| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8118 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4039 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3988 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8119 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4359 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3988 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 {crab 3402 Vcvv 3444 ⊆ wss 3911 ∅c0 4292 {csn 4585 dom cdm 5631 “ cima 5634 (class class class)co 7369 supp csupp 8116 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5246 ax-nul 5256 ax-pr 5382 ax-un 7691 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3403 df-v 3446 df-sbc 3751 df-dif 3914 df-un 3916 df-in 3918 df-ss 3928 df-nul 4293 df-if 4485 df-pw 4561 df-sn 4586 df-pr 4588 df-op 4592 df-uni 4868 df-br 5103 df-opab 5165 df-id 5526 df-xp 5637 df-rel 5638 df-cnv 5639 df-co 5640 df-dm 5641 df-rn 5642 df-res 5643 df-ima 5644 df-iota 6452 df-fun 6501 df-fv 6507 df-ov 7372 df-oprab 7373 df-mpo 7374 df-supp 8117 |
| This theorem is referenced by: snopsuppss 8135 wemapso2lem 9481 cantnfcl 9596 cantnfle 9600 cantnflt 9601 cantnff 9603 cantnfres 9606 cantnfp1lem3 9609 cantnflem1b 9615 cantnflem1 9618 cantnflem3 9620 cnfcomlem 9628 cnfcom 9629 cnfcom3lem 9632 cnfcom3 9633 fsuppmapnn0fiublem 13931 fsuppmapnn0fiub 13932 gsumval3lem1 19811 gsumval3lem2 19812 gsumval3 19813 gsumzres 19815 gsumzcl2 19816 gsumzf1o 19818 gsumzaddlem 19827 gsumconst 19840 gsumzoppg 19850 gsum2d 19878 dpjidcl 19966 gsumfsum 21327 regsumsupp 21507 frlmlbs 21682 psrass1lem 21817 psrass1 21849 psrass23l 21852 psrcom 21853 psrass23 21854 mplcoe1 21920 psropprmul 22098 coe1mul2 22131 tsmsgsum 24002 rrxcph 25268 rrxsuppss 25279 rrxmval 25281 mdegfval 25943 mdegleb 25945 mdegldg 25947 deg1mul3le 25998 wilthlem3 26956 suppovss 32577 fressupp 32584 ressupprn 32586 supppreima 32587 fsupprnfi 32588 fsuppcurry1 32621 fsuppcurry2 32622 gsumfs2d 32968 gsumhashmul 32974 elrgspnlem4 33169 elrgspnsubrunlem1 33171 elrgspnsubrunlem2 33172 elrspunidl 33372 rprmdvdsprod 33478 1arithidom 33481 fedgmullem1 33598 fldextrspunlsplem 33641 fldextrspunlsp 33642 zarcmplem 33844 fdivmpt 48502 fdivmptf 48503 refdivmptf 48504 fdivpm 48505 refdivpm 48506 |
| Copyright terms: Public domain | W3C validator |