| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8161 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4055 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 4003 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8162 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4375 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 4003 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ≠ wne 2932 {crab 3415 Vcvv 3459 ⊆ wss 3926 ∅c0 4308 {csn 4601 dom cdm 5654 “ cima 5657 (class class class)co 7405 supp csupp 8159 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-sep 5266 ax-nul 5276 ax-pr 5402 ax-un 7729 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-ral 3052 df-rex 3061 df-rab 3416 df-v 3461 df-sbc 3766 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-br 5120 df-opab 5182 df-id 5548 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-iota 6484 df-fun 6533 df-fv 6539 df-ov 7408 df-oprab 7409 df-mpo 7410 df-supp 8160 |
| This theorem is referenced by: snopsuppss 8178 wemapso2lem 9566 cantnfcl 9681 cantnfle 9685 cantnflt 9686 cantnff 9688 cantnfres 9691 cantnfp1lem3 9694 cantnflem1b 9700 cantnflem1 9703 cantnflem3 9705 cnfcomlem 9713 cnfcom 9714 cnfcom3lem 9717 cnfcom3 9718 fsuppmapnn0fiublem 14008 fsuppmapnn0fiub 14009 gsumval3lem1 19886 gsumval3lem2 19887 gsumval3 19888 gsumzres 19890 gsumzcl2 19891 gsumzf1o 19893 gsumzaddlem 19902 gsumconst 19915 gsumzoppg 19925 gsum2d 19953 dpjidcl 20041 gsumfsum 21402 regsumsupp 21582 frlmlbs 21757 psrass1lem 21892 psrass1 21924 psrass23l 21927 psrcom 21928 psrass23 21929 mplcoe1 21995 psropprmul 22173 coe1mul2 22206 tsmsgsum 24077 rrxcph 25344 rrxsuppss 25355 rrxmval 25357 mdegfval 26019 mdegleb 26021 mdegldg 26023 deg1mul3le 26074 wilthlem3 27032 suppovss 32658 fressupp 32665 ressupprn 32667 supppreima 32668 fsupprnfi 32669 fsuppcurry1 32702 fsuppcurry2 32703 gsumfs2d 33049 gsumhashmul 33055 elrgspnlem4 33240 elrgspnsubrunlem1 33242 elrgspnsubrunlem2 33243 elrspunidl 33443 rprmdvdsprod 33549 1arithidom 33552 fedgmullem1 33669 fldextrspunlsplem 33714 fldextrspunlsp 33715 zarcmplem 33912 fdivmpt 48520 fdivmptf 48521 refdivmptf 48522 fdivpm 48523 refdivpm 48524 |
| Copyright terms: Public domain | W3C validator |