Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 7950 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4009 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 3971 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 7951 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4327 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 3971 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ≠ wne 2942 {crab 3067 Vcvv 3422 ⊆ wss 3883 ∅c0 4253 {csn 4558 dom cdm 5580 “ cima 5583 (class class class)co 7255 supp csupp 7948 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1799 ax-4 1813 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2110 ax-9 2118 ax-10 2139 ax-11 2156 ax-12 2173 ax-ext 2709 ax-sep 5218 ax-nul 5225 ax-pr 5347 ax-un 7566 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 844 df-3an 1087 df-tru 1542 df-fal 1552 df-ex 1784 df-nf 1788 df-sb 2069 df-mo 2540 df-eu 2569 df-clab 2716 df-cleq 2730 df-clel 2817 df-nfc 2888 df-ne 2943 df-ral 3068 df-rex 3069 df-rab 3072 df-v 3424 df-sbc 3712 df-dif 3886 df-un 3888 df-in 3890 df-ss 3900 df-nul 4254 df-if 4457 df-sn 4559 df-pr 4561 df-op 4565 df-uni 4837 df-br 5071 df-opab 5133 df-id 5480 df-xp 5586 df-rel 5587 df-cnv 5588 df-co 5589 df-dm 5590 df-rn 5591 df-res 5592 df-ima 5593 df-iota 6376 df-fun 6420 df-fv 6426 df-ov 7258 df-oprab 7259 df-mpo 7260 df-supp 7949 |
This theorem is referenced by: snopsuppss 7966 wemapso2lem 9241 cantnfcl 9355 cantnfle 9359 cantnflt 9360 cantnff 9362 cantnfres 9365 cantnfp1lem3 9368 cantnflem1b 9374 cantnflem1 9377 cantnflem3 9379 cnfcomlem 9387 cnfcom 9388 cnfcom3lem 9391 cnfcom3 9392 fsuppmapnn0fiublem 13638 fsuppmapnn0fiub 13639 gsumval3lem1 19421 gsumval3lem2 19422 gsumval3 19423 gsumzres 19425 gsumzcl2 19426 gsumzf1o 19428 gsumzaddlem 19437 gsumconst 19450 gsumzoppg 19460 gsum2d 19488 dpjidcl 19576 gsumfsum 20577 regsumsupp 20739 frlmlbs 20914 psrass1lemOLD 21053 psrass1lem 21056 psrass1 21084 psrass23l 21087 psrcom 21088 psrass23 21089 mplcoe1 21148 psropprmul 21319 coe1mul2 21350 tsmsgsum 23198 rrxcph 24461 rrxsuppss 24472 rrxmval 24474 mdegfval 25132 mdegleb 25134 mdegldg 25136 deg1mul3le 25186 wilthlem3 26124 suppovss 30919 fressupp 30924 ressupprn 30926 supppreima 30927 fsupprnfi 30928 fsuppcurry1 30962 fsuppcurry2 30963 gsumhashmul 31218 elrspunidl 31508 fedgmullem1 31612 zarcmplem 31733 fdivmpt 45774 fdivmptf 45775 refdivmptf 45776 fdivpm 45777 refdivpm 45778 |
Copyright terms: Public domain | W3C validator |