| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lspindp5 | Structured version Visualization version GIF version | ||
| Description: Obtain an independent vector set 𝑈, 𝑋, 𝑌 from a vector 𝑈 dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, 𝑌. (Here we don't show the (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 21104 and prcom 4714.) (Contributed by NM, 4-May-2015.) |
| Ref | Expression |
|---|---|
| lspindp5.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspindp5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspindp5.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspindp5.y | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspindp5.x | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspindp5.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| lspindp5.e | ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) |
| lspindp5.m | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| lspindp5 | ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp5.m | . . 3 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 2 | lspindp5.e | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) | |
| 3 | ssel 3959 | . . . 4 ⊢ ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → (𝑍 ∈ (𝑁‘{𝑋, 𝑈}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) | |
| 4 | 2, 3 | syl5com 31 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 5 | 1, 4 | mtod 198 | . 2 ⊢ (𝜑 → ¬ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 6 | lspindp5.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lveclmod 21078 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | lspindp5.y | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | lspindp5.x | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | prssi 4803 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 13 | snsspr1 4796 | . . . . . . 7 ⊢ {𝑋} ⊆ {𝑋, 𝑌} | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ {𝑋, 𝑌}) |
| 15 | lspindp5.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 16 | lspindp5.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 17 | 15, 16 | lspss 20955 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 18 | 8, 12, 14, 17 | syl3anc 1372 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 19 | 18 | biantrurd 532 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})))) |
| 20 | eqid 2734 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 21 | 20 | lsssssubg 20929 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 22 | 8, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 23 | 15, 20, 16 | lspsncl 20948 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 24 | 8, 9, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 25 | 22, 24 | sseldd 3966 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 26 | lspindp5.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 27 | 15, 20, 16 | lspsncl 20948 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑉) → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
| 28 | 8, 26, 27 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
| 29 | 22, 28 | sseldd 3966 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊)) |
| 30 | 15, 20, 16, 8, 9, 10 | lspprcl 20949 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) |
| 31 | 22, 30 | sseldd 3966 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) |
| 32 | eqid 2734 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 33 | 32 | lsmlub 19655 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 34 | 25, 29, 31, 33 | syl3anc 1372 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 35 | 19, 34 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 36 | 15, 20, 16, 8, 30, 26 | ellspsn5b 20966 | . . 3 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 37 | 15, 16, 32, 8, 9, 26 | lsmpr 21061 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑈}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈}))) |
| 38 | 37 | sseq1d 3997 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 39 | 35, 36, 38 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 40 | 5, 39 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1539 ∈ wcel 2107 ⊆ wss 3933 {csn 4608 {cpr 4610 ‘cfv 6542 (class class class)co 7414 Basecbs 17230 SubGrpcsubg 19112 LSSumclsm 19625 LModclmod 20831 LSubSpclss 20902 LSpanclspn 20942 LVecclvec 21074 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1794 ax-4 1808 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2706 ax-rep 5261 ax-sep 5278 ax-nul 5288 ax-pow 5347 ax-pr 5414 ax-un 7738 ax-cnex 11194 ax-resscn 11195 ax-1cn 11196 ax-icn 11197 ax-addcl 11198 ax-addrcl 11199 ax-mulcl 11200 ax-mulrcl 11201 ax-mulcom 11202 ax-addass 11203 ax-mulass 11204 ax-distr 11205 ax-i2m1 11206 ax-1ne0 11207 ax-1rid 11208 ax-rnegex 11209 ax-rrecex 11210 ax-cnre 11211 ax-pre-lttri 11212 ax-pre-lttrn 11213 ax-pre-ltadd 11214 ax-pre-mulgt0 11215 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1542 df-fal 1552 df-ex 1779 df-nf 1783 df-sb 2064 df-mo 2538 df-eu 2567 df-clab 2713 df-cleq 2726 df-clel 2808 df-nfc 2884 df-ne 2932 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3364 df-reu 3365 df-rab 3421 df-v 3466 df-sbc 3773 df-csb 3882 df-dif 3936 df-un 3938 df-in 3940 df-ss 3950 df-pss 3953 df-nul 4316 df-if 4508 df-pw 4584 df-sn 4609 df-pr 4611 df-op 4615 df-uni 4890 df-int 4929 df-iun 4975 df-br 5126 df-opab 5188 df-mpt 5208 df-tr 5242 df-id 5560 df-eprel 5566 df-po 5574 df-so 5575 df-fr 5619 df-we 5621 df-xp 5673 df-rel 5674 df-cnv 5675 df-co 5676 df-dm 5677 df-rn 5678 df-res 5679 df-ima 5680 df-pred 6303 df-ord 6368 df-on 6369 df-lim 6370 df-suc 6371 df-iota 6495 df-fun 6544 df-fn 6545 df-f 6546 df-f1 6547 df-fo 6548 df-f1o 6549 df-fv 6550 df-riota 7371 df-ov 7417 df-oprab 7418 df-mpo 7419 df-om 7871 df-1st 7997 df-2nd 7998 df-frecs 8289 df-wrecs 8320 df-recs 8394 df-rdg 8433 df-er 8728 df-en 8969 df-dom 8970 df-sdom 8971 df-pnf 11280 df-mnf 11281 df-xr 11282 df-ltxr 11283 df-le 11284 df-sub 11477 df-neg 11478 df-nn 12250 df-2 12312 df-sets 17184 df-slot 17202 df-ndx 17214 df-base 17231 df-ress 17257 df-plusg 17290 df-0g 17462 df-mgm 18627 df-sgrp 18706 df-mnd 18722 df-submnd 18771 df-grp 18928 df-minusg 18929 df-sbg 18930 df-subg 19115 df-cntz 19309 df-lsm 19627 df-cmn 19773 df-abl 19774 df-mgp 20111 df-ur 20152 df-ring 20205 df-lmod 20833 df-lss 20903 df-lsp 20943 df-lvec 21075 |
| This theorem is referenced by: mapdh8b 41723 |
| Copyright terms: Public domain | W3C validator |