![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version |
Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
Ref | Expression |
---|---|
suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | suppval 8147 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
2 | ssrab2 4077 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
3 | 1, 2 | eqsstrdi 4036 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
4 | supp0prc 8148 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
5 | 0ss 4396 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
6 | 4, 5 | eqsstrdi 4036 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 ∧ wa 396 ∈ wcel 2106 ≠ wne 2940 {crab 3432 Vcvv 3474 ⊆ wss 3948 ∅c0 4322 {csn 4628 dom cdm 5676 “ cima 5679 (class class class)co 7408 supp csupp 8145 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1797 ax-4 1811 ax-5 1913 ax-6 1971 ax-7 2011 ax-8 2108 ax-9 2116 ax-10 2137 ax-11 2154 ax-12 2171 ax-ext 2703 ax-sep 5299 ax-nul 5306 ax-pr 5427 ax-un 7724 |
This theorem depends on definitions: df-bi 206 df-an 397 df-or 846 df-3an 1089 df-tru 1544 df-fal 1554 df-ex 1782 df-nf 1786 df-sb 2068 df-mo 2534 df-eu 2563 df-clab 2710 df-cleq 2724 df-clel 2810 df-nfc 2885 df-ne 2941 df-ral 3062 df-rex 3071 df-rab 3433 df-v 3476 df-sbc 3778 df-dif 3951 df-un 3953 df-in 3955 df-ss 3965 df-nul 4323 df-if 4529 df-sn 4629 df-pr 4631 df-op 4635 df-uni 4909 df-br 5149 df-opab 5211 df-id 5574 df-xp 5682 df-rel 5683 df-cnv 5684 df-co 5685 df-dm 5686 df-rn 5687 df-res 5688 df-ima 5689 df-iota 6495 df-fun 6545 df-fv 6551 df-ov 7411 df-oprab 7412 df-mpo 7413 df-supp 8146 |
This theorem is referenced by: snopsuppss 8163 wemapso2lem 9546 cantnfcl 9661 cantnfle 9665 cantnflt 9666 cantnff 9668 cantnfres 9671 cantnfp1lem3 9674 cantnflem1b 9680 cantnflem1 9683 cantnflem3 9685 cnfcomlem 9693 cnfcom 9694 cnfcom3lem 9697 cnfcom3 9698 fsuppmapnn0fiublem 13954 fsuppmapnn0fiub 13955 gsumval3lem1 19772 gsumval3lem2 19773 gsumval3 19774 gsumzres 19776 gsumzcl2 19777 gsumzf1o 19779 gsumzaddlem 19788 gsumconst 19801 gsumzoppg 19811 gsum2d 19839 dpjidcl 19927 gsumfsum 21011 regsumsupp 21174 frlmlbs 21351 psrass1lemOLD 21492 psrass1lem 21495 psrass1 21524 psrass23l 21527 psrcom 21528 psrass23 21529 mplcoe1 21591 psropprmul 21759 coe1mul2 21790 tsmsgsum 23642 rrxcph 24908 rrxsuppss 24919 rrxmval 24921 mdegfval 25579 mdegleb 25581 mdegldg 25583 deg1mul3le 25633 wilthlem3 26571 suppovss 31901 fressupp 31905 ressupprn 31907 supppreima 31908 fsupprnfi 31909 fsuppcurry1 31945 fsuppcurry2 31946 gsumhashmul 32203 elrspunidl 32541 fedgmullem1 32709 zarcmplem 32856 fdivmpt 47216 fdivmptf 47217 refdivmptf 47218 fdivpm 47219 refdivpm 47220 |
Copyright terms: Public domain | W3C validator |