![]() |
Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > Mathboxes > lspindp5 | Structured version Visualization version GIF version |
Description: Obtain an independent vector set 𝑈, 𝑋, 𝑌 from a vector 𝑈 dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, 𝑌. (Here we don't show the (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 21155 and prcom 4738.) (Contributed by NM, 4-May-2015.) |
Ref | Expression |
---|---|
lspindp5.v | ⊢ 𝑉 = (Base‘𝑊) |
lspindp5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
lspindp5.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
lspindp5.y | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
lspindp5.x | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
lspindp5.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
lspindp5.e | ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) |
lspindp5.m | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) |
Ref | Expression |
---|---|
lspindp5 | ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lspindp5.m | . . 3 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) | |
2 | lspindp5.e | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) | |
3 | ssel 3990 | . . . 4 ⊢ ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → (𝑍 ∈ (𝑁‘{𝑋, 𝑈}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) | |
4 | 2, 3 | syl5com 31 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
5 | 1, 4 | mtod 198 | . 2 ⊢ (𝜑 → ¬ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) |
6 | lspindp5.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
7 | lveclmod 21129 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
9 | lspindp5.y | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
10 | lspindp5.x | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
11 | prssi 4827 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
12 | 9, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
13 | snsspr1 4820 | . . . . . . 7 ⊢ {𝑋} ⊆ {𝑋, 𝑌} | |
14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ {𝑋, 𝑌}) |
15 | lspindp5.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
16 | lspindp5.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
17 | 15, 16 | lspss 21006 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
18 | 8, 12, 14, 17 | syl3anc 1371 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
19 | 18 | biantrurd 532 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})))) |
20 | eqid 2736 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
21 | 20 | lsssssubg 20980 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
22 | 8, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
23 | 15, 20, 16 | lspsncl 20999 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
24 | 8, 9, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
25 | 22, 24 | sseldd 3997 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
26 | lspindp5.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
27 | 15, 20, 16 | lspsncl 20999 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑉) → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
28 | 8, 26, 27 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
29 | 22, 28 | sseldd 3997 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊)) |
30 | 15, 20, 16, 8, 9, 10 | lspprcl 21000 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) |
31 | 22, 30 | sseldd 3997 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) |
32 | eqid 2736 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
33 | 32 | lsmlub 19703 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
34 | 25, 29, 31, 33 | syl3anc 1371 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
35 | 19, 34 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
36 | 15, 20, 16, 8, 30, 26 | ellspsn5b 21017 | . . 3 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
37 | 15, 16, 32, 8, 9, 26 | lsmpr 21112 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑈}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈}))) |
38 | 37 | sseq1d 4028 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
39 | 35, 36, 38 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
40 | 5, 39 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
Colors of variables: wff setvar class |
Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1538 ∈ wcel 2107 ⊆ wss 3964 {csn 4632 {cpr 4634 ‘cfv 6566 (class class class)co 7435 Basecbs 17251 SubGrpcsubg 19157 LSSumclsm 19673 LModclmod 20881 LSubSpclss 20953 LSpanclspn 20993 LVecclvec 21125 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1793 ax-4 1807 ax-5 1909 ax-6 1966 ax-7 2006 ax-8 2109 ax-9 2117 ax-10 2140 ax-11 2156 ax-12 2176 ax-ext 2707 ax-rep 5286 ax-sep 5303 ax-nul 5313 ax-pow 5372 ax-pr 5439 ax-un 7758 ax-cnex 11215 ax-resscn 11216 ax-1cn 11217 ax-icn 11218 ax-addcl 11219 ax-addrcl 11220 ax-mulcl 11221 ax-mulrcl 11222 ax-mulcom 11223 ax-addass 11224 ax-mulass 11225 ax-distr 11226 ax-i2m1 11227 ax-1ne0 11228 ax-1rid 11229 ax-rnegex 11230 ax-rrecex 11231 ax-cnre 11232 ax-pre-lttri 11233 ax-pre-lttrn 11234 ax-pre-ltadd 11235 ax-pre-mulgt0 11236 |
This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1541 df-fal 1551 df-ex 1778 df-nf 1782 df-sb 2064 df-mo 2539 df-eu 2568 df-clab 2714 df-cleq 2728 df-clel 2815 df-nfc 2891 df-ne 2940 df-nel 3046 df-ral 3061 df-rex 3070 df-rmo 3379 df-reu 3380 df-rab 3435 df-v 3481 df-sbc 3793 df-csb 3910 df-dif 3967 df-un 3969 df-in 3971 df-ss 3981 df-pss 3984 df-nul 4341 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4914 df-int 4953 df-iun 4999 df-br 5150 df-opab 5212 df-mpt 5233 df-tr 5267 df-id 5584 df-eprel 5590 df-po 5598 df-so 5599 df-fr 5642 df-we 5644 df-xp 5696 df-rel 5697 df-cnv 5698 df-co 5699 df-dm 5700 df-rn 5701 df-res 5702 df-ima 5703 df-pred 6326 df-ord 6392 df-on 6393 df-lim 6394 df-suc 6395 df-iota 6519 df-fun 6568 df-fn 6569 df-f 6570 df-f1 6571 df-fo 6572 df-f1o 6573 df-fv 6574 df-riota 7392 df-ov 7438 df-oprab 7439 df-mpo 7440 df-om 7892 df-1st 8019 df-2nd 8020 df-frecs 8311 df-wrecs 8342 df-recs 8416 df-rdg 8455 df-er 8750 df-en 8991 df-dom 8992 df-sdom 8993 df-pnf 11301 df-mnf 11302 df-xr 11303 df-ltxr 11304 df-le 11305 df-sub 11498 df-neg 11499 df-nn 12271 df-2 12333 df-sets 17204 df-slot 17222 df-ndx 17234 df-base 17252 df-ress 17281 df-plusg 17317 df-0g 17494 df-mgm 18672 df-sgrp 18751 df-mnd 18767 df-submnd 18816 df-grp 18973 df-minusg 18974 df-sbg 18975 df-subg 19160 df-cntz 19354 df-lsm 19675 df-cmn 19821 df-abl 19822 df-mgp 20159 df-ur 20206 df-ring 20259 df-lmod 20883 df-lss 20954 df-lsp 20994 df-lvec 21126 |
This theorem is referenced by: mapdh8b 41775 |
Copyright terms: Public domain | W3C validator |