![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7683 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 3977 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | syl6eqss 3942 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 7684 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4270 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | syl6eqss 3942 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 183 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∈ wcel 2081 ≠ wne 2984 {crab 3109 Vcvv 3437 ⊆ wss 3859 ∅c0 4211 {csn 4472 dom cdm 5443 “ cima 5446 (class class class)co 7016 supp csupp 7681 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1777 ax-4 1791 ax-5 1888 ax-6 1947 ax-7 1992 ax-8 2083 ax-9 2091 ax-10 2112 ax-11 2126 ax-12 2141 ax-13 2344 ax-ext 2769 ax-sep 5094 ax-nul 5101 ax-pow 5157 ax-pr 5221 ax-un 7319 |
This theorem depends on definitions: df-bi 208 df-an 397 df-or 843 df-3an 1082 df-tru 1525 df-ex 1762 df-nf 1766 df-sb 2043 df-mo 2576 df-eu 2612 df-clab 2776 df-cleq 2788 df-clel 2863 df-nfc 2935 df-ne 2985 df-ral 3110 df-rex 3111 df-rab 3114 df-v 3439 df-sbc 3707 df-dif 3862 df-un 3864 df-in 3866 df-ss 3874 df-nul 4212 df-if 4382 df-sn 4473 df-pr 4475 df-op 4479 df-uni 4746 df-br 4963 df-opab 5025 df-id 5348 df-xp 5449 df-rel 5450 df-cnv 5451 df-co 5452 df-dm 5453 df-rn 5454 df-res 5455 df-ima 5456 df-iota 6189 df-fun 6227 df-fv 6233 df-ov 7019 df-oprab 7020 df-mpo 7021 df-supp 7682 |
This theorem is referenced by: snopsuppss 7696 wemapso2lem 8862 cantnfcl 8976 cantnfle 8980 cantnflt 8981 cantnff 8983 cantnfres 8986 cantnfp1lem3 8989 cantnflem1b 8995 cantnflem1 8998 cantnflem3 9000 cnfcomlem 9008 cnfcom 9009 cnfcom3lem 9012 cnfcom3 9013 fsuppmapnn0fiublem 13208 fsuppmapnn0fiub 13209 gsumval3lem1 18746 gsumval3lem2 18747 gsumval3 18748 gsumzres 18750 gsumzcl2 18751 gsumzf1o 18753 gsumzaddlem 18761 gsumconst 18774 gsumzoppg 18784 gsum2d 18812 dpjidcl 18897 psrass1lem 19845 psrass1 19873 psrass23l 19876 psrcom 19877 psrass23 19878 mplcoe1 19933 psropprmul 20089 coe1mul2 20120 gsumfsum 20294 regsumsupp 20448 frlmlbs 20623 tsmsgsum 22430 rrxcph 23678 rrxsuppss 23689 rrxmval 23691 mdegfval 24339 mdegleb 24341 mdegldg 24343 deg1mul3le 24393 wilthlem3 25329 suppovss 30116 fsuppcurry1 30149 fsuppcurry2 30150 fedgmullem1 30629 fdivmpt 44101 fdivmptf 44102 refdivmptf 44103 fdivpm 44104 refdivpm 44105 |
Copyright terms: Public domain | W3C validator |