| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8141 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4043 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3991 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8142 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4363 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3991 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2109 ≠ wne 2925 {crab 3405 Vcvv 3447 ⊆ wss 3914 ∅c0 4296 {csn 4589 dom cdm 5638 “ cima 5641 (class class class)co 7387 supp csupp 8139 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-sep 5251 ax-nul 5261 ax-pr 5387 ax-un 7711 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-ral 3045 df-rex 3054 df-rab 3406 df-v 3449 df-sbc 3754 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-br 5108 df-opab 5170 df-id 5533 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-iota 6464 df-fun 6513 df-fv 6519 df-ov 7390 df-oprab 7391 df-mpo 7392 df-supp 8140 |
| This theorem is referenced by: snopsuppss 8158 wemapso2lem 9505 cantnfcl 9620 cantnfle 9624 cantnflt 9625 cantnff 9627 cantnfres 9630 cantnfp1lem3 9633 cantnflem1b 9639 cantnflem1 9642 cantnflem3 9644 cnfcomlem 9652 cnfcom 9653 cnfcom3lem 9656 cnfcom3 9657 fsuppmapnn0fiublem 13955 fsuppmapnn0fiub 13956 gsumval3lem1 19835 gsumval3lem2 19836 gsumval3 19837 gsumzres 19839 gsumzcl2 19840 gsumzf1o 19842 gsumzaddlem 19851 gsumconst 19864 gsumzoppg 19874 gsum2d 19902 dpjidcl 19990 gsumfsum 21351 regsumsupp 21531 frlmlbs 21706 psrass1lem 21841 psrass1 21873 psrass23l 21876 psrcom 21877 psrass23 21878 mplcoe1 21944 psropprmul 22122 coe1mul2 22155 tsmsgsum 24026 rrxcph 25292 rrxsuppss 25303 rrxmval 25305 mdegfval 25967 mdegleb 25969 mdegldg 25971 deg1mul3le 26022 wilthlem3 26980 suppovss 32604 fressupp 32611 ressupprn 32613 supppreima 32614 fsupprnfi 32615 fsuppcurry1 32648 fsuppcurry2 32649 gsumfs2d 32995 gsumhashmul 33001 elrgspnlem4 33196 elrgspnsubrunlem1 33198 elrgspnsubrunlem2 33199 elrspunidl 33399 rprmdvdsprod 33505 1arithidom 33508 fedgmullem1 33625 fldextrspunlsplem 33668 fldextrspunlsp 33669 zarcmplem 33871 fdivmpt 48529 fdivmptf 48530 refdivmptf 48531 fdivpm 48532 refdivpm 48533 |
| Copyright terms: Public domain | W3C validator |