Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8054 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4029 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 3990 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 8055 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4348 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 3990 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 397 ∈ wcel 2106 ≠ wne 2941 {crab 3404 Vcvv 3442 ⊆ wss 3902 ∅c0 4274 {csn 4578 dom cdm 5625 “ cima 5628 (class class class)co 7342 supp csupp 8052 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2708 ax-sep 5248 ax-nul 5255 ax-pr 5377 ax-un 7655 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2539 df-eu 2568 df-clab 2715 df-cleq 2729 df-clel 2815 df-nfc 2887 df-ne 2942 df-ral 3063 df-rex 3072 df-rab 3405 df-v 3444 df-sbc 3732 df-dif 3905 df-un 3907 df-in 3909 df-ss 3919 df-nul 4275 df-if 4479 df-sn 4579 df-pr 4581 df-op 4585 df-uni 4858 df-br 5098 df-opab 5160 df-id 5523 df-xp 5631 df-rel 5632 df-cnv 5633 df-co 5634 df-dm 5635 df-rn 5636 df-res 5637 df-ima 5638 df-iota 6436 df-fun 6486 df-fv 6492 df-ov 7345 df-oprab 7346 df-mpo 7347 df-supp 8053 |
This theorem is referenced by: snopsuppss 8070 wemapso2lem 9414 cantnfcl 9529 cantnfle 9533 cantnflt 9534 cantnff 9536 cantnfres 9539 cantnfp1lem3 9542 cantnflem1b 9548 cantnflem1 9551 cantnflem3 9553 cnfcomlem 9561 cnfcom 9562 cnfcom3lem 9565 cnfcom3 9566 fsuppmapnn0fiublem 13816 fsuppmapnn0fiub 13817 gsumval3lem1 19601 gsumval3lem2 19602 gsumval3 19603 gsumzres 19605 gsumzcl2 19606 gsumzf1o 19608 gsumzaddlem 19617 gsumconst 19630 gsumzoppg 19640 gsum2d 19668 dpjidcl 19756 gsumfsum 20771 regsumsupp 20933 frlmlbs 21110 psrass1lemOLD 21249 psrass1lem 21252 psrass1 21280 psrass23l 21283 psrcom 21284 psrass23 21285 mplcoe1 21344 psropprmul 21515 coe1mul2 21546 tsmsgsum 23396 rrxcph 24662 rrxsuppss 24673 rrxmval 24675 mdegfval 25333 mdegleb 25335 mdegldg 25337 deg1mul3le 25387 wilthlem3 26325 suppovss 31302 fressupp 31307 ressupprn 31309 supppreima 31310 fsupprnfi 31311 fsuppcurry1 31345 fsuppcurry2 31346 gsumhashmul 31601 elrspunidl 31901 fedgmullem1 32006 zarcmplem 32127 fdivmpt 46302 fdivmptf 46303 refdivmptf 46304 fdivpm 46305 refdivpm 46306 |
Copyright terms: Public domain | W3C validator |