Step | Hyp | Ref
| Expression |
1 | | prdsbas.p |
. . 3
⊢ 𝑃 = (𝑆Xs𝑅) |
2 | | eqid 2739 |
. . 3
⊢
(Base‘𝑆) =
(Base‘𝑆) |
3 | | prdsbas.i |
. . 3
⊢ (𝜑 → dom 𝑅 = 𝐼) |
4 | | prdsbas.s |
. . . 4
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
5 | | prdsbas.r |
. . . 4
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
6 | | prdsbas.b |
. . . 4
⊢ 𝐵 = (Base‘𝑃) |
7 | 1, 4, 5, 6, 3 | prdsbas 17177 |
. . 3
⊢ (𝜑 → 𝐵 = X𝑥 ∈ 𝐼 (Base‘(𝑅‘𝑥))) |
8 | | eqid 2739 |
. . . 4
⊢
(+g‘𝑃) = (+g‘𝑃) |
9 | 1, 4, 5, 6, 3, 8 | prdsplusg 17178 |
. . 3
⊢ (𝜑 → (+g‘𝑃) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(+g‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
10 | | eqid 2739 |
. . . 4
⊢
(.r‘𝑃) = (.r‘𝑃) |
11 | 1, 4, 5, 6, 3, 10 | prdsmulr 17179 |
. . 3
⊢ (𝜑 → (.r‘𝑃) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(.r‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
12 | | eqid 2739 |
. . . 4
⊢ (
·𝑠 ‘𝑃) = ( ·𝑠
‘𝑃) |
13 | 1, 4, 5, 6, 3, 2, 12 | prdsvsca 17180 |
. . 3
⊢ (𝜑 → (
·𝑠 ‘𝑃) = (𝑓 ∈ (Base‘𝑆), 𝑔 ∈ 𝐵 ↦ (𝑥 ∈ 𝐼 ↦ (𝑓( ·𝑠
‘(𝑅‘𝑥))(𝑔‘𝑥))))) |
14 | | eqidd 2740 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥))))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))) |
15 | | eqid 2739 |
. . . 4
⊢
(TopSet‘𝑃) =
(TopSet‘𝑃) |
16 | 1, 4, 5, 6, 3, 15 | prdstset 17186 |
. . 3
⊢ (𝜑 → (TopSet‘𝑃) =
(∏t‘(TopOpen ∘ 𝑅))) |
17 | | eqid 2739 |
. . . 4
⊢
(le‘𝑃) =
(le‘𝑃) |
18 | 1, 4, 5, 6, 3, 17 | prdsle 17182 |
. . 3
⊢ (𝜑 → (le‘𝑃) = {〈𝑓, 𝑔〉 ∣ ({𝑓, 𝑔} ⊆ 𝐵 ∧ ∀𝑥 ∈ 𝐼 (𝑓‘𝑥)(le‘(𝑅‘𝑥))(𝑔‘𝑥))}) |
19 | | eqid 2739 |
. . . 4
⊢
(dist‘𝑃) =
(dist‘𝑃) |
20 | 1, 4, 5, 6, 3, 19 | prdsds 17184 |
. . 3
⊢ (𝜑 → (dist‘𝑃) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ sup((ran (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(dist‘(𝑅‘𝑥))(𝑔‘𝑥))) ∪ {0}), ℝ*, <
))) |
21 | | eqidd 2740 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |
22 | | eqidd 2740 |
. . 3
⊢ (𝜑 → (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥))))) = (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))) |
23 | 1, 2, 3, 7, 9, 11,
13, 14, 16, 18, 20, 21, 22, 4, 5 | prdsval 17175 |
. 2
⊢ (𝜑 → 𝑃 = (({〈(Base‘ndx), 𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑃)〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(TopSet‘𝑃)〉,
〈(le‘ndx), (le‘𝑃)〉, 〈(dist‘ndx),
(dist‘𝑃)〉} ∪
{〈(Hom ‘ndx), (𝑓
∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}))) |
24 | | prdshom.h |
. 2
⊢ 𝐻 = (Hom ‘𝑃) |
25 | | homid 17131 |
. 2
⊢ Hom =
Slot (Hom ‘ndx) |
26 | | ovssunirn 7320 |
. . . . . . . . . . 11
⊢ ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
(Hom ‘(𝑅‘𝑥)) |
27 | 25 | strfvss 16897 |
. . . . . . . . . . . . 13
⊢ (Hom
‘(𝑅‘𝑥)) ⊆ ∪ ran (𝑅‘𝑥) |
28 | | fvssunirn 6812 |
. . . . . . . . . . . . . 14
⊢ (𝑅‘𝑥) ⊆ ∪ ran
𝑅 |
29 | | rnss 5851 |
. . . . . . . . . . . . . 14
⊢ ((𝑅‘𝑥) ⊆ ∪ ran
𝑅 → ran (𝑅‘𝑥) ⊆ ran ∪
ran 𝑅) |
30 | | uniss 4848 |
. . . . . . . . . . . . . 14
⊢ (ran
(𝑅‘𝑥) ⊆ ran ∪
ran 𝑅 → ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅) |
31 | 28, 29, 30 | mp2b 10 |
. . . . . . . . . . . . 13
⊢ ∪ ran (𝑅‘𝑥) ⊆ ∪ ran
∪ ran 𝑅 |
32 | 27, 31 | sstri 3931 |
. . . . . . . . . . . 12
⊢ (Hom
‘(𝑅‘𝑥)) ⊆ ∪ ran ∪ ran 𝑅 |
33 | | rnss 5851 |
. . . . . . . . . . . 12
⊢ ((Hom
‘(𝑅‘𝑥)) ⊆ ∪ ran ∪ ran 𝑅 → ran (Hom ‘(𝑅‘𝑥)) ⊆ ran ∪
ran ∪ ran 𝑅) |
34 | | uniss 4848 |
. . . . . . . . . . . 12
⊢ (ran (Hom
‘(𝑅‘𝑥)) ⊆ ran ∪ ran ∪ ran 𝑅 → ∪ ran
(Hom ‘(𝑅‘𝑥)) ⊆ ∪ ran ∪ ran ∪ ran 𝑅) |
35 | 32, 33, 34 | mp2b 10 |
. . . . . . . . . . 11
⊢ ∪ ran (Hom ‘(𝑅‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 |
36 | 26, 35 | sstri 3931 |
. . . . . . . . . 10
⊢ ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 |
37 | 36 | rgenw 3077 |
. . . . . . . . 9
⊢
∀𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 |
38 | | ss2ixp 8707 |
. . . . . . . . 9
⊢
(∀𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ ∪ ran
∪ ran ∪ ran 𝑅 → X𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅) |
39 | 37, 38 | ax-mp 5 |
. . . . . . . 8
⊢ X𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ X𝑥 ∈ 𝐼 ∪ ran ∪ ran ∪ ran 𝑅 |
40 | 5 | dmexd 7761 |
. . . . . . . . . 10
⊢ (𝜑 → dom 𝑅 ∈ V) |
41 | 3, 40 | eqeltrrd 2841 |
. . . . . . . . 9
⊢ (𝜑 → 𝐼 ∈ V) |
42 | | rnexg 7760 |
. . . . . . . . . . . 12
⊢ (𝑅 ∈ 𝑊 → ran 𝑅 ∈ V) |
43 | | uniexg 7602 |
. . . . . . . . . . . 12
⊢ (ran
𝑅 ∈ V → ∪ ran 𝑅 ∈ V) |
44 | 5, 42, 43 | 3syl 18 |
. . . . . . . . . . 11
⊢ (𝜑 → ∪ ran 𝑅 ∈ V) |
45 | | rnexg 7760 |
. . . . . . . . . . 11
⊢ (∪ ran 𝑅 ∈ V → ran ∪ ran 𝑅 ∈ V) |
46 | | uniexg 7602 |
. . . . . . . . . . 11
⊢ (ran
∪ ran 𝑅 ∈ V → ∪ ran ∪ ran 𝑅 ∈ V) |
47 | 44, 45, 46 | 3syl 18 |
. . . . . . . . . 10
⊢ (𝜑 → ∪ ran ∪ ran 𝑅 ∈ V) |
48 | | rnexg 7760 |
. . . . . . . . . 10
⊢ (∪ ran ∪ ran 𝑅 ∈ V → ran ∪ ran ∪ ran 𝑅 ∈ V) |
49 | | uniexg 7602 |
. . . . . . . . . 10
⊢ (ran
∪ ran ∪ ran 𝑅 ∈ V → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) |
50 | 47, 48, 49 | 3syl 18 |
. . . . . . . . 9
⊢ (𝜑 → ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) |
51 | | ixpconstg 8703 |
. . . . . . . . 9
⊢ ((𝐼 ∈ V ∧ ∪ ran ∪ ran ∪ ran 𝑅 ∈ V) → X𝑥 ∈
𝐼 ∪ ran ∪ ran ∪ ran 𝑅 = (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
52 | 41, 50, 51 | syl2anc 584 |
. . . . . . . 8
⊢ (𝜑 → X𝑥 ∈
𝐼 ∪ ran ∪ ran ∪ ran 𝑅 = (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
53 | 39, 52 | sseqtrid 3974 |
. . . . . . 7
⊢ (𝜑 → X𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran
∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
54 | | ovex 7317 |
. . . . . . . 8
⊢ (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∈ V |
55 | 54 | elpw2 5270 |
. . . . . . 7
⊢ (X𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ↔ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ⊆ (∪ ran
∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
56 | 53, 55 | sylibr 233 |
. . . . . 6
⊢ (𝜑 → X𝑥 ∈
𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
57 | 56 | ralrimivw 3105 |
. . . . 5
⊢ (𝜑 → ∀𝑔 ∈ 𝐵 X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
58 | 57 | ralrimivw 3105 |
. . . 4
⊢ (𝜑 → ∀𝑓 ∈ 𝐵 ∀𝑔 ∈ 𝐵 X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
59 | | eqid 2739 |
. . . . 5
⊢ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) |
60 | 59 | fmpo 7917 |
. . . 4
⊢
(∀𝑓 ∈
𝐵 ∀𝑔 ∈ 𝐵 X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)) ∈ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ↔ (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))):(𝐵 × 𝐵)⟶𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
61 | 58, 60 | sylib 217 |
. . 3
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))):(𝐵 × 𝐵)⟶𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼)) |
62 | 6 | fvexi 6797 |
. . . . 5
⊢ 𝐵 ∈ V |
63 | 62, 62 | xpex 7612 |
. . . 4
⊢ (𝐵 × 𝐵) ∈ V |
64 | 63 | a1i 11 |
. . 3
⊢ (𝜑 → (𝐵 × 𝐵) ∈ V) |
65 | 54 | pwex 5304 |
. . . 4
⊢ 𝒫
(∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∈ V |
66 | 65 | a1i 11 |
. . 3
⊢ (𝜑 → 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∈ V) |
67 | | fex2 7789 |
. . 3
⊢ (((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))):(𝐵 × 𝐵)⟶𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∧ (𝐵 × 𝐵) ∈ V ∧ 𝒫 (∪ ran ∪ ran ∪ ran 𝑅 ↑m 𝐼) ∈ V) → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
68 | 61, 64, 66, 67 | syl3anc 1370 |
. 2
⊢ (𝜑 → (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥))) ∈ V) |
69 | | snsspr1 4748 |
. . . 4
⊢
{〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉} ⊆ {〈(Hom ‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉} |
70 | | ssun2 4108 |
. . . 4
⊢
{〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉} ⊆
({〈(TopSet‘ndx), (TopSet‘𝑃)〉, 〈(le‘ndx),
(le‘𝑃)〉,
〈(dist‘ndx), (dist‘𝑃)〉} ∪ {〈(Hom ‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) |
71 | 69, 70 | sstri 3931 |
. . 3
⊢
{〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉} ⊆
({〈(TopSet‘ndx), (TopSet‘𝑃)〉, 〈(le‘ndx),
(le‘𝑃)〉,
〈(dist‘ndx), (dist‘𝑃)〉} ∪ {〈(Hom ‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) |
72 | | ssun2 4108 |
. . 3
⊢
({〈(TopSet‘ndx), (TopSet‘𝑃)〉, 〈(le‘ndx),
(le‘𝑃)〉,
〈(dist‘ndx), (dist‘𝑃)〉} ∪ {〈(Hom ‘ndx),
(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉}) ⊆
(({〈(Base‘ndx), 𝐵〉, 〈(+g‘ndx),
(+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑃)〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(TopSet‘𝑃)〉,
〈(le‘ndx), (le‘𝑃)〉, 〈(dist‘ndx),
(dist‘𝑃)〉} ∪
{〈(Hom ‘ndx), (𝑓
∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
73 | 71, 72 | sstri 3931 |
. 2
⊢
{〈(Hom ‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉} ⊆ (({〈(Base‘ndx),
𝐵〉,
〈(+g‘ndx), (+g‘𝑃)〉, 〈(.r‘ndx),
(.r‘𝑃)〉} ∪ {〈(Scalar‘ndx),
𝑆〉, 〈(
·𝑠 ‘ndx), (
·𝑠 ‘𝑃)〉,
〈(·𝑖‘ndx), (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ (𝑆 Σg (𝑥 ∈ 𝐼 ↦ ((𝑓‘𝑥)(·𝑖‘(𝑅‘𝑥))(𝑔‘𝑥)))))〉}) ∪ ({〈(TopSet‘ndx),
(TopSet‘𝑃)〉,
〈(le‘ndx), (le‘𝑃)〉, 〈(dist‘ndx),
(dist‘𝑃)〉} ∪
{〈(Hom ‘ndx), (𝑓
∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))〉, 〈(comp‘ndx), (𝑎 ∈ (𝐵 × 𝐵), 𝑐 ∈ 𝐵 ↦ (𝑑 ∈ ((2nd ‘𝑎)(𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))𝑐), 𝑒 ∈ ((𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))‘𝑎) ↦ (𝑥 ∈ 𝐼 ↦ ((𝑑‘𝑥)(〈((1st ‘𝑎)‘𝑥), ((2nd ‘𝑎)‘𝑥)〉(comp‘(𝑅‘𝑥))(𝑐‘𝑥))(𝑒‘𝑥)))))〉})) |
74 | 23, 24, 25, 68, 73 | prdsbaslem 17173 |
1
⊢ (𝜑 → 𝐻 = (𝑓 ∈ 𝐵, 𝑔 ∈ 𝐵 ↦ X𝑥 ∈ 𝐼 ((𝑓‘𝑥)(Hom ‘(𝑅‘𝑥))(𝑔‘𝑥)))) |