Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7979 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4013 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 3975 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 7980 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4330 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 3975 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∈ wcel 2106 ≠ wne 2943 {crab 3068 Vcvv 3432 ⊆ wss 3887 ∅c0 4256 {csn 4561 dom cdm 5589 “ cima 5592 (class class class)co 7275 supp csupp 7977 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2709 ax-sep 5223 ax-nul 5230 ax-pr 5352 ax-un 7588 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 845 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1783 df-nf 1787 df-sb 2068 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2816 df-nfc 2889 df-ne 2944 df-ral 3069 df-rex 3070 df-rab 3073 df-v 3434 df-sbc 3717 df-dif 3890 df-un 3892 df-in 3894 df-ss 3904 df-nul 4257 df-if 4460 df-sn 4562 df-pr 4564 df-op 4568 df-uni 4840 df-br 5075 df-opab 5137 df-id 5489 df-xp 5595 df-rel 5596 df-cnv 5597 df-co 5598 df-dm 5599 df-rn 5600 df-res 5601 df-ima 5602 df-iota 6391 df-fun 6435 df-fv 6441 df-ov 7278 df-oprab 7279 df-mpo 7280 df-supp 7978 |
This theorem is referenced by: snopsuppss 7995 wemapso2lem 9311 cantnfcl 9425 cantnfle 9429 cantnflt 9430 cantnff 9432 cantnfres 9435 cantnfp1lem3 9438 cantnflem1b 9444 cantnflem1 9447 cantnflem3 9449 cnfcomlem 9457 cnfcom 9458 cnfcom3lem 9461 cnfcom3 9462 fsuppmapnn0fiublem 13710 fsuppmapnn0fiub 13711 gsumval3lem1 19506 gsumval3lem2 19507 gsumval3 19508 gsumzres 19510 gsumzcl2 19511 gsumzf1o 19513 gsumzaddlem 19522 gsumconst 19535 gsumzoppg 19545 gsum2d 19573 dpjidcl 19661 gsumfsum 20665 regsumsupp 20827 frlmlbs 21004 psrass1lemOLD 21143 psrass1lem 21146 psrass1 21174 psrass23l 21177 psrcom 21178 psrass23 21179 mplcoe1 21238 psropprmul 21409 coe1mul2 21440 tsmsgsum 23290 rrxcph 24556 rrxsuppss 24567 rrxmval 24569 mdegfval 25227 mdegleb 25229 mdegldg 25231 deg1mul3le 25281 wilthlem3 26219 suppovss 31017 fressupp 31022 ressupprn 31024 supppreima 31025 fsupprnfi 31026 fsuppcurry1 31060 fsuppcurry2 31061 gsumhashmul 31316 elrspunidl 31606 fedgmullem1 31710 zarcmplem 31831 fdivmpt 45886 fdivmptf 45887 refdivmptf 45888 fdivpm 45889 refdivpm 45890 |
Copyright terms: Public domain | W3C validator |