 9601 cantnff 9603 cantnfres 9606 cantnfp1lem3 9609 cantnflem1b 9615 cantnflem1 9618 cantnflem3 9620 cnfcomlem 9628 cnfcom 9629 cnfcom3lem 9632 cnfcom3 9633 fsuppmapnn0fiublem 13931 fsuppmapnn0fiub 13932 gsumval3lem1 19819 gsumval3lem2 19820 gsumval3 19821 gsumzres 19823 gsumzcl2 19824 gsumzf1o 19826 gsumzaddlem 19835 gsumconst 19848 gsumzoppg 19858 gsum2d 19886 dpjidcl 19974 gsumfsum 21376 regsumsupp 21564 frlmlbs 21739 psrass1lem 21874 psrass1 21906 psrass23l 21909 psrcom 21910 psrass23 21911 mplcoe1 21977 psropprmul 22155 coe1mul2 22188 tsmsgsum 24059 rrxcph 25325 rrxsuppss 25336 rrxmval 25338 mdegfval 26000 mdegleb 26002 mdegldg 26004 deg1mul3le 26055 wilthlem3 27013 suppovss 32654 fressupp 32661 ressupprn 32663 supppreima 32664 fsupprnfi 32665 fsuppcurry1 32698 fsuppcurry2 32699 gsumfs2d 33038 gsumhashmul 33044 elrgspnlem4 33212 elrgspnsubrunlem1 33214 elrgspnsubrunlem2 33215 elrspunidl 33392 rprmdvdsprod 33498 1arithidom 33501 fedgmullem1 33618 fldextrspunlsplem 33661 fldextrspunlsp 33662 zarcmplem 33864 fdivmpt 48522 fdivmptf 48523 refdivmptf 48524 fdivpm 48525 refdivpm 48526 |
| Copyright terms: Public domain | W3C validator |