Users' Mathboxes Mathbox for Norm Megill < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  lspindp5 Structured version   Visualization version   GIF version

Theorem lspindp5 37580
Description: Obtain an independent vector set 𝑈, 𝑋, 𝑌 from a vector 𝑈 dependent on 𝑋 and 𝑍 and another independent set 𝑍, 𝑋, 𝑌. (Here we don't show the (𝑁‘{𝑋}) ≠ (𝑁‘{𝑌}) part of the independence, which passes straight through. We also don't show nonzero vector requirements that are redundant for this theorem. Different orderings can be obtained using lspexch 19343 and prcom 4403.) (Contributed by NM, 4-May-2015.)
Hypotheses
Ref Expression
lspindp5.v 𝑉 = (Base‘𝑊)
lspindp5.n 𝑁 = (LSpan‘𝑊)
lspindp5.w (𝜑𝑊 ∈ LVec)
lspindp5.y (𝜑𝑋𝑉)
lspindp5.x (𝜑𝑌𝑉)
lspindp5.u (𝜑𝑈𝑉)
lspindp5.e (𝜑𝑍 ∈ (𝑁‘{𝑋, 𝑈}))
lspindp5.m (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
Assertion
Ref Expression
lspindp5 (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌}))

Proof of Theorem lspindp5
StepHypRef Expression
1 lspindp5.m . . 3 (𝜑 → ¬ 𝑍 ∈ (𝑁‘{𝑋, 𝑌}))
2 lspindp5.e . . . 4 (𝜑𝑍 ∈ (𝑁‘{𝑋, 𝑈}))
3 ssel 3746 . . . 4 ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → (𝑍 ∈ (𝑁‘{𝑋, 𝑈}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
42, 3syl5com 31 . . 3 (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) → 𝑍 ∈ (𝑁‘{𝑋, 𝑌})))
51, 4mtod 189 . 2 (𝜑 → ¬ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))
6 lspindp5.w . . . . . . 7 (𝜑𝑊 ∈ LVec)
7 lveclmod 19319 . . . . . . 7 (𝑊 ∈ LVec → 𝑊 ∈ LMod)
86, 7syl 17 . . . . . 6 (𝜑𝑊 ∈ LMod)
9 lspindp5.y . . . . . . 7 (𝜑𝑋𝑉)
10 lspindp5.x . . . . . . 7 (𝜑𝑌𝑉)
11 prssi 4487 . . . . . . 7 ((𝑋𝑉𝑌𝑉) → {𝑋, 𝑌} ⊆ 𝑉)
129, 10, 11syl2anc 573 . . . . . 6 (𝜑 → {𝑋, 𝑌} ⊆ 𝑉)
13 snsspr1 4480 . . . . . . 7 {𝑋} ⊆ {𝑋, 𝑌}
1413a1i 11 . . . . . 6 (𝜑 → {𝑋} ⊆ {𝑋, 𝑌})
15 lspindp5.v . . . . . . 7 𝑉 = (Base‘𝑊)
16 lspindp5.n . . . . . . 7 𝑁 = (LSpan‘𝑊)
1715, 16lspss 19197 . . . . . 6 ((𝑊 ∈ LMod ∧ {𝑋, 𝑌} ⊆ 𝑉 ∧ {𝑋} ⊆ {𝑋, 𝑌}) → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
188, 12, 14, 17syl3anc 1476 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}))
1918biantrurd 522 . . . 4 (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}))))
20 eqid 2771 . . . . . . . 8 (LSubSp‘𝑊) = (LSubSp‘𝑊)
2120lsssssubg 19171 . . . . . . 7 (𝑊 ∈ LMod → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
228, 21syl 17 . . . . . 6 (𝜑 → (LSubSp‘𝑊) ⊆ (SubGrp‘𝑊))
2315, 20, 16lspsncl 19190 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑋𝑉) → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
248, 9, 23syl2anc 573 . . . . . 6 (𝜑 → (𝑁‘{𝑋}) ∈ (LSubSp‘𝑊))
2522, 24sseldd 3753 . . . . 5 (𝜑 → (𝑁‘{𝑋}) ∈ (SubGrp‘𝑊))
26 lspindp5.u . . . . . . 7 (𝜑𝑈𝑉)
2715, 20, 16lspsncl 19190 . . . . . . 7 ((𝑊 ∈ LMod ∧ 𝑈𝑉) → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊))
288, 26, 27syl2anc 573 . . . . . 6 (𝜑 → (𝑁‘{𝑈}) ∈ (LSubSp‘𝑊))
2922, 28sseldd 3753 . . . . 5 (𝜑 → (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊))
3015, 20, 16, 8, 9, 10lspprcl 19191 . . . . . 6 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (LSubSp‘𝑊))
3122, 30sseldd 3753 . . . . 5 (𝜑 → (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊))
32 eqid 2771 . . . . . 6 (LSSum‘𝑊) = (LSSum‘𝑊)
3332lsmlub 18285 . . . . 5 (((𝑁‘{𝑋}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑈}) ∈ (SubGrp‘𝑊) ∧ (𝑁‘{𝑋, 𝑌}) ∈ (SubGrp‘𝑊)) → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌})))
3425, 29, 31, 33syl3anc 1476 . . . 4 (𝜑 → (((𝑁‘{𝑋}) ⊆ (𝑁‘{𝑋, 𝑌}) ∧ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌})))
3519, 34bitrd 268 . . 3 (𝜑 → ((𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌})))
3615, 20, 16, 8, 30, 26lspsnel5 19208 . . 3 (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})))
3715, 16, 32, 8, 9, 26lsmpr 19302 . . . 4 (𝜑 → (𝑁‘{𝑋, 𝑈}) = ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})))
3837sseq1d 3781 . . 3 (𝜑 → ((𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌}) ↔ ((𝑁‘{𝑋})(LSSum‘𝑊)(𝑁‘{𝑈})) ⊆ (𝑁‘{𝑋, 𝑌})))
3935, 36, 383bitr4d 300 . 2 (𝜑 → (𝑈 ∈ (𝑁‘{𝑋, 𝑌}) ↔ (𝑁‘{𝑋, 𝑈}) ⊆ (𝑁‘{𝑋, 𝑌})))
405, 39mtbird 314 1 (𝜑 → ¬ 𝑈 ∈ (𝑁‘{𝑋, 𝑌}))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wb 196  wa 382   = wceq 1631  wcel 2145  wss 3723  {csn 4316  {cpr 4318  cfv 6031  (class class class)co 6793  Basecbs 16064  SubGrpcsubg 17796  LSSumclsm 18256  LModclmod 19073  LSubSpclss 19142  LSpanclspn 19184  LVecclvec 19315
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1870  ax-4 1885  ax-5 1991  ax-6 2057  ax-7 2093  ax-8 2147  ax-9 2154  ax-10 2174  ax-11 2190  ax-12 2203  ax-13 2408  ax-ext 2751  ax-rep 4904  ax-sep 4915  ax-nul 4923  ax-pow 4974  ax-pr 5034  ax-un 7096  ax-cnex 10194  ax-resscn 10195  ax-1cn 10196  ax-icn 10197  ax-addcl 10198  ax-addrcl 10199  ax-mulcl 10200  ax-mulrcl 10201  ax-mulcom 10202  ax-addass 10203  ax-mulass 10204  ax-distr 10205  ax-i2m1 10206  ax-1ne0 10207  ax-1rid 10208  ax-rnegex 10209  ax-rrecex 10210  ax-cnre 10211  ax-pre-lttri 10212  ax-pre-lttrn 10213  ax-pre-ltadd 10214  ax-pre-mulgt0 10215
This theorem depends on definitions:  df-bi 197  df-an 383  df-or 837  df-3or 1072  df-3an 1073  df-tru 1634  df-ex 1853  df-nf 1858  df-sb 2050  df-eu 2622  df-mo 2623  df-clab 2758  df-cleq 2764  df-clel 2767  df-nfc 2902  df-ne 2944  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rmo 3069  df-rab 3070  df-v 3353  df-sbc 3588  df-csb 3683  df-dif 3726  df-un 3728  df-in 3730  df-ss 3737  df-pss 3739  df-nul 4064  df-if 4226  df-pw 4299  df-sn 4317  df-pr 4319  df-tp 4321  df-op 4323  df-uni 4575  df-int 4612  df-iun 4656  df-br 4787  df-opab 4847  df-mpt 4864  df-tr 4887  df-id 5157  df-eprel 5162  df-po 5170  df-so 5171  df-fr 5208  df-we 5210  df-xp 5255  df-rel 5256  df-cnv 5257  df-co 5258  df-dm 5259  df-rn 5260  df-res 5261  df-ima 5262  df-pred 5823  df-ord 5869  df-on 5870  df-lim 5871  df-suc 5872  df-iota 5994  df-fun 6033  df-fn 6034  df-f 6035  df-f1 6036  df-fo 6037  df-f1o 6038  df-fv 6039  df-riota 6754  df-ov 6796  df-oprab 6797  df-mpt2 6798  df-om 7213  df-1st 7315  df-2nd 7316  df-wrecs 7559  df-recs 7621  df-rdg 7659  df-er 7896  df-en 8110  df-dom 8111  df-sdom 8112  df-pnf 10278  df-mnf 10279  df-xr 10280  df-ltxr 10281  df-le 10282  df-sub 10470  df-neg 10471  df-nn 11223  df-2 11281  df-ndx 16067  df-slot 16068  df-base 16070  df-sets 16071  df-ress 16072  df-plusg 16162  df-0g 16310  df-mgm 17450  df-sgrp 17492  df-mnd 17503  df-submnd 17544  df-grp 17633  df-minusg 17634  df-sbg 17635  df-subg 17799  df-cntz 17957  df-lsm 18258  df-cmn 18402  df-abl 18403  df-mgp 18698  df-ur 18710  df-ring 18757  df-lmod 19075  df-lss 19143  df-lsp 19185  df-lvec 19316
This theorem is referenced by:  mapdh8b  37590
  Copyright terms: Public domain W3C validator