![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8186 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4090 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 4050 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 8187 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4406 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 4050 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2106 ≠ wne 2938 {crab 3433 Vcvv 3478 ⊆ wss 3963 ∅c0 4339 {csn 4631 dom cdm 5689 “ cima 5692 (class class class)co 7431 supp csupp 8184 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1792 ax-4 1806 ax-5 1908 ax-6 1965 ax-7 2005 ax-8 2108 ax-9 2116 ax-10 2139 ax-11 2155 ax-12 2175 ax-ext 2706 ax-sep 5302 ax-nul 5312 ax-pr 5438 ax-un 7754 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1540 df-fal 1550 df-ex 1777 df-nf 1781 df-sb 2063 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2727 df-clel 2814 df-nfc 2890 df-ne 2939 df-ral 3060 df-rex 3069 df-rab 3434 df-v 3480 df-sbc 3792 df-dif 3966 df-un 3968 df-in 3970 df-ss 3980 df-nul 4340 df-if 4532 df-pw 4607 df-sn 4632 df-pr 4634 df-op 4638 df-uni 4913 df-br 5149 df-opab 5211 df-id 5583 df-xp 5695 df-rel 5696 df-cnv 5697 df-co 5698 df-dm 5699 df-rn 5700 df-res 5701 df-ima 5702 df-iota 6516 df-fun 6565 df-fv 6571 df-ov 7434 df-oprab 7435 df-mpo 7436 df-supp 8185 |
This theorem is referenced by: snopsuppss 8203 wemapso2lem 9590 cantnfcl 9705 cantnfle 9709 cantnflt 9710 cantnff 9712 cantnfres 9715 cantnfp1lem3 9718 cantnflem1b 9724 cantnflem1 9727 cantnflem3 9729 cnfcomlem 9737 cnfcom 9738 cnfcom3lem 9741 cnfcom3 9742 fsuppmapnn0fiublem 14028 fsuppmapnn0fiub 14029 gsumval3lem1 19938 gsumval3lem2 19939 gsumval3 19940 gsumzres 19942 gsumzcl2 19943 gsumzf1o 19945 gsumzaddlem 19954 gsumconst 19967 gsumzoppg 19977 gsum2d 20005 dpjidcl 20093 gsumfsum 21470 regsumsupp 21658 frlmlbs 21835 psrass1lem 21970 psrass1 22002 psrass23l 22005 psrcom 22006 psrass23 22007 mplcoe1 22073 psropprmul 22255 coe1mul2 22288 tsmsgsum 24163 rrxcph 25440 rrxsuppss 25451 rrxmval 25453 mdegfval 26116 mdegleb 26118 mdegldg 26120 deg1mul3le 26171 wilthlem3 27128 suppovss 32696 fressupp 32703 ressupprn 32705 supppreima 32706 fsupprnfi 32707 fsuppcurry1 32743 fsuppcurry2 32744 gsumfs2d 33041 gsumhashmul 33047 elrgspnlem4 33235 elrspunidl 33436 rprmdvdsprod 33542 1arithidom 33545 fedgmullem1 33657 zarcmplem 33842 fdivmpt 48390 fdivmptf 48391 refdivmptf 48392 fdivpm 48393 refdivpm 48394 |
Copyright terms: Public domain | W3C validator |