| Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > coinflippv | Structured version Visualization version GIF version | ||
| Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
| Ref | Expression |
|---|---|
| coinflip.h | ⊢ 𝐻 ∈ V |
| coinflip.t | ⊢ 𝑇 ∈ V |
| coinflip.th | ⊢ 𝐻 ≠ 𝑇 |
| coinflip.2 | ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) |
| coinflip.3 | ⊢ 𝑋 = {〈𝐻, 1〉, 〈𝑇, 0〉} |
| Ref | Expression |
|---|---|
| coinflippv | ⊢ (𝑃‘{𝐻}) = (1 / 2) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | coinflip.2 | . . 3 ⊢ 𝑃 = ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) | |
| 2 | 1 | fveq1i 6877 | . 2 ⊢ (𝑃‘{𝐻}) = (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) |
| 3 | snsspr1 4790 | . . 3 ⊢ {𝐻} ⊆ {𝐻, 𝑇} | |
| 4 | prex 5407 | . . . . 5 ⊢ {𝐻, 𝑇} ∈ V | |
| 5 | 4 | elpw2 5304 | . . . 4 ⊢ ({𝐻} ∈ 𝒫 {𝐻, 𝑇} ↔ {𝐻} ⊆ {𝐻, 𝑇}) |
| 6 | 5 | biimpri 228 | . . 3 ⊢ ({𝐻} ⊆ {𝐻, 𝑇} → {𝐻} ∈ 𝒫 {𝐻, 𝑇}) |
| 7 | fveq2 6876 | . . . . . 6 ⊢ (𝑥 = {𝐻} → (♯‘𝑥) = (♯‘{𝐻})) | |
| 8 | coinflip.h | . . . . . . 7 ⊢ 𝐻 ∈ V | |
| 9 | hashsng 14387 | . . . . . . 7 ⊢ (𝐻 ∈ V → (♯‘{𝐻}) = 1) | |
| 10 | 8, 9 | ax-mp 5 | . . . . . 6 ⊢ (♯‘{𝐻}) = 1 |
| 11 | 7, 10 | eqtrdi 2786 | . . . . 5 ⊢ (𝑥 = {𝐻} → (♯‘𝑥) = 1) |
| 12 | 11 | oveq1d 7420 | . . . 4 ⊢ (𝑥 = {𝐻} → ((♯‘𝑥) / 2) = (1 / 2)) |
| 13 | 4 | pwex 5350 | . . . . . . 7 ⊢ 𝒫 {𝐻, 𝑇} ∈ V |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ∈ V) |
| 15 | 2nn0 12518 | . . . . . . 7 ⊢ 2 ∈ ℕ0 | |
| 16 | 15 | a1i 11 | . . . . . 6 ⊢ (𝐻 ∈ V → 2 ∈ ℕ0) |
| 17 | prfi 9335 | . . . . . . . . 9 ⊢ {𝐻, 𝑇} ∈ Fin | |
| 18 | elpwi 4582 | . . . . . . . . 9 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ⊆ {𝐻, 𝑇}) | |
| 19 | ssfi 9187 | . . . . . . . . 9 ⊢ (({𝐻, 𝑇} ∈ Fin ∧ 𝑥 ⊆ {𝐻, 𝑇}) → 𝑥 ∈ Fin) | |
| 20 | 17, 18, 19 | sylancr 587 | . . . . . . . 8 ⊢ (𝑥 ∈ 𝒫 {𝐻, 𝑇} → 𝑥 ∈ Fin) |
| 21 | 20 | adantl 481 | . . . . . . 7 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → 𝑥 ∈ Fin) |
| 22 | hashcl 14374 | . . . . . . 7 ⊢ (𝑥 ∈ Fin → (♯‘𝑥) ∈ ℕ0) | |
| 23 | 21, 22 | syl 17 | . . . . . 6 ⊢ ((𝐻 ∈ V ∧ 𝑥 ∈ 𝒫 {𝐻, 𝑇}) → (♯‘𝑥) ∈ ℕ0) |
| 24 | hashf 14356 | . . . . . . . 8 ⊢ ♯:V⟶(ℕ0 ∪ {+∞}) | |
| 25 | 24 | a1i 11 | . . . . . . 7 ⊢ (𝐻 ∈ V → ♯:V⟶(ℕ0 ∪ {+∞})) |
| 26 | ssv 3983 | . . . . . . . 8 ⊢ 𝒫 {𝐻, 𝑇} ⊆ V | |
| 27 | 26 | a1i 11 | . . . . . . 7 ⊢ (𝐻 ∈ V → 𝒫 {𝐻, 𝑇} ⊆ V) |
| 28 | 25, 27 | feqresmpt 6948 | . . . . . 6 ⊢ (𝐻 ∈ V → (♯ ↾ 𝒫 {𝐻, 𝑇}) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ (♯‘𝑥))) |
| 29 | 14, 16, 23, 28 | ofcfval2 34135 | . . . . 5 ⊢ (𝐻 ∈ V → ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2))) |
| 30 | 8, 29 | ax-mp 5 | . . . 4 ⊢ ((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2) = (𝑥 ∈ 𝒫 {𝐻, 𝑇} ↦ ((♯‘𝑥) / 2)) |
| 31 | ovex 7438 | . . . 4 ⊢ (1 / 2) ∈ V | |
| 32 | 12, 30, 31 | fvmpt 6986 | . . 3 ⊢ ({𝐻} ∈ 𝒫 {𝐻, 𝑇} → (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2)) |
| 33 | 3, 6, 32 | mp2b 10 | . 2 ⊢ (((♯ ↾ 𝒫 {𝐻, 𝑇}) ∘f/c / 2)‘{𝐻}) = (1 / 2) |
| 34 | 2, 33 | eqtri 2758 | 1 ⊢ (𝑃‘{𝐻}) = (1 / 2) |
| Colors of variables: wff setvar class |
| Syntax hints: ∧ wa 395 = wceq 1540 ∈ wcel 2108 ≠ wne 2932 Vcvv 3459 ∪ cun 3924 ⊆ wss 3926 𝒫 cpw 4575 {csn 4601 {cpr 4603 〈cop 4607 ↦ cmpt 5201 ↾ cres 5656 ⟶wf 6527 ‘cfv 6531 (class class class)co 7405 Fincfn 8959 0cc0 11129 1c1 11130 +∞cpnf 11266 / cdiv 11894 2c2 12295 ℕ0cn0 12501 ♯chash 14348 ∘f/c cofc 34126 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2007 ax-8 2110 ax-9 2118 ax-10 2141 ax-11 2157 ax-12 2177 ax-ext 2707 ax-rep 5249 ax-sep 5266 ax-nul 5276 ax-pow 5335 ax-pr 5402 ax-un 7729 ax-cnex 11185 ax-resscn 11186 ax-1cn 11187 ax-icn 11188 ax-addcl 11189 ax-addrcl 11190 ax-mulcl 11191 ax-mulrcl 11192 ax-mulcom 11193 ax-addass 11194 ax-mulass 11195 ax-distr 11196 ax-i2m1 11197 ax-1ne0 11198 ax-1rid 11199 ax-rnegex 11200 ax-rrecex 11201 ax-cnre 11202 ax-pre-lttri 11203 ax-pre-lttrn 11204 ax-pre-ltadd 11205 ax-pre-mulgt0 11206 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2065 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2727 df-clel 2809 df-nfc 2885 df-ne 2933 df-nel 3037 df-ral 3052 df-rex 3061 df-reu 3360 df-rab 3416 df-v 3461 df-sbc 3766 df-csb 3875 df-dif 3929 df-un 3931 df-in 3933 df-ss 3943 df-pss 3946 df-nul 4309 df-if 4501 df-pw 4577 df-sn 4602 df-pr 4604 df-op 4608 df-uni 4884 df-int 4923 df-iun 4969 df-br 5120 df-opab 5182 df-mpt 5202 df-tr 5230 df-id 5548 df-eprel 5553 df-po 5561 df-so 5562 df-fr 5606 df-we 5608 df-xp 5660 df-rel 5661 df-cnv 5662 df-co 5663 df-dm 5664 df-rn 5665 df-res 5666 df-ima 5667 df-pred 6290 df-ord 6355 df-on 6356 df-lim 6357 df-suc 6358 df-iota 6484 df-fun 6533 df-fn 6534 df-f 6535 df-f1 6536 df-fo 6537 df-f1o 6538 df-fv 6539 df-riota 7362 df-ov 7408 df-oprab 7409 df-mpo 7410 df-om 7862 df-1st 7988 df-2nd 7989 df-frecs 8280 df-wrecs 8311 df-recs 8385 df-rdg 8424 df-1o 8480 df-2o 8481 df-er 8719 df-en 8960 df-dom 8961 df-sdom 8962 df-fin 8963 df-card 9953 df-pnf 11271 df-mnf 11272 df-xr 11273 df-ltxr 11274 df-le 11275 df-sub 11468 df-neg 11469 df-nn 12241 df-2 12303 df-n0 12502 df-xnn0 12575 df-z 12589 df-uz 12853 df-fz 13525 df-hash 14349 df-ofc 34127 |
| This theorem is referenced by: coinflippvt 34517 |
| Copyright terms: Public domain | W3C validator |