![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8203 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4103 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 4063 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 8204 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4423 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 4063 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2108 ≠ wne 2946 {crab 3443 Vcvv 3488 ⊆ wss 3976 ∅c0 4352 {csn 4648 dom cdm 5700 “ cima 5703 (class class class)co 7448 supp csupp 8201 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2158 ax-12 2178 ax-ext 2711 ax-sep 5317 ax-nul 5324 ax-pr 5447 ax-un 7770 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 847 df-3an 1089 df-tru 1540 df-fal 1550 df-ex 1778 df-nf 1782 df-sb 2065 df-mo 2543 df-eu 2572 df-clab 2718 df-cleq 2732 df-clel 2819 df-nfc 2895 df-ne 2947 df-ral 3068 df-rex 3077 df-rab 3444 df-v 3490 df-sbc 3805 df-dif 3979 df-un 3981 df-in 3983 df-ss 3993 df-nul 4353 df-if 4549 df-pw 4624 df-sn 4649 df-pr 4651 df-op 4655 df-uni 4932 df-br 5167 df-opab 5229 df-id 5593 df-xp 5706 df-rel 5707 df-cnv 5708 df-co 5709 df-dm 5710 df-rn 5711 df-res 5712 df-ima 5713 df-iota 6525 df-fun 6575 df-fv 6581 df-ov 7451 df-oprab 7452 df-mpo 7453 df-supp 8202 |
This theorem is referenced by: snopsuppss 8220 wemapso2lem 9621 cantnfcl 9736 cantnfle 9740 cantnflt 9741 cantnff 9743 cantnfres 9746 cantnfp1lem3 9749 cantnflem1b 9755 cantnflem1 9758 cantnflem3 9760 cnfcomlem 9768 cnfcom 9769 cnfcom3lem 9772 cnfcom3 9773 fsuppmapnn0fiublem 14041 fsuppmapnn0fiub 14042 gsumval3lem1 19947 gsumval3lem2 19948 gsumval3 19949 gsumzres 19951 gsumzcl2 19952 gsumzf1o 19954 gsumzaddlem 19963 gsumconst 19976 gsumzoppg 19986 gsum2d 20014 dpjidcl 20102 gsumfsum 21475 regsumsupp 21663 frlmlbs 21840 psrass1lem 21975 psrass1 22007 psrass23l 22010 psrcom 22011 psrass23 22012 mplcoe1 22078 psropprmul 22260 coe1mul2 22293 tsmsgsum 24168 rrxcph 25445 rrxsuppss 25456 rrxmval 25458 mdegfval 26121 mdegleb 26123 mdegldg 26125 deg1mul3le 26176 wilthlem3 27131 suppovss 32697 fressupp 32700 ressupprn 32702 supppreima 32703 fsupprnfi 32704 fsuppcurry1 32739 fsuppcurry2 32740 gsumhashmul 33040 elrspunidl 33421 rprmdvdsprod 33527 1arithidom 33530 fedgmullem1 33642 zarcmplem 33827 fdivmpt 48274 fdivmptf 48275 refdivmptf 48276 fdivpm 48277 refdivpm 48278 |
Copyright terms: Public domain | W3C validator |