| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coinflippv | Structured version Visualization version GIF version | ||
| Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| coinflip.h | ⊢ 𝐻 ∈ V |
| coinflip.t | ⊢ 𝑇 ∈ V |
| coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
| coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
| Ref | Expression |
|---|---|
| coinflippv | ⊢ (𝑃‘{𝐻}) = (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coinflip.2 | . . 3 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
| 2 | 1 | fveq1i 6859 | . 2 ⊢ (𝑃‘{𝐻}) = (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) |
| 3 | snsspr1 4778 | . . 3 ⊢ {𝐻} ⊆ {𝐻, 𝑇} | |
| 4 | prex 5392 | . . . . 5 ⊢ {𝐻, 𝑇} ∈ V | |
| 5 | 4 | elpw2 5289 | . . . 4 ⊢ ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇}) |
| 6 | 5 | biimpri 228 | . . 3 ⊢ ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇}) |
| 7 | fveq2 6858 | . . . . . 6 ⊢ (𝑥 = {𝐻} → (♯‘𝑥) = (♯‘{𝐻})) | |
| 8 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
| 9 | hashsng 14334 | . . . . . . 7 ⊢ (𝐻 ∈ V → (♯‘{𝐻}) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝐻}) = 1 |
| 11 | 7, 10 | eqtrdi 2780 | . . . . 5 ⊢ (𝑥 = {𝐻} → (♯‘𝑥) = 1) |
| 12 | 11 | oveq1d 7402 | . . . 4 ⊢ (𝑥 = {𝐻} → ((♯‘𝑥) / 2) = (1 / 2)) |
| 13 | 4 | pwex 5335 | . . . . . . 7 ⊢ 𝒫 {𝐻, 𝑇} ∈ V |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V) |
| 15 | 2nn0 12459 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ V → 2 ∈ ℕ0) |
| 17 | prfi 9274 | . . . . . . . . 9 ⊢ {𝐻, 𝑇} ∈ Fin | |
| 18 | elpwi 4570 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇}) | |
| 19 | ssfi 9137 | . . . . . . . . 9 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
| 20 | 17, 18, 19 | sylancr 587 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin) |
| 21 | 20 | adantl 481 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
| 22 | hashcl 14321 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
| 23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
| 24 | hashf 14303 | . . . . . . . 8 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝐻 ∈ V → ♯:V⟶(ℕ0 ∪ {+∞})) |
| 26 | ssv 3971 | . . . . . . . 8 ⊢ 𝒫 {𝐻, 𝑇} ⊆ V | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V) |
| 28 | 25, 27 | feqresmpt 6930 | . . . . . 6 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (♯‘𝑥))) |
| 29 | 14, 16, 23, 28 | ofcfval2 34094 | . . . . 5 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2))) |
| 30 | 8, 29 | ax-mp 5 | . . . 4 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2)) |
| 31 | ovex 7420 | . . . 4 ⊢ (1 / 2) ∈ V | |
| 32 | 12, 30, 31 | fvmpt 6968 | . . 3 ⊢ ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2)) |
| 33 | 3, 6, 32 | mp2b 10 | . 2 ⊢ (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2) |
| 34 | 2, 33 | eqtri 2752 | 1 ⊢ (𝑃‘{𝐻}) = (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2109 ≠ wne 2925 Vcvv 3447 ∪ cun 3912 ⊆ wss 3914 𝒫 cpw 4563 {csn 4589 {cpr 4591 〈cop 4595 ↦ cmpt 5188 ↾ cres 5640 ⟶wf 6507 ‘cfv 6511 (class class class)co 7387 Fincfn 8918 0cc0 11068 1c1 11069 +∞cpnf 11205 / cdiv 11835 2c2 12241 ℕ0cn0 12442 ♯chash 14295 ∘f/c cofc 34085 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2701 ax-rep 5234 ax-sep 5251 ax-nul 5261 ax-pow 5320 ax-pr 5387 ax-un 7711 ax-cnex 11124 ax-resscn 11125 ax-1cn 11126 ax-icn 11127 ax-addcl 11128 ax-addrcl 11129 ax-mulcl 11130 ax-mulrcl 11131 ax-mulcom 11132 ax-addass 11133 ax-mulass 11134 ax-distr 11135 ax-i2m1 11136 ax-1ne0 11137 ax-1rid 11138 ax-rnegex 11139 ax-rrecex 11140 ax-cnre 11141 ax-pre-lttri 11142 ax-pre-lttrn 11143 ax-pre-ltadd 11144 ax-pre-mulgt0 11145 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2533 df-eu 2562 df-clab 2708 df-cleq 2721 df-clel 2803 df-nfc 2878 df-ne 2926 df-nel 3030 df-ral 3045 df-rex 3054 df-reu 3355 df-rab 3406 df-v 3449 df-sbc 3754 df-csb 3863 df-dif 3917 df-un 3919 df-in 3921 df-ss 3931 df-pss 3934 df-nul 4297 df-if 4489 df-pw 4565 df-sn 4590 df-pr 4592 df-op 4596 df-uni 4872 df-int 4911 df-iun 4957 df-br 5108 df-opab 5170 df-mpt 5189 df-tr 5215 df-id 5533 df-eprel 5538 df-po 5546 df-so 5547 df-fr 5591 df-we 5593 df-xp 5644 df-rel 5645 df-cnv 5646 df-co 5647 df-dm 5648 df-rn 5649 df-res 5650 df-ima 5651 df-pred 6274 df-ord 6335 df-on 6336 df-lim 6337 df-suc 6338 df-iota 6464 df-fun 6513 df-fn 6514 df-f 6515 df-f1 6516 df-fo 6517 df-f1o 6518 df-fv 6519 df-riota 7344 df-ov 7390 df-oprab 7391 df-mpo 7392 df-om 7843 df-1st 7968 df-2nd 7969 df-frecs 8260 df-wrecs 8291 df-recs 8340 df-rdg 8378 df-1o 8434 df-2o 8435 df-er 8671 df-en 8919 df-dom 8920 df-sdom 8921 df-fin 8922 df-card 9892 df-pnf 11210 df-mnf 11211 df-xr 11212 df-ltxr 11213 df-le 11214 df-sub 11407 df-neg 11408 df-nn 12187 df-2 12249 df-n0 12443 df-xnn0 12516 df-z 12530 df-uz 12794 df-fz 13469 df-hash 14296 df-ofc 34086 |
| This theorem is referenced by: coinflippvt 34476 |
| Copyright terms: Public domain | W3C validator |