| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8095 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4031 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3980 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8096 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4351 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3980 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 {crab 3394 Vcvv 3436 ⊆ wss 3903 ∅c0 4284 {csn 4577 dom cdm 5619 “ cima 5622 (class class class)co 7349 supp csupp 8093 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5235 ax-nul 5245 ax-pr 5371 ax-un 7671 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3395 df-v 3438 df-sbc 3743 df-dif 3906 df-un 3908 df-in 3910 df-ss 3920 df-nul 4285 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4859 df-br 5093 df-opab 5155 df-id 5514 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-iota 6438 df-fun 6484 df-fv 6490 df-ov 7352 df-oprab 7353 df-mpo 7354 df-supp 8094 |
| This theorem is referenced by: snopsuppss 8112 wemapso2lem 9444 cantnfcl 9563 cantnfle 9567 cantnflt 9568 cantnff 9570 cantnfres 9573 cantnfp1lem3 9576 cantnflem1b 9582 cantnflem1 9585 cantnflem3 9587 cnfcomlem 9595 cnfcom 9596 cnfcom3lem 9599 cnfcom3 9600 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 gsumval3lem1 19784 gsumval3lem2 19785 gsumval3 19786 gsumzres 19788 gsumzcl2 19789 gsumzf1o 19791 gsumzaddlem 19800 gsumconst 19813 gsumzoppg 19823 gsum2d 19851 dpjidcl 19939 gsumfsum 21341 regsumsupp 21529 frlmlbs 21704 psrass1lem 21839 psrass1 21871 psrass23l 21874 psrcom 21875 psrass23 21876 mplcoe1 21942 psropprmul 22120 coe1mul2 22153 tsmsgsum 24024 rrxcph 25290 rrxsuppss 25301 rrxmval 25303 mdegfval 25965 mdegleb 25967 mdegldg 25969 deg1mul3le 26020 wilthlem3 26978 suppovss 32623 fressupp 32630 ressupprn 32632 supppreima 32633 fsupprnfi 32634 fsuppcurry1 32668 fsuppcurry2 32669 gsumfs2d 33008 gsumhashmul 33014 elrgspnlem4 33185 elrgspnsubrunlem1 33187 elrgspnsubrunlem2 33188 elrspunidl 33365 rprmdvdsprod 33471 1arithidom 33474 fedgmullem1 33596 fldextrspunlsplem 33640 fldextrspunlsp 33641 zarcmplem 33848 fdivmpt 48529 fdivmptf 48530 refdivmptf 48531 fdivpm 48532 refdivpm 48533 |
| Copyright terms: Public domain | W3C validator |