Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lspindp5 Structured version   Visualization version   GIF version

Theorem lspindp5 40629
Description: Obtain an independent vector set π‘ˆ, 𝑋, π‘Œ from a vector π‘ˆ dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, π‘Œ. (Here we don't show the (π‘β€˜{𝑋}) β‰  (π‘β€˜{π‘Œ}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 20734 and prcom 4735.) (Contributed by NM, 4-May-2015.)
Hypotheses
Ref Expression
lspindp5.v 𝑉 = (Baseβ€˜π‘Š)
lspindp5.n 𝑁 = (LSpanβ€˜π‘Š)
lspindp5.w (πœ‘ β†’ π‘Š ∈ LVec)
lspindp5.y (πœ‘ β†’ 𝑋 ∈ 𝑉)
lspindp5.x (πœ‘ β†’ π‘Œ ∈ 𝑉)
lspindp5.u (πœ‘ β†’ π‘ˆ ∈ 𝑉)
lspindp5.e (πœ‘ β†’ 𝑍 ∈ (π‘β€˜{𝑋, π‘ˆ}))
lspindp5.m (πœ‘ β†’ Β¬ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ}))
Assertion
Ref Expression
lspindp5 (πœ‘ β†’ Β¬ π‘ˆ ∈ (π‘β€˜{𝑋, π‘Œ}))

Proof of Theorem lspindp5
StepHypRef Expression
1 lspindp5.m . . 3 (πœ‘ β†’ Β¬ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ}))
2 lspindp5.e . . . 4 (πœ‘ β†’ 𝑍 ∈ (π‘β€˜{𝑋, π‘ˆ}))
3 ssel 3974 . . . 4 ((π‘β€˜{𝑋, π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}) β†’ (𝑍 ∈ (π‘β€˜{𝑋, π‘ˆ}) β†’ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ})))
42, 3syl5com 31 . . 3 (πœ‘ β†’ ((π‘β€˜{𝑋, π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}) β†’ 𝑍 ∈ (π‘β€˜{𝑋, π‘Œ})))
51, 4mtod 197 . 2 (πœ‘ β†’ Β¬ (π‘β€˜{𝑋, π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}))
6 lspindp5.w . . . . . . 7 (πœ‘ β†’ π‘Š ∈ LVec)
7 lveclmod 20709 . . . . . . 7 (π‘Š ∈ LVec β†’ π‘Š ∈ LMod)
86, 7syl 17 . . . . . 6 (πœ‘ β†’ π‘Š ∈ LMod)
9 lspindp5.y . . . . . . 7 (πœ‘ β†’ 𝑋 ∈ 𝑉)
10 lspindp5.x . . . . . . 7 (πœ‘ β†’ π‘Œ ∈ 𝑉)
11 prssi 4823 . . . . . . 7 ((𝑋 ∈ 𝑉 ∧ π‘Œ ∈ 𝑉) β†’ {𝑋, π‘Œ} βŠ† 𝑉)
129, 10, 11syl2anc 584 . . . . . 6 (πœ‘ β†’ {𝑋, π‘Œ} βŠ† 𝑉)
13 snsspr1 4816 . . . . . . 7 {𝑋} βŠ† {𝑋, π‘Œ}
1413a1i 11 . . . . . 6 (πœ‘ β†’ {𝑋} βŠ† {𝑋, π‘Œ})
15 lspindp5.v . . . . . . 7 𝑉 = (Baseβ€˜π‘Š)
16 lspindp5.n . . . . . . 7 𝑁 = (LSpanβ€˜π‘Š)
1715, 16lspss 20587 . . . . . 6 ((π‘Š ∈ LMod ∧ {𝑋, π‘Œ} βŠ† 𝑉 ∧ {𝑋} βŠ† {𝑋, π‘Œ}) β†’ (π‘β€˜{𝑋}) βŠ† (π‘β€˜{𝑋, π‘Œ}))
188, 12, 14, 17syl3anc 1371 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) βŠ† (π‘β€˜{𝑋, π‘Œ}))
1918biantrurd 533 . . . 4 (πœ‘ β†’ ((π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ↔ ((π‘β€˜{𝑋}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ∧ (π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}))))
20 eqid 2732 . . . . . . . 8 (LSubSpβ€˜π‘Š) = (LSubSpβ€˜π‘Š)
2120lsssssubg 20561 . . . . . . 7 (π‘Š ∈ LMod β†’ (LSubSpβ€˜π‘Š) βŠ† (SubGrpβ€˜π‘Š))
228, 21syl 17 . . . . . 6 (πœ‘ β†’ (LSubSpβ€˜π‘Š) βŠ† (SubGrpβ€˜π‘Š))
2315, 20, 16lspsncl 20580 . . . . . . 7 ((π‘Š ∈ LMod ∧ 𝑋 ∈ 𝑉) β†’ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š))
248, 9, 23syl2anc 584 . . . . . 6 (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ (LSubSpβ€˜π‘Š))
2522, 24sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š))
26 lspindp5.u . . . . . . 7 (πœ‘ β†’ π‘ˆ ∈ 𝑉)
2715, 20, 16lspsncl 20580 . . . . . . 7 ((π‘Š ∈ LMod ∧ π‘ˆ ∈ 𝑉) β†’ (π‘β€˜{π‘ˆ}) ∈ (LSubSpβ€˜π‘Š))
288, 26, 27syl2anc 584 . . . . . 6 (πœ‘ β†’ (π‘β€˜{π‘ˆ}) ∈ (LSubSpβ€˜π‘Š))
2922, 28sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{π‘ˆ}) ∈ (SubGrpβ€˜π‘Š))
3015, 20, 16, 8, 9, 10lspprcl 20581 . . . . . 6 (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) ∈ (LSubSpβ€˜π‘Š))
3122, 30sseldd 3982 . . . . 5 (πœ‘ β†’ (π‘β€˜{𝑋, π‘Œ}) ∈ (SubGrpβ€˜π‘Š))
32 eqid 2732 . . . . . 6 (LSSumβ€˜π‘Š) = (LSSumβ€˜π‘Š)
3332lsmlub 19526 . . . . 5 (((π‘β€˜{𝑋}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{π‘ˆ}) ∈ (SubGrpβ€˜π‘Š) ∧ (π‘β€˜{𝑋, π‘Œ}) ∈ (SubGrpβ€˜π‘Š)) β†’ (((π‘β€˜{𝑋}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ∧ (π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ})) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘ˆ})) βŠ† (π‘β€˜{𝑋, π‘Œ})))
3425, 29, 31, 33syl3anc 1371 . . . 4 (πœ‘ β†’ (((π‘β€˜{𝑋}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ∧ (π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ})) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘ˆ})) βŠ† (π‘β€˜{𝑋, π‘Œ})))
3519, 34bitrd 278 . . 3 (πœ‘ β†’ ((π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘ˆ})) βŠ† (π‘β€˜{𝑋, π‘Œ})))
3615, 20, 16, 8, 30, 26lspsnel5 20598 . . 3 (πœ‘ β†’ (π‘ˆ ∈ (π‘β€˜{𝑋, π‘Œ}) ↔ (π‘β€˜{π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ})))
3715, 16, 32, 8, 9, 26lsmpr 20692 . . . 4 (πœ‘ β†’ (π‘β€˜{𝑋, π‘ˆ}) = ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘ˆ})))
3837sseq1d 4012 . . 3 (πœ‘ β†’ ((π‘β€˜{𝑋, π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ}) ↔ ((π‘β€˜{𝑋})(LSSumβ€˜π‘Š)(π‘β€˜{π‘ˆ})) βŠ† (π‘β€˜{𝑋, π‘Œ})))
3935, 36, 383bitr4d 310 . 2 (πœ‘ β†’ (π‘ˆ ∈ (π‘β€˜{𝑋, π‘Œ}) ↔ (π‘β€˜{𝑋, π‘ˆ}) βŠ† (π‘β€˜{𝑋, π‘Œ})))
405, 39mtbird 324 1 (πœ‘ β†’ Β¬ π‘ˆ ∈ (π‘β€˜{𝑋, π‘Œ}))
Colors of variables: wff setvar class
Syntax hints:  Β¬ wn 3   β†’ wi 4   ↔ wb 205   ∧ wa 396   = wceq 1541   ∈ wcel 2106   βŠ† wss 3947  {csn 4627  {cpr 4629  β€˜cfv 6540  (class class class)co 7405  Basecbs 17140  SubGrpcsubg 18994  LSSumclsm 19496  LModclmod 20463  LSubSpclss 20534  LSpanclspn 20574  LVecclvec 20705
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2703  ax-rep 5284  ax-sep 5298  ax-nul 5305  ax-pow 5362  ax-pr 5426  ax-un 7721  ax-cnex 11162  ax-resscn 11163  ax-1cn 11164  ax-icn 11165  ax-addcl 11166  ax-addrcl 11167  ax-mulcl 11168  ax-mulrcl 11169  ax-mulcom 11170  ax-addass 11171  ax-mulass 11172  ax-distr 11173  ax-i2m1 11174  ax-1ne0 11175  ax-1rid 11176  ax-rnegex 11177  ax-rrecex 11178  ax-cnre 11179  ax-pre-lttri 11180  ax-pre-lttrn 11181  ax-pre-ltadd 11182  ax-pre-mulgt0 11183
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2534  df-eu 2563  df-clab 2710  df-cleq 2724  df-clel 2810  df-nfc 2885  df-ne 2941  df-nel 3047  df-ral 3062  df-rex 3071  df-rmo 3376  df-reu 3377  df-rab 3433  df-v 3476  df-sbc 3777  df-csb 3893  df-dif 3950  df-un 3952  df-in 3954  df-ss 3964  df-pss 3966  df-nul 4322  df-if 4528  df-pw 4603  df-sn 4628  df-pr 4630  df-op 4634  df-uni 4908  df-int 4950  df-iun 4998  df-br 5148  df-opab 5210  df-mpt 5231  df-tr 5265  df-id 5573  df-eprel 5579  df-po 5587  df-so 5588  df-fr 5630  df-we 5632  df-xp 5681  df-rel 5682  df-cnv 5683  df-co 5684  df-dm 5685  df-rn 5686  df-res 5687  df-ima 5688  df-pred 6297  df-ord 6364  df-on 6365  df-lim 6366  df-suc 6367  df-iota 6492  df-fun 6542  df-fn 6543  df-f 6544  df-f1 6545  df-fo 6546  df-f1o 6547  df-fv 6548  df-riota 7361  df-ov 7408  df-oprab 7409  df-mpo 7410  df-om 7852  df-1st 7971  df-2nd 7972  df-frecs 8262  df-wrecs 8293  df-recs 8367  df-rdg 8406  df-er 8699  df-en 8936  df-dom 8937  df-sdom 8938  df-pnf 11246  df-mnf 11247  df-xr 11248  df-ltxr 11249  df-le 11250  df-sub 11442  df-neg 11443  df-nn 12209  df-2 12271  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17141  df-ress 17170  df-plusg 17206  df-0g 17383  df-mgm 18557  df-sgrp 18606  df-mnd 18622  df-submnd 18668  df-grp 18818  df-minusg 18819  df-sbg 18820  df-subg 18997  df-cntz 19175  df-lsm 19498  df-cmn 19644  df-abl 19645  df-mgp 19982  df-ur 19999  df-ring 20051  df-lmod 20465  df-lss 20535  df-lsp 20575  df-lvec 20706
This theorem is referenced by:  mapdh8b  40639
  Copyright terms: Public domain W3C validator