| Mathbox for Norm Megill |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > Mathboxes > lspindp5 | Structured version Visualization version GIF version | ||
| Description: Obtain an independent vector set 𝑈, 𝑋, 𝑌 from a vector 𝑈 dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, 𝑌. (Here we don't show the (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 21075 and prcom 4686.) (Contributed by NM, 4-May-2015.) |
| Ref | Expression |
|---|---|
| lspindp5.v | ⊢ 𝑉 = (Base‘𝑊) |
| lspindp5.n | ⊢ 𝑁 = (LSpan‘𝑊) |
| lspindp5.w | ⊢ (𝜑 → 𝑊 ∈ LVec) |
| lspindp5.y | ⊢ (𝜑 → 𝑋 ∈ 𝑉) |
| lspindp5.x | ⊢ (𝜑 → 𝑌 ∈ 𝑉) |
| lspindp5.u | ⊢ (𝜑 → 𝑈 ∈ 𝑉) |
| lspindp5.e | ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) |
| lspindp5.m | ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) |
| Ref | Expression |
|---|---|
| lspindp5 | ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lspindp5.m | . . 3 ⊢ (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌})) | |
| 2 | lspindp5.e | . . . 4 ⊢ (𝜑 → 𝑍 ∈ (𝑁‘{𝑋, 𝑈})) | |
| 3 | ssel 3924 | . . . 4 ⊢ ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → (𝑍 ∈ (𝑁‘{𝑋, 𝑈}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) | |
| 4 | 2, 3 | syl5com 31 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))) |
| 5 | 1, 4 | mtod 198 | . 2 ⊢ (𝜑 → ¬ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 6 | lspindp5.w | . . . . . . 7 ⊢ (𝜑 → 𝑊 ∈ LVec) | |
| 7 | lveclmod 21049 | . . . . . . 7 ⊢ (𝑊 ∈ LVec → 𝑊 ∈ LMod) | |
| 8 | 6, 7 | syl 17 | . . . . . 6 ⊢ (𝜑 → 𝑊 ∈ LMod) |
| 9 | lspindp5.y | . . . . . . 7 ⊢ (𝜑 → 𝑋 ∈ 𝑉) | |
| 10 | lspindp5.x | . . . . . . 7 ⊢ (𝜑 → 𝑌 ∈ 𝑉) | |
| 11 | prssi 4774 | . . . . . . 7 ⊢ ((𝑋 ∈ 𝑉 ∧ 𝑌 ∈ 𝑉) → {𝑋, 𝑌} ⊆ 𝑉) | |
| 12 | 9, 10, 11 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → {𝑋, 𝑌} ⊆ 𝑉) |
| 13 | snsspr1 4767 | . . . . . . 7 ⊢ {𝑋} ⊆ {𝑋, 𝑌} | |
| 14 | 13 | a1i 11 | . . . . . 6 ⊢ (𝜑 → {𝑋} ⊆ {𝑋, 𝑌}) |
| 15 | lspindp5.v | . . . . . . 7 ⊢ 𝑉 = (Base‘𝑊) | |
| 16 | lspindp5.n | . . . . . . 7 ⊢ 𝑁 = (LSpan‘𝑊) | |
| 17 | 15, 16 | lspss 20926 | . . . . . 6 ⊢ ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 18 | 8, 12, 14, 17 | syl3anc 1373 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌})) |
| 19 | 18 | biantrurd 532 | . . . 4 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})))) |
| 20 | eqid 2733 | . . . . . . . 8 ⊢ (LSubSp‘𝑊) = (LSubSp‘𝑊) | |
| 21 | 20 | lsssssubg 20900 | . . . . . . 7 ⊢ (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 22 | 8, 21 | syl 17 | . . . . . 6 ⊢ (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊)) |
| 23 | 15, 20, 16 | lspsncl 20919 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑋 ∈ 𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 24 | 8, 9, 23 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊)) |
| 25 | 22, 24 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊)) |
| 26 | lspindp5.u | . . . . . . 7 ⊢ (𝜑 → 𝑈 ∈ 𝑉) | |
| 27 | 15, 20, 16 | lspsncl 20919 | . . . . . . 7 ⊢ ((𝑊 ∈ LMod ∧ 𝑈 ∈ 𝑉) → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
| 28 | 8, 26, 27 | syl2anc 584 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊)) |
| 29 | 22, 28 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊)) |
| 30 | 15, 20, 16, 8, 9, 10 | lspprcl 20920 | . . . . . 6 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊)) |
| 31 | 22, 30 | sseldd 3931 | . . . . 5 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) |
| 32 | eqid 2733 | . . . . . 6 ⊢ (LSSum‘𝑊) = (LSSum‘𝑊) | |
| 33 | 32 | lsmlub 19584 | . . . . 5 ⊢ (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 34 | 25, 29, 31, 33 | syl3anc 1373 | . . . 4 ⊢ (𝜑 → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 35 | 19, 34 | bitrd 279 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 36 | 15, 20, 16, 8, 30, 26 | ellspsn5b 20937 | . . 3 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 37 | 15, 16, 32, 8, 9, 26 | lsmpr 21032 | . . . 4 ⊢ (𝜑 → (𝑁‘{𝑋, 𝑈}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈}))) |
| 38 | 37 | sseq1d 3962 | . . 3 ⊢ (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 39 | 35, 36, 38 | 3bitr4d 311 | . 2 ⊢ (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))) |
| 40 | 5, 39 | mtbird 325 | 1 ⊢ (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌})) |
| Colors of variables: wff setvar class |
| Syntax hints: ¬ wn 3 → wi 4 ↔ wb 206 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ⊆ wss 3898 {csn 4577 {cpr 4579 ‘cfv 6489 (class class class)co 7355 Basecbs 17127 SubGrpcsubg 19041 LSSumclsm 19554 LModclmod 20802 LSubSpclss 20873 LSpanclspn 20913 LVecclvec 21045 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5221 ax-sep 5238 ax-nul 5248 ax-pow 5307 ax-pr 5374 ax-un 7677 ax-cnex 11073 ax-resscn 11074 ax-1cn 11075 ax-icn 11076 ax-addcl 11077 ax-addrcl 11078 ax-mulcl 11079 ax-mulrcl 11080 ax-mulcom 11081 ax-addass 11082 ax-mulass 11083 ax-distr 11084 ax-i2m1 11085 ax-1ne0 11086 ax-1rid 11087 ax-rnegex 11088 ax-rrecex 11089 ax-cnre 11090 ax-pre-lttri 11091 ax-pre-lttrn 11092 ax-pre-ltadd 11093 ax-pre-mulgt0 11094 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4477 df-pw 4553 df-sn 4578 df-pr 4580 df-op 4584 df-uni 4861 df-int 4900 df-iun 4945 df-br 5096 df-opab 5158 df-mpt 5177 df-tr 5203 df-id 5516 df-eprel 5521 df-po 5529 df-so 5530 df-fr 5574 df-we 5576 df-xp 5627 df-rel 5628 df-cnv 5629 df-co 5630 df-dm 5631 df-rn 5632 df-res 5633 df-ima 5634 df-pred 6256 df-ord 6317 df-on 6318 df-lim 6319 df-suc 6320 df-iota 6445 df-fun 6491 df-fn 6492 df-f 6493 df-f1 6494 df-fo 6495 df-f1o 6496 df-fv 6497 df-riota 7312 df-ov 7358 df-oprab 7359 df-mpo 7360 df-om 7806 df-1st 7930 df-2nd 7931 df-frecs 8220 df-wrecs 8251 df-recs 8300 df-rdg 8338 df-er 8631 df-en 8880 df-dom 8881 df-sdom 8882 df-pnf 11159 df-mnf 11160 df-xr 11161 df-ltxr 11162 df-le 11163 df-sub 11357 df-neg 11358 df-nn 12137 df-2 12199 df-sets 17082 df-slot 17100 df-ndx 17112 df-base 17128 df-ress 17149 df-plusg 17181 df-0g 17352 df-mgm 18556 df-sgrp 18635 df-mnd 18651 df-submnd 18700 df-grp 18857 df-minusg 18858 df-sbg 18859 df-subg 19044 df-cntz 19237 df-lsm 19556 df-cmn 19702 df-abl 19703 df-mgp 20067 df-ur 20108 df-ring 20161 df-lmod 20804 df-lss 20874 df-lsp 20914 df-lvec 21046 |
| This theorem is referenced by: mapdh8b 41952 |
| Copyright terms: Public domain | W3C validator |