Mathbox for Thierry Arnoux < Previous   Next > Nearby theorems Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  coinflippv Structured version   Visualization version   GIF version

Theorem coinflippv 31849
 Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.)
Hypotheses
Ref Expression
coinflip.h 𝐻 ∈ V
coinflip.t 𝑇 ∈ V
coinflip.th 𝐻𝑇
coinflip.2 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
coinflip.3 𝑋 = {⟨𝐻, 1⟩, ⟨𝑇, 0⟩}
Assertion
Ref Expression
coinflippv (𝑃‘{𝐻}) = (1 / 2)

Proof of Theorem coinflippv
Dummy variable 𝑥 is distinct from all other variables.
StepHypRef Expression
1 coinflip.2 . . 3 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)
21fveq1i 6650 . 2 (𝑃‘{𝐻}) = (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻})
3 snsspr1 4710 . . 3 {𝐻} ⊆ {𝐻, 𝑇}
4 prex 5301 . . . . 5 {𝐻, 𝑇} ∈ V
54elpw2 5215 . . . 4 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇})
65biimpri 231 . . 3 ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇})
7 fveq2 6649 . . . . . 6 (𝑥 = {𝐻} → (♯‘𝑥) = (♯‘{𝐻}))
8 coinflip.h . . . . . . 7 𝐻 ∈ V
9 hashsng 13730 . . . . . . 7 (𝐻 ∈ V → (♯‘{𝐻}) = 1)
108, 9ax-mp 5 . . . . . 6 (♯‘{𝐻}) = 1
117, 10eqtrdi 2852 . . . . 5 (𝑥 = {𝐻} → (♯‘𝑥) = 1)
1211oveq1d 7154 . . . 4 (𝑥 = {𝐻} → ((♯‘𝑥) / 2) = (1 / 2))
134pwex 5249 . . . . . . 7 𝒫 {𝐻, 𝑇} ∈ V
1413a1i 11 . . . . . 6 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V)
15 2nn0 11906 . . . . . . 7 2 ∈ ℕ0
1615a1i 11 . . . . . 6 (𝐻 ∈ V → 2 ∈ ℕ0)
17 prfi 8781 . . . . . . . . 9 {𝐻, 𝑇} ∈ Fin
18 elpwi 4509 . . . . . . . . 9 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇})
19 ssfi 8726 . . . . . . . . 9 (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin)
2017, 18, 19sylancr 590 . . . . . . . 8 (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin)
2120adantl 485 . . . . . . 7 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin)
22 hashcl 13717 . . . . . . 7 (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0)
2321, 22syl 17 . . . . . 6 ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0)
24 hashf 13698 . . . . . . . 8 ♯:V⟶(ℕ0 ∪ {+∞})
2524a1i 11 . . . . . . 7 (𝐻 ∈ V → ♯:V⟶(ℕ0 ∪ {+∞}))
26 ssv 3942 . . . . . . . 8 𝒫 {𝐻, 𝑇} ⊆ V
2726a1i 11 . . . . . . 7 (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V)
2825, 27feqresmpt 6713 . . . . . 6 (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (♯‘𝑥)))
2914, 16, 23, 28ofcfval2 31471 . . . . 5 (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2)))
308, 29ax-mp 5 . . . 4 ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2))
31 ovex 7172 . . . 4 (1 / 2) ∈ V
3212, 30, 31fvmpt 6749 . . 3 ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2))
333, 6, 32mp2b 10 . 2 (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2)
342, 33eqtri 2824 1 (𝑃‘{𝐻}) = (1 / 2)
 Colors of variables: wff setvar class Syntax hints:   ∧ wa 399   = wceq 1538   ∈ wcel 2112   ≠ wne 2990  Vcvv 3444   ∪ cun 3882   ⊆ wss 3884  𝒫 cpw 4500  {csn 4528  {cpr 4530  ⟨cop 4534   ↦ cmpt 5113   ↾ cres 5525  ⟶wf 6324  ‘cfv 6328  (class class class)co 7139  Fincfn 8496  0cc0 10530  1c1 10531  +∞cpnf 10665   / cdiv 11290  2c2 11684  ℕ0cn0 11889  ♯chash 13690   ∘f/c cofc 31462 This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2114  ax-9 2122  ax-10 2143  ax-11 2159  ax-12 2176  ax-ext 2773  ax-rep 5157  ax-sep 5170  ax-nul 5177  ax-pow 5234  ax-pr 5298  ax-un 7445  ax-cnex 10586  ax-resscn 10587  ax-1cn 10588  ax-icn 10589  ax-addcl 10590  ax-addrcl 10591  ax-mulcl 10592  ax-mulrcl 10593  ax-mulcom 10594  ax-addass 10595  ax-mulass 10596  ax-distr 10597  ax-i2m1 10598  ax-1ne0 10599  ax-1rid 10600  ax-rnegex 10601  ax-rrecex 10602  ax-cnre 10603  ax-pre-lttri 10604  ax-pre-lttrn 10605  ax-pre-ltadd 10606  ax-pre-mulgt0 10607 This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3or 1085  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2601  df-eu 2632  df-clab 2780  df-cleq 2794  df-clel 2873  df-nfc 2941  df-ne 2991  df-nel 3095  df-ral 3114  df-rex 3115  df-reu 3116  df-rab 3118  df-v 3446  df-sbc 3724  df-csb 3832  df-dif 3887  df-un 3889  df-in 3891  df-ss 3901  df-pss 3903  df-nul 4247  df-if 4429  df-pw 4502  df-sn 4529  df-pr 4531  df-tp 4533  df-op 4535  df-uni 4804  df-int 4842  df-iun 4886  df-br 5034  df-opab 5096  df-mpt 5114  df-tr 5140  df-id 5428  df-eprel 5433  df-po 5442  df-so 5443  df-fr 5482  df-we 5484  df-xp 5529  df-rel 5530  df-cnv 5531  df-co 5532  df-dm 5533  df-rn 5534  df-res 5535  df-ima 5536  df-pred 6120  df-ord 6166  df-on 6167  df-lim 6168  df-suc 6169  df-iota 6287  df-fun 6330  df-fn 6331  df-f 6332  df-f1 6333  df-fo 6334  df-f1o 6335  df-fv 6336  df-riota 7097  df-ov 7142  df-oprab 7143  df-mpo 7144  df-om 7565  df-1st 7675  df-2nd 7676  df-wrecs 7934  df-recs 7995  df-rdg 8033  df-1o 8089  df-oadd 8093  df-er 8276  df-en 8497  df-dom 8498  df-sdom 8499  df-fin 8500  df-card 9356  df-pnf 10670  df-mnf 10671  df-xr 10672  df-ltxr 10673  df-le 10674  df-sub 10865  df-neg 10866  df-nn 11630  df-2 11692  df-n0 11890  df-xnn0 11960  df-z 11974  df-uz 12236  df-fz 12890  df-hash 13691  df-ofc 31463 This theorem is referenced by:  coinflippvt  31850
 Copyright terms: Public domain W3C validator