![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinflippv | Structured version Visualization version GIF version |
Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ⢠š» ā V |
coinflip.t | ⢠š ā V |
coinflip.th | ⢠š» ā š |
coinflip.2 | ⢠š = ((⯠⾠š« {š», š}) āf/c / 2) |
coinflip.3 | ⢠š = {āØš», 1ā©, āØš, 0ā©} |
Ref | Expression |
---|---|
coinflippv | ⢠(šā{š»}) = (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . . 3 ⢠š = ((⯠⾠š« {š», š}) āf/c / 2) | |
2 | 1 | fveq1i 6886 | . 2 ⢠(šā{š»}) = (((⯠⾠š« {š», š}) āf/c / 2)ā{š»}) |
3 | snsspr1 4812 | . . 3 ⢠{š»} ā {š», š} | |
4 | prex 5425 | . . . . 5 ⢠{š», š} ā V | |
5 | 4 | elpw2 5338 | . . . 4 ⢠({š»} ā š« {š», š} ā {š»} ā {š», š}) |
6 | 5 | biimpri 227 | . . 3 ⢠({š»} ā {š», š} ā {š»} ā š« {š», š}) |
7 | fveq2 6885 | . . . . . 6 ⢠(š„ = {š»} ā (āÆāš„) = (āÆā{š»})) | |
8 | coinflip.h | . . . . . . 7 ⢠š» ā V | |
9 | hashsng 14334 | . . . . . . 7 ⢠(š» ā V ā (āÆā{š»}) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ⢠(āÆā{š»}) = 1 |
11 | 7, 10 | eqtrdi 2782 | . . . . 5 ⢠(š„ = {š»} ā (āÆāš„) = 1) |
12 | 11 | oveq1d 7420 | . . . 4 ⢠(š„ = {š»} ā ((āÆāš„) / 2) = (1 / 2)) |
13 | 4 | pwex 5371 | . . . . . . 7 ⢠š« {š», š} ā V |
14 | 13 | a1i 11 | . . . . . 6 ⢠(š» ā V ā š« {š», š} ā V) |
15 | 2nn0 12493 | . . . . . . 7 ⢠2 ā ā0 | |
16 | 15 | a1i 11 | . . . . . 6 ⢠(š» ā V ā 2 ā ā0) |
17 | prfi 9324 | . . . . . . . . 9 ⢠{š», š} ā Fin | |
18 | elpwi 4604 | . . . . . . . . 9 ⢠(š„ ā š« {š», š} ā š„ ā {š», š}) | |
19 | ssfi 9175 | . . . . . . . . 9 ⢠(({š», š} ā Fin ā§ š„ ā {š», š}) ā š„ ā Fin) | |
20 | 17, 18, 19 | sylancr 586 | . . . . . . . 8 ⢠(š„ ā š« {š», š} ā š„ ā Fin) |
21 | 20 | adantl 481 | . . . . . . 7 ⢠((š» ā V ā§ š„ ā š« {š», š}) ā š„ ā Fin) |
22 | hashcl 14321 | . . . . . . 7 ⢠(š„ ā Fin ā (āÆāš„) ā ā0) | |
23 | 21, 22 | syl 17 | . . . . . 6 ⢠((š» ā V ā§ š„ ā š« {š», š}) ā (āÆāš„) ā ā0) |
24 | hashf 14303 | . . . . . . . 8 ⢠āÆ:Vā¶(ā0 āŖ {+ā}) | |
25 | 24 | a1i 11 | . . . . . . 7 ⢠(š» ā V ā āÆ:Vā¶(ā0 āŖ {+ā})) |
26 | ssv 4001 | . . . . . . . 8 ⢠š« {š», š} ā V | |
27 | 26 | a1i 11 | . . . . . . 7 ⢠(š» ā V ā š« {š», š} ā V) |
28 | 25, 27 | feqresmpt 6955 | . . . . . 6 ⢠(š» ā V ā (⯠⾠š« {š», š}) = (š„ ā š« {š», š} ⦠(āÆāš„))) |
29 | 14, 16, 23, 28 | ofcfval2 33632 | . . . . 5 ⢠(š» ā V ā ((⯠⾠š« {š», š}) āf/c / 2) = (š„ ā š« {š», š} ⦠((āÆāš„) / 2))) |
30 | 8, 29 | ax-mp 5 | . . . 4 ⢠((⯠⾠š« {š», š}) āf/c / 2) = (š„ ā š« {š», š} ⦠((āÆāš„) / 2)) |
31 | ovex 7438 | . . . 4 ⢠(1 / 2) ā V | |
32 | 12, 30, 31 | fvmpt 6992 | . . 3 ⢠({š»} ā š« {š», š} ā (((⯠⾠š« {š», š}) āf/c / 2)ā{š»}) = (1 / 2)) |
33 | 3, 6, 32 | mp2b 10 | . 2 ⢠(((⯠⾠š« {š», š}) āf/c / 2)ā{š»}) = (1 / 2) |
34 | 2, 33 | eqtri 2754 | 1 ⢠(šā{š»}) = (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ā§ wa 395 = wceq 1533 ā wcel 2098 ā wne 2934 Vcvv 3468 āŖ cun 3941 ā wss 3943 š« cpw 4597 {csn 4623 {cpr 4625 āØcop 4629 ⦠cmpt 5224 ā¾ cres 5671 ā¶wf 6533 ācfv 6537 (class class class)co 7405 Fincfn 8941 0cc0 11112 1c1 11113 +ācpnf 11249 / cdiv 11875 2c2 12271 ā0cn0 12476 āÆchash 14295 āf/c cofc 33623 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2163 ax-ext 2697 ax-rep 5278 ax-sep 5292 ax-nul 5299 ax-pow 5356 ax-pr 5420 ax-un 7722 ax-cnex 11168 ax-resscn 11169 ax-1cn 11170 ax-icn 11171 ax-addcl 11172 ax-addrcl 11173 ax-mulcl 11174 ax-mulrcl 11175 ax-mulcom 11176 ax-addass 11177 ax-mulass 11178 ax-distr 11179 ax-i2m1 11180 ax-1ne0 11181 ax-1rid 11182 ax-rnegex 11183 ax-rrecex 11184 ax-cnre 11185 ax-pre-lttri 11186 ax-pre-lttrn 11187 ax-pre-ltadd 11188 ax-pre-mulgt0 11189 |
This theorem depends on definitions: df-bi 206 df-an 396 df-or 845 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2704 df-cleq 2718 df-clel 2804 df-nfc 2879 df-ne 2935 df-nel 3041 df-ral 3056 df-rex 3065 df-reu 3371 df-rab 3427 df-v 3470 df-sbc 3773 df-csb 3889 df-dif 3946 df-un 3948 df-in 3950 df-ss 3960 df-pss 3962 df-nul 4318 df-if 4524 df-pw 4599 df-sn 4624 df-pr 4626 df-op 4630 df-uni 4903 df-int 4944 df-iun 4992 df-br 5142 df-opab 5204 df-mpt 5225 df-tr 5259 df-id 5567 df-eprel 5573 df-po 5581 df-so 5582 df-fr 5624 df-we 5626 df-xp 5675 df-rel 5676 df-cnv 5677 df-co 5678 df-dm 5679 df-rn 5680 df-res 5681 df-ima 5682 df-pred 6294 df-ord 6361 df-on 6362 df-lim 6363 df-suc 6364 df-iota 6489 df-fun 6539 df-fn 6540 df-f 6541 df-f1 6542 df-fo 6543 df-f1o 6544 df-fv 6545 df-riota 7361 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7853 df-1st 7974 df-2nd 7975 df-frecs 8267 df-wrecs 8298 df-recs 8372 df-rdg 8411 df-1o 8467 df-er 8705 df-en 8942 df-dom 8943 df-sdom 8944 df-fin 8945 df-card 9936 df-pnf 11254 df-mnf 11255 df-xr 11256 df-ltxr 11257 df-le 11258 df-sub 11450 df-neg 11451 df-nn 12217 df-2 12279 df-n0 12477 df-xnn0 12549 df-z 12563 df-uz 12827 df-fz 13491 df-hash 14296 df-ofc 33624 |
This theorem is referenced by: coinflippvt 34013 |
Copyright terms: Public domain | W3C validator |