Users' Mathboxes Mathbox for Thierry Arnoux < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >   Mathboxes  >  idlsrgtset Structured version   Visualization version   GIF version

Theorem idlsrgtset 31367
Description: Topology component of the ideals of a ring. (Contributed by Thierry Arnoux, 1-Jun-2024.)
Hypotheses
Ref Expression
idlsrgtset.1 𝑆 = (IDLsrg‘𝑅)
idlsrgtset.2 𝐼 = (LIdeal‘𝑅)
idlsrgtset.3 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
Assertion
Ref Expression
idlsrgtset (𝑅𝑉𝐽 = (TopSet‘𝑆))
Distinct variable groups:   𝑖,𝐼,𝑗   𝑅,𝑖,𝑗   𝑖,𝑉
Allowed substitution hints:   𝑆(𝑖,𝑗)   𝐽(𝑖,𝑗)   𝑉(𝑗)

Proof of Theorem idlsrgtset
StepHypRef Expression
1 idlsrgtset.3 . 2 𝐽 = ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})
2 idlsrgtset.2 . . . . . . 7 𝐼 = (LIdeal‘𝑅)
32fvexi 6731 . . . . . 6 𝐼 ∈ V
43mptex 7039 . . . . 5 (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
54rnex 7690 . . . 4 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V
6 eqid 2737 . . . . . 6 ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
76idlsrgstr 31361 . . . . 5 ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}) Struct ⟨1, 10⟩
8 tsetid 16886 . . . . 5 TopSet = Slot (TopSet‘ndx)
9 snsspr1 4727 . . . . . 6 {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩} ⊆ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}
10 ssun2 4087 . . . . . 6 {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩} ⊆ ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
119, 10sstri 3910 . . . . 5 {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩} ⊆ ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})
127, 8, 11strfv 16754 . . . 4 (ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) ∈ V → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})))
135, 12ax-mp 5 . . 3 ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
14 idlsrgtset.1 . . . . 5 𝑆 = (IDLsrg‘𝑅)
15 eqid 2737 . . . . . 6 (LSSum‘𝑅) = (LSSum‘𝑅)
16 eqid 2737 . . . . . 6 (mulGrp‘𝑅) = (mulGrp‘𝑅)
17 eqid 2737 . . . . . 6 (LSSum‘(mulGrp‘𝑅)) = (LSSum‘(mulGrp‘𝑅))
182, 15, 16, 17idlsrgval 31362 . . . . 5 (𝑅𝑉 → (IDLsrg‘𝑅) = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
1914, 18syl5eq 2790 . . . 4 (𝑅𝑉𝑆 = ({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩}))
2019fveq2d 6721 . . 3 (𝑅𝑉 → (TopSet‘𝑆) = (TopSet‘({⟨(Base‘ndx), 𝐼⟩, ⟨(+g‘ndx), (LSSum‘𝑅)⟩, ⟨(.r‘ndx), (𝑖𝐼, 𝑗𝐼 ↦ ((RSpan‘𝑅)‘(𝑖(LSSum‘(mulGrp‘𝑅))𝑗)))⟩} ∪ {⟨(TopSet‘ndx), ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗})⟩, ⟨(le‘ndx), {⟨𝑖, 𝑗⟩ ∣ ({𝑖, 𝑗} ⊆ 𝐼𝑖𝑗)}⟩})))
2113, 20eqtr4id 2797 . 2 (𝑅𝑉 → ran (𝑖𝐼 ↦ {𝑗𝐼 ∣ ¬ 𝑖𝑗}) = (TopSet‘𝑆))
221, 21syl5eq 2790 1 (𝑅𝑉𝐽 = (TopSet‘𝑆))
Colors of variables: wff setvar class
Syntax hints:  ¬ wn 3  wi 4  wa 399   = wceq 1543  wcel 2110  {crab 3065  Vcvv 3408  cun 3864  wss 3866  {csn 4541  {cpr 4543  {ctp 4545  cop 4547  {copab 5115  cmpt 5135  ran crn 5552  cfv 6380  (class class class)co 7213  cmpo 7215  0cc0 10729  1c1 10730  cdc 12293  ndxcnx 16744  Basecbs 16760  +gcplusg 16802  .rcmulr 16803  TopSetcts 16808  lecple 16809  LSSumclsm 19023  mulGrpcmgp 19504  LIdealclidl 20207  RSpancrsp 20208  IDLsrgcidlsrg 31359
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1803  ax-4 1817  ax-5 1918  ax-6 1976  ax-7 2016  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2708  ax-rep 5179  ax-sep 5192  ax-nul 5199  ax-pow 5258  ax-pr 5322  ax-un 7523  ax-cnex 10785  ax-resscn 10786  ax-1cn 10787  ax-icn 10788  ax-addcl 10789  ax-addrcl 10790  ax-mulcl 10791  ax-mulrcl 10792  ax-mulcom 10793  ax-addass 10794  ax-mulass 10795  ax-distr 10796  ax-i2m1 10797  ax-1ne0 10798  ax-1rid 10799  ax-rnegex 10800  ax-rrecex 10801  ax-cnre 10802  ax-pre-lttri 10803  ax-pre-lttrn 10804  ax-pre-ltadd 10805  ax-pre-mulgt0 10806
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 848  df-3or 1090  df-3an 1091  df-tru 1546  df-fal 1556  df-ex 1788  df-nf 1792  df-sb 2071  df-mo 2539  df-eu 2568  df-clab 2715  df-cleq 2729  df-clel 2816  df-nfc 2886  df-ne 2941  df-nel 3047  df-ral 3066  df-rex 3067  df-reu 3068  df-rab 3070  df-v 3410  df-sbc 3695  df-csb 3812  df-dif 3869  df-un 3871  df-in 3873  df-ss 3883  df-pss 3885  df-nul 4238  df-if 4440  df-pw 4515  df-sn 4542  df-pr 4544  df-tp 4546  df-op 4548  df-uni 4820  df-iun 4906  df-br 5054  df-opab 5116  df-mpt 5136  df-tr 5162  df-id 5455  df-eprel 5460  df-po 5468  df-so 5469  df-fr 5509  df-we 5511  df-xp 5557  df-rel 5558  df-cnv 5559  df-co 5560  df-dm 5561  df-rn 5562  df-res 5563  df-ima 5564  df-pred 6160  df-ord 6216  df-on 6217  df-lim 6218  df-suc 6219  df-iota 6338  df-fun 6382  df-fn 6383  df-f 6384  df-f1 6385  df-fo 6386  df-f1o 6387  df-fv 6388  df-riota 7170  df-ov 7216  df-oprab 7217  df-mpo 7218  df-om 7645  df-1st 7761  df-2nd 7762  df-wrecs 8047  df-recs 8108  df-rdg 8146  df-1o 8202  df-er 8391  df-en 8627  df-dom 8628  df-sdom 8629  df-fin 8630  df-pnf 10869  df-mnf 10870  df-xr 10871  df-ltxr 10872  df-le 10873  df-sub 11064  df-neg 11065  df-nn 11831  df-2 11893  df-3 11894  df-4 11895  df-5 11896  df-6 11897  df-7 11898  df-8 11899  df-9 11900  df-n0 12091  df-z 12177  df-dec 12294  df-uz 12439  df-fz 13096  df-struct 16700  df-slot 16735  df-ndx 16745  df-base 16761  df-plusg 16815  df-mulr 16816  df-tset 16821  df-ple 16822  df-idlsrg 31360
This theorem is referenced by:  rspectset  31530  rspectopn  31531
  Copyright terms: Public domain W3C validator