| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > suppssdm | Structured version Visualization version GIF version | ||
| Description: The support of a function is a subset of the function's domain. (Contributed by AV, 30-May-2019.) |
| Ref | Expression |
|---|---|
| suppssdm | ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppval 8092 | . . 3 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}}) | |
| 2 | ssrab2 4027 | . . 3 ⊢ {𝑖 ∈ dom 𝐹 ∣ (𝐹 “ {𝑖}) ≠ {𝑍}} ⊆ dom 𝐹 | |
| 3 | 1, 2 | eqsstrdi 3974 | . 2 ⊢ ((𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 4 | supp0prc 8093 | . . 3 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) = ∅) | |
| 5 | 0ss 4347 | . . 3 ⊢ ∅ ⊆ dom 𝐹 | |
| 6 | 4, 5 | eqsstrdi 3974 | . 2 ⊢ (¬ (𝐹 ∈ V ∧ 𝑍 ∈ V) → (𝐹 supp 𝑍) ⊆ dom 𝐹) |
| 7 | 3, 6 | pm2.61i 182 | 1 ⊢ (𝐹 supp 𝑍) ⊆ dom 𝐹 |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 ∧ wa 395 ∈ wcel 2111 ≠ wne 2928 {crab 3395 Vcvv 3436 ⊆ wss 3897 ∅c0 4280 {csn 4573 dom cdm 5614 “ cima 5617 (class class class)co 7346 supp csupp 8090 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2113 ax-9 2121 ax-10 2144 ax-11 2160 ax-12 2180 ax-ext 2703 ax-sep 5232 ax-nul 5242 ax-pr 5368 ax-un 7668 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2535 df-eu 2564 df-clab 2710 df-cleq 2723 df-clel 2806 df-nfc 2881 df-ne 2929 df-ral 3048 df-rex 3057 df-rab 3396 df-v 3438 df-sbc 3737 df-dif 3900 df-un 3902 df-in 3904 df-ss 3914 df-nul 4281 df-if 4473 df-pw 4549 df-sn 4574 df-pr 4576 df-op 4580 df-uni 4857 df-br 5090 df-opab 5152 df-id 5509 df-xp 5620 df-rel 5621 df-cnv 5622 df-co 5623 df-dm 5624 df-rn 5625 df-res 5626 df-ima 5627 df-iota 6437 df-fun 6483 df-fv 6489 df-ov 7349 df-oprab 7350 df-mpo 7351 df-supp 8091 |
| This theorem is referenced by: snopsuppss 8109 wemapso2lem 9438 cantnfcl 9557 cantnfle 9561 cantnflt 9562 cantnff 9564 cantnfres 9567 cantnfp1lem3 9570 cantnflem1b 9576 cantnflem1 9579 cantnflem3 9581 cnfcomlem 9589 cnfcom 9590 cnfcom3lem 9593 cnfcom3 9594 fsuppmapnn0fiublem 13897 fsuppmapnn0fiub 13898 gsumval3lem1 19817 gsumval3lem2 19818 gsumval3 19819 gsumzres 19821 gsumzcl2 19822 gsumzf1o 19824 gsumzaddlem 19833 gsumconst 19846 gsumzoppg 19856 gsum2d 19884 dpjidcl 19972 gsumfsum 21371 regsumsupp 21559 frlmlbs 21734 psrass1lem 21869 psrass1 21901 psrass23l 21904 psrcom 21905 psrass23 21906 mplcoe1 21972 psropprmul 22150 coe1mul2 22183 tsmsgsum 24054 rrxcph 25319 rrxsuppss 25330 rrxmval 25332 mdegfval 25994 mdegleb 25996 mdegldg 25998 deg1mul3le 26049 wilthlem3 27007 suppovss 32662 fressupp 32669 ressupprn 32671 supppreima 32672 fsupprnfi 32673 fsuppcurry1 32707 fsuppcurry2 32708 gsumfs2d 33035 gsumhashmul 33041 elrgspnlem4 33212 elrgspnsubrunlem1 33214 elrgspnsubrunlem2 33215 elrspunidl 33393 rprmdvdsprod 33499 1arithidom 33502 esplymhp 33589 esplyfv1 33590 fedgmullem1 33642 fldextrspunlsplem 33686 fldextrspunlsp 33687 zarcmplem 33894 fdivmpt 48651 fdivmptf 48652 refdivmptf 48653 fdivpm 48654 refdivpm 48655 |
| Copyright terms: Public domain | W3C validator |