![]() |
Mathbox for Thierry Arnoux |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > coinflippv | Structured version Visualization version GIF version |
Description: The probability of heads is one-half. (Contributed by Thierry Arnoux, 15-Jan-2017.) |
Ref | Expression |
---|---|
coinflip.h | ā¢ š» ā V |
coinflip.t | ā¢ š ā V |
coinflip.th | ā¢ š» ā š |
coinflip.2 | ā¢ š = ((āÆ ā¾ š« {š», š}) āf/c / 2) |
coinflip.3 | ā¢ š = {āØš», 1ā©, āØš, 0ā©} |
Ref | Expression |
---|---|
coinflippv | ā¢ (šā{š»}) = (1 / 2) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coinflip.2 | . . 3 ā¢ š = ((āÆ ā¾ š« {š», š}) āf/c / 2) | |
2 | 1 | fveq1i 6893 | . 2 ā¢ (šā{š»}) = (((āÆ ā¾ š« {š», š}) āf/c / 2)ā{š»}) |
3 | snsspr1 4818 | . . 3 ā¢ {š»} ā {š», š} | |
4 | prex 5433 | . . . . 5 ā¢ {š», š} ā V | |
5 | 4 | elpw2 5346 | . . . 4 ā¢ ({š»} ā š« {š», š} ā {š»} ā {š», š}) |
6 | 5 | biimpri 227 | . . 3 ā¢ ({š»} ā {š», š} ā {š»} ā š« {š», š}) |
7 | fveq2 6892 | . . . . . 6 ā¢ (š„ = {š»} ā (āÆāš„) = (āÆā{š»})) | |
8 | coinflip.h | . . . . . . 7 ā¢ š» ā V | |
9 | hashsng 14329 | . . . . . . 7 ā¢ (š» ā V ā (āÆā{š»}) = 1) | |
10 | 8, 9 | ax-mp 5 | . . . . . 6 ā¢ (āÆā{š»}) = 1 |
11 | 7, 10 | eqtrdi 2789 | . . . . 5 ā¢ (š„ = {š»} ā (āÆāš„) = 1) |
12 | 11 | oveq1d 7424 | . . . 4 ā¢ (š„ = {š»} ā ((āÆāš„) / 2) = (1 / 2)) |
13 | 4 | pwex 5379 | . . . . . . 7 ā¢ š« {š», š} ā V |
14 | 13 | a1i 11 | . . . . . 6 ā¢ (š» ā V ā š« {š», š} ā V) |
15 | 2nn0 12489 | . . . . . . 7 ā¢ 2 ā ā0 | |
16 | 15 | a1i 11 | . . . . . 6 ā¢ (š» ā V ā 2 ā ā0) |
17 | prfi 9322 | . . . . . . . . 9 ā¢ {š», š} ā Fin | |
18 | elpwi 4610 | . . . . . . . . 9 ā¢ (š„ ā š« {š», š} ā š„ ā {š», š}) | |
19 | ssfi 9173 | . . . . . . . . 9 ā¢ (({š», š} ā Fin ā§ š„ ā {š», š}) ā š„ ā Fin) | |
20 | 17, 18, 19 | sylancr 588 | . . . . . . . 8 ā¢ (š„ ā š« {š», š} ā š„ ā Fin) |
21 | 20 | adantl 483 | . . . . . . 7 ā¢ ((š» ā V ā§ š„ ā š« {š», š}) ā š„ ā Fin) |
22 | hashcl 14316 | . . . . . . 7 ā¢ (š„ ā Fin ā (āÆāš„) ā ā0) | |
23 | 21, 22 | syl 17 | . . . . . 6 ā¢ ((š» ā V ā§ š„ ā š« {š», š}) ā (āÆāš„) ā ā0) |
24 | hashf 14298 | . . . . . . . 8 ā¢ āÆ:Vā¶(ā0 āŖ {+ā}) | |
25 | 24 | a1i 11 | . . . . . . 7 ā¢ (š» ā V ā āÆ:Vā¶(ā0 āŖ {+ā})) |
26 | ssv 4007 | . . . . . . . 8 ā¢ š« {š», š} ā V | |
27 | 26 | a1i 11 | . . . . . . 7 ā¢ (š» ā V ā š« {š», š} ā V) |
28 | 25, 27 | feqresmpt 6962 | . . . . . 6 ā¢ (š» ā V ā (āÆ ā¾ š« {š», š}) = (š„ ā š« {š», š} ā¦ (āÆāš„))) |
29 | 14, 16, 23, 28 | ofcfval2 33102 | . . . . 5 ā¢ (š» ā V ā ((āÆ ā¾ š« {š», š}) āf/c / 2) = (š„ ā š« {š», š} ā¦ ((āÆāš„) / 2))) |
30 | 8, 29 | ax-mp 5 | . . . 4 ā¢ ((āÆ ā¾ š« {š», š}) āf/c / 2) = (š„ ā š« {š», š} ā¦ ((āÆāš„) / 2)) |
31 | ovex 7442 | . . . 4 ā¢ (1 / 2) ā V | |
32 | 12, 30, 31 | fvmpt 6999 | . . 3 ā¢ ({š»} ā š« {š», š} ā (((āÆ ā¾ š« {š», š}) āf/c / 2)ā{š»}) = (1 / 2)) |
33 | 3, 6, 32 | mp2b 10 | . 2 ā¢ (((āÆ ā¾ š« {š», š}) āf/c / 2)ā{š»}) = (1 / 2) |
34 | 2, 33 | eqtri 2761 | 1 ā¢ (šā{š»}) = (1 / 2) |
Colors of variables: wff setvar class |
Syntax hints: ā§ wa 397 = wceq 1542 ā wcel 2107 ā wne 2941 Vcvv 3475 āŖ cun 3947 ā wss 3949 š« cpw 4603 {csn 4629 {cpr 4631 āØcop 4635 ā¦ cmpt 5232 ā¾ cres 5679 ā¶wf 6540 ācfv 6544 (class class class)co 7409 Fincfn 8939 0cc0 11110 1c1 11111 +ācpnf 11245 / cdiv 11871 2c2 12267 ā0cn0 12472 āÆchash 14290 āf/c cofc 33093 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1798 ax-4 1812 ax-5 1914 ax-6 1972 ax-7 2012 ax-8 2109 ax-9 2117 ax-10 2138 ax-11 2155 ax-12 2172 ax-ext 2704 ax-rep 5286 ax-sep 5300 ax-nul 5307 ax-pow 5364 ax-pr 5428 ax-un 7725 ax-cnex 11166 ax-resscn 11167 ax-1cn 11168 ax-icn 11169 ax-addcl 11170 ax-addrcl 11171 ax-mulcl 11172 ax-mulrcl 11173 ax-mulcom 11174 ax-addass 11175 ax-mulass 11176 ax-distr 11177 ax-i2m1 11178 ax-1ne0 11179 ax-1rid 11180 ax-rnegex 11181 ax-rrecex 11182 ax-cnre 11183 ax-pre-lttri 11184 ax-pre-lttrn 11185 ax-pre-ltadd 11186 ax-pre-mulgt0 11187 |
This theorem depends on definitions: df-bi 206 df-an 398 df-or 847 df-3or 1089 df-3an 1090 df-tru 1545 df-fal 1555 df-ex 1783 df-nf 1787 df-sb 2069 df-mo 2535 df-eu 2564 df-clab 2711 df-cleq 2725 df-clel 2811 df-nfc 2886 df-ne 2942 df-nel 3048 df-ral 3063 df-rex 3072 df-reu 3378 df-rab 3434 df-v 3477 df-sbc 3779 df-csb 3895 df-dif 3952 df-un 3954 df-in 3956 df-ss 3966 df-pss 3968 df-nul 4324 df-if 4530 df-pw 4605 df-sn 4630 df-pr 4632 df-op 4636 df-uni 4910 df-int 4952 df-iun 5000 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5575 df-eprel 5581 df-po 5589 df-so 5590 df-fr 5632 df-we 5634 df-xp 5683 df-rel 5684 df-cnv 5685 df-co 5686 df-dm 5687 df-rn 5688 df-res 5689 df-ima 5690 df-pred 6301 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6496 df-fun 6546 df-fn 6547 df-f 6548 df-f1 6549 df-fo 6550 df-f1o 6551 df-fv 6552 df-riota 7365 df-ov 7412 df-oprab 7413 df-mpo 7414 df-om 7856 df-1st 7975 df-2nd 7976 df-frecs 8266 df-wrecs 8297 df-recs 8371 df-rdg 8410 df-1o 8466 df-er 8703 df-en 8940 df-dom 8941 df-sdom 8942 df-fin 8943 df-card 9934 df-pnf 11250 df-mnf 11251 df-xr 11252 df-ltxr 11253 df-le 11254 df-sub 11446 df-neg 11447 df-nn 12213 df-2 12275 df-n0 12473 df-xnn0 12545 df-z 12559 df-uz 12823 df-fz 13485 df-hash 14291 df-ofc 33094 |
This theorem is referenced by: coinflippvt 33483 |
Copyright terms: Public domain | W3C validator |