| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8144 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4046 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3994 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8145 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4366 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3994 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ≠ wne 2926 {crab 3408 Vcvv 3450 ⊆ wss 3917 ∅c0 4299 {csn 4592 dom cdm 5641 “ cima 5644 (class class class)co 7390 supp csupp 8142 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-sep 5254 ax-nul 5264 ax-pr 5390 ax-un 7714 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-ral 3046 df-rex 3055 df-rab 3409 df-v 3452 df-sbc 3757 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-br 5111 df-opab 5173 df-id 5536 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-iota 6467 df-fun 6516 df-fv 6522 df-ov 7393 df-oprab 7394 df-mpo 7395 df-supp 8143 |
| This theorem is referenced by: snopsuppss 8161 wemapso2lem 9512 cantnfcl 9627 cantnfle 9631 cantnflt 9632 cantnff 9634 cantnfres 9637 cantnfp1lem3 9640 cantnflem1b 9646 cantnflem1 9649 cantnflem3 9651 cnfcomlem 9659 cnfcom 9660 cnfcom3lem 9663 cnfcom3 9664 fsuppmapnn0fiublem 13962 fsuppmapnn0fiub 13963 gsumval3lem1 19842 gsumval3lem2 19843 gsumval3 19844 gsumzres 19846 gsumzcl2 19847 gsumzf1o 19849 gsumzaddlem 19858 gsumconst 19871 gsumzoppg 19881 gsum2d 19909 dpjidcl 19997 gsumfsum 21358 regsumsupp 21538 frlmlbs 21713 psrass1lem 21848 psrass1 21880 psrass23l 21883 psrcom 21884 psrass23 21885 mplcoe1 21951 psropprmul 22129 coe1mul2 22162 tsmsgsum 24033 rrxcph 25299 rrxsuppss 25310 rrxmval 25312 mdegfval 25974 mdegleb 25976 mdegldg 25978 deg1mul3le 26029 wilthlem3 26987 suppovss 32611 fressupp 32618 ressupprn 32620 supppreima 32621 fsupprnfi 32622 fsuppcurry1 32655 fsuppcurry2 32656 gsumfs2d 33002 gsumhashmul 33008 elrgspnlem4 33203 elrgspnsubrunlem1 33205 elrgspnsubrunlem2 33206 elrspunidl 33406 rprmdvdsprod 33512 1arithidom 33515 fedgmullem1 33632 fldextrspunlsplem 33675 fldextrspunlsp 33676 zarcmplem 33878 fdivmpt 48533 fdivmptf 48534 refdivmptf 48535 fdivpm 48536 refdivpm 48537 |
| Copyright terms: Public domain | W3C validator |