Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflippv Structured version   Visualization version   GIF version

Theorem coinflippv 34497
Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflippv (𝑃‘{𝐻}) = (1 / 2)

Proof of Theorem coinflippv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . . 3 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
21fveq1i 6823 . 2 (𝑃‘{𝐻}) = (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻})
3 snsspr1 4763 . . 3 {𝐻} ⊆ {𝐻, 𝑇}
4 prex 5373 . . . . 5 {𝐻, 𝑇} ∈ V
54elpw2 5270 . . . 4 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇})
65biimpri 228 . . 3 ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇})
7 fveq2 6822 . . . . . 6 (𝑥 = {𝐻} → (♯‘𝑥) = (♯‘{𝐻}))
8 coinflip.h . . . . . . 7 𝐻 ∈ V
9 hashsng 14276 . . . . . . 7 (𝐻 ∈ V → (♯‘{𝐻}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝐻}) = 1
117, 10eqtrdi 2782 . . . . 5 (𝑥 = {𝐻} → (♯‘𝑥) = 1)
1211oveq1d 7361 . . . 4 (𝑥 = {𝐻} → ((♯‘𝑥) / 2) = (1 / 2))
134pwex 5316 . . . . . . 7 𝒫 {𝐻, 𝑇} ∈ V
1413a1i 11 . . . . . 6 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
15 2nn0 12398 . . . . . . 7 2 ∈ ℕ0
1615a1i 11 . . . . . 6 (𝐻 ∈ V → 2 ∈ ℕ0)
17 prfi 9208 . . . . . . . . 9 {𝐻, 𝑇} ∈ Fin
18 elpwi 4554 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇})
19 ssfi 9082 . . . . . . . . 9 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
2017, 18, 19sylancr 587 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin)
2120adantl 481 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
22 hashcl 14263 . . . . . . 7 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2321, 22syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0)
24 hashf 14245 . . . . . . . 8 ♯:V⟶(ℕ0 ∪ {+∞})
2524a1i 11 . . . . . . 7 (𝐻 ∈ V → ♯:V⟶(ℕ0 ∪ {+∞}))
26 ssv 3954 . . . . . . . 8 𝒫 {𝐻, 𝑇} ⊆ V
2726a1i 11 . . . . . . 7 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V)
2825, 27feqresmpt 6891 . . . . . 6 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (♯‘𝑥)))
2914, 16, 23, 28ofcfval2 34117 . . . . 5 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2)))
308, 29ax-mp 5 . . . 4 ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2))
31 ovex 7379 . . . 4 (1 / 2) ∈ V
3212, 30, 31fvmpt 6929 . . 3 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2))
333, 6, 32mp2b 10 . 2 (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2)
342, 33eqtri 2754 1 (𝑃‘{𝐻}) = (1 / 2)
Colors of variables: wff setvar class
Syntax hints:  wa 395   = wceq 1541  wcel 2111  wne 2928  Vcvv 3436  cun 3895  wss 3897  𝒫 cpw 4547  {csn 4573  {cpr 4575  cop 4579  cmpt 5170  cres 5616  wf 6477  cfv 6481  (class class class)co 7346  Fincfn 8869  0cc0 11006  1c1 11007  +∞cpnf 11143   / cdiv 11774  2c2 12180  0cn0 12381  chash 14237  f/c cofc 34108
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-op 4580  df-uni 4857  df-int 4896  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-2o 8386  df-er 8622  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-card 9832  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-nn 12126  df-2 12188  df-n0 12382  df-xnn0 12455  df-z 12469  df-uz 12733  df-fz 13408  df-hash 14238  df-ofc 34109
This theorem is referenced by:  coinflippvt  34498
  Copyright terms: Public domain W3C validator