Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflippv Structured version   Visualization version   GIF version

Theorem coinflippv 31734
Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflippv (𝑃‘{𝐻}) = (1 / 2)

Proof of Theorem coinflippv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . . 3 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
21fveq1i 6664 . 2 (𝑃‘{𝐻}) = (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻})
3 snsspr1 4739 . . 3 {𝐻} ⊆ {𝐻, 𝑇}
4 prex 5323 . . . . 5 {𝐻, 𝑇} ∈ V
54elpw2 5239 . . . 4 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇})
65biimpri 230 . . 3 ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇})
7 fveq2 6663 . . . . . 6 (𝑥 = {𝐻} → (♯‘𝑥) = (♯‘{𝐻}))
8 coinflip.h . . . . . . 7 𝐻 ∈ V
9 hashsng 13722 . . . . . . 7 (𝐻 ∈ V → (♯‘{𝐻}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝐻}) = 1
117, 10syl6eq 2870 . . . . 5 (𝑥 = {𝐻} → (♯‘𝑥) = 1)
1211oveq1d 7163 . . . 4 (𝑥 = {𝐻} → ((♯‘𝑥) / 2) = (1 / 2))
134pwex 5272 . . . . . . 7 𝒫 {𝐻, 𝑇} ∈ V
1413a1i 11 . . . . . 6 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
15 2nn0 11906 . . . . . . 7 2 ∈ ℕ0
1615a1i 11 . . . . . 6 (𝐻 ∈ V → 2 ∈ ℕ0)
17 prfi 8785 . . . . . . . . 9 {𝐻, 𝑇} ∈ Fin
18 elpwi 4549 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇})
19 ssfi 8730 . . . . . . . . 9 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
2017, 18, 19sylancr 589 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin)
2120adantl 484 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
22 hashcl 13709 . . . . . . 7 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2321, 22syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0)
24 hashf 13690 . . . . . . . 8 ♯:V⟶(ℕ0 ∪ {+∞})
2524a1i 11 . . . . . . 7 (𝐻 ∈ V → ♯:V⟶(ℕ0 ∪ {+∞}))
26 ssv 3989 . . . . . . . 8 𝒫 {𝐻, 𝑇} ⊆ V
2726a1i 11 . . . . . . 7 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V)
2825, 27feqresmpt 6727 . . . . . 6 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (♯‘𝑥)))
2914, 16, 23, 28ofcfval2 31356 . . . . 5 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2)))
308, 29ax-mp 5 . . . 4 ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2))
31 ovex 7181 . . . 4 (1 / 2) ∈ V
3212, 30, 31fvmpt 6761 . . 3 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2))
333, 6, 32mp2b 10 . 2 (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2)
342, 33eqtri 2842 1 (𝑃‘{𝐻}) = (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 398   = wceq 1530  wcel 2107  wne 3014  Vcvv 3493  cun 3932  wss 3934  𝒫 cpw 4537  {csn 4559  {cpr 4561  cop 4565  cmpt 5137  cres 5550  wf 6344  cfv 6348  (class class class)co 7148  Fincfn 8501  0cc0 10529  1c1 10530  +∞cpnf 10664   / cdiv 11289  2c2 11684  0cn0 11889  chash 13682  f/c cofc 31347
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1789  ax-4 1803  ax-5 1904  ax-6 1963  ax-7 2008  ax-8 2109  ax-9 2117  ax-10 2138  ax-11 2153  ax-12 2169  ax-ext 2791  ax-rep 5181  ax-sep 5194  ax-nul 5201  ax-pow 5257  ax-pr 5320  ax-un 7453  ax-cnex 10585  ax-resscn 10586  ax-1cn 10587  ax-icn 10588  ax-addcl 10589  ax-addrcl 10590  ax-mulcl 10591  ax-mulrcl 10592  ax-mulcom 10593  ax-addass 10594  ax-mulass 10595  ax-distr 10596  ax-i2m1 10597  ax-1ne0 10598  ax-1rid 10599  ax-rnegex 10600  ax-rrecex 10601  ax-cnre 10602  ax-pre-lttri 10603  ax-pre-lttrn 10604  ax-pre-ltadd 10605  ax-pre-mulgt0 10606
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1082  df-3an 1083  df-tru 1533  df-ex 1774  df-nf 1778  df-sb 2063  df-mo 2616  df-eu 2648  df-clab 2798  df-cleq 2812  df-clel 2891  df-nfc 2961  df-ne 3015  df-nel 3122  df-ral 3141  df-rex 3142  df-reu 3143  df-rab 3145  df-v 3495  df-sbc 3771  df-csb 3882  df-dif 3937  df-un 3939  df-in 3941  df-ss 3950  df-pss 3952  df-nul 4290  df-if 4466  df-pw 4539  df-sn 4560  df-pr 4562  df-tp 4564  df-op 4566  df-uni 4831  df-int 4868  df-iun 4912  df-br 5058  df-opab 5120  df-mpt 5138  df-tr 5164  df-id 5453  df-eprel 5458  df-po 5467  df-so 5468  df-fr 5507  df-we 5509  df-xp 5554  df-rel 5555  df-cnv 5556  df-co 5557  df-dm 5558  df-rn 5559  df-res 5560  df-ima 5561  df-pred 6141  df-ord 6187  df-on 6188  df-lim 6189  df-suc 6190  df-iota 6307  df-fun 6350  df-fn 6351  df-f 6352  df-f1 6353  df-fo 6354  df-f1o 6355  df-fv 6356  df-riota 7106  df-ov 7151  df-oprab 7152  df-mpo 7153  df-om 7573  df-1st 7681  df-2nd 7682  df-wrecs 7939  df-recs 8000  df-rdg 8038  df-1o 8094  df-oadd 8098  df-er 8281  df-en 8502  df-dom 8503  df-sdom 8504  df-fin 8505  df-card 9360  df-pnf 10669  df-mnf 10670  df-xr 10671  df-ltxr 10672  df-le 10673  df-sub 10864  df-neg 10865  df-nn 11631  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12885  df-hash 13683  df-ofc 31348
This theorem is referenced by:  coinflippvt  31735
  Copyright terms: Public domain W3C validator