| Step | Hyp | Ref
| Expression |
| 1 | | issply.1 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ 𝑥 ∈ 𝐷) → (𝐹‘(𝑥 ∘ 𝑝)) = (𝐹‘𝑥)) |
| 2 | 1 | mpteq2dva 5181 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 ∘ 𝑝))) = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 3 | | coeq2 5795 |
. . . . . . . . . . 11
⊢ (𝑐 = 𝑑 → (𝑦 ∘ 𝑐) = (𝑦 ∘ 𝑑)) |
| 4 | 3 | fveq2d 6820 |
. . . . . . . . . 10
⊢ (𝑐 = 𝑑 → (𝑒‘(𝑦 ∘ 𝑐)) = (𝑒‘(𝑦 ∘ 𝑑))) |
| 5 | 4 | mpteq2dv 5182 |
. . . . . . . . 9
⊢ (𝑐 = 𝑑 → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑑)))) |
| 6 | | fveq1 6815 |
. . . . . . . . . 10
⊢ (𝑒 = 𝑓 → (𝑒‘(𝑦 ∘ 𝑑)) = (𝑓‘(𝑦 ∘ 𝑑))) |
| 7 | 6 | mpteq2dv 5182 |
. . . . . . . . 9
⊢ (𝑒 = 𝑓 → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑑))) = (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑦 ∘ 𝑑)))) |
| 8 | 5, 7 | cbvmpov 7435 |
. . . . . . . 8
⊢ (𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑦 ∘ 𝑑)))) |
| 9 | | coeq1 5794 |
. . . . . . . . . . . 12
⊢ (𝑦 = 𝑥 → (𝑦 ∘ 𝑑) = (𝑥 ∘ 𝑑)) |
| 10 | 9 | fveq2d 6820 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑥 → (𝑓‘(𝑦 ∘ 𝑑)) = (𝑓‘(𝑥 ∘ 𝑑))) |
| 11 | 10 | cbvmptv 5192 |
. . . . . . . . . 10
⊢ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑦 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) |
| 12 | 11 | a1i 11 |
. . . . . . . . 9
⊢ ((𝑑 ∈ 𝑃 ∧ 𝑓 ∈ 𝑀) → (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑦 ∘ 𝑑))) = (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 13 | 12 | mpoeq3ia 7418 |
. . . . . . . 8
⊢ (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑦 ∘ 𝑑)))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 14 | 8, 13 | eqtri 2752 |
. . . . . . 7
⊢ (𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑)))) |
| 15 | 14 | a1i 11 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))) = (𝑑 ∈ 𝑃, 𝑓 ∈ 𝑀 ↦ (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))))) |
| 16 | | issply.d |
. . . . . . . . . 10
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp
0} |
| 17 | 16 | eqcomi 2738 |
. . . . . . . . 9
⊢ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} = 𝐷 |
| 18 | 17 | a1i 11 |
. . . . . . . 8
⊢ ((𝑑 = 𝑝 ∧ 𝑓 = 𝐹) → {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} = 𝐷) |
| 19 | | simpr 484 |
. . . . . . . . 9
⊢ ((𝑑 = 𝑝 ∧ 𝑓 = 𝐹) → 𝑓 = 𝐹) |
| 20 | | coeq2 5795 |
. . . . . . . . . 10
⊢ (𝑑 = 𝑝 → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑝)) |
| 21 | 20 | adantr 480 |
. . . . . . . . 9
⊢ ((𝑑 = 𝑝 ∧ 𝑓 = 𝐹) → (𝑥 ∘ 𝑑) = (𝑥 ∘ 𝑝)) |
| 22 | 19, 21 | fveq12d 6823 |
. . . . . . . 8
⊢ ((𝑑 = 𝑝 ∧ 𝑓 = 𝐹) → (𝑓‘(𝑥 ∘ 𝑑)) = (𝐹‘(𝑥 ∘ 𝑝))) |
| 23 | 18, 22 | mpteq12dv 5175 |
. . . . . . 7
⊢ ((𝑑 = 𝑝 ∧ 𝑓 = 𝐹) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 ∘ 𝑝)))) |
| 24 | 23 | adantl 481 |
. . . . . 6
⊢ (((𝜑 ∧ 𝑝 ∈ 𝑃) ∧ (𝑑 = 𝑝 ∧ 𝑓 = 𝐹)) → (𝑥 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑓‘(𝑥 ∘ 𝑑))) = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 ∘ 𝑝)))) |
| 25 | | simpr 484 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝑝 ∈ 𝑃) |
| 26 | | issply.f |
. . . . . . 7
⊢ (𝜑 → 𝐹 ∈ 𝑀) |
| 27 | 26 | adantr 480 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐹 ∈ 𝑀) |
| 28 | | ovex 7373 |
. . . . . . . . 9
⊢
(ℕ0 ↑m 𝐼) ∈ V |
| 29 | 16, 28 | rabex2 5276 |
. . . . . . . 8
⊢ 𝐷 ∈ V |
| 30 | 29 | a1i 11 |
. . . . . . 7
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐷 ∈ V) |
| 31 | 30 | mptexd 7152 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 ∘ 𝑝))) ∈ V) |
| 32 | 15, 24, 25, 27, 31 | ovmpod 7492 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑝(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))))𝐹) = (𝑥 ∈ 𝐷 ↦ (𝐹‘(𝑥 ∘ 𝑝)))) |
| 33 | | eqid 2729 |
. . . . . . 7
⊢ (𝐼 mPoly 𝑅) = (𝐼 mPoly 𝑅) |
| 34 | | eqid 2729 |
. . . . . . 7
⊢
(Base‘𝑅) =
(Base‘𝑅) |
| 35 | | issply.m |
. . . . . . 7
⊢ 𝑀 = (Base‘(𝐼 mPoly 𝑅)) |
| 36 | 16 | psrbasfsupp 33540 |
. . . . . . 7
⊢ 𝐷 = {ℎ ∈ (ℕ0
↑m 𝐼)
∣ (◡ℎ “ ℕ) ∈ Fin} |
| 37 | 33, 34, 35, 36, 27 | mplelf 21889 |
. . . . . 6
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐹:𝐷⟶(Base‘𝑅)) |
| 38 | 37 | feqmptd 6884 |
. . . . 5
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → 𝐹 = (𝑥 ∈ 𝐷 ↦ (𝐹‘𝑥))) |
| 39 | 2, 32, 38 | 3eqtr4d 2774 |
. . . 4
⊢ ((𝜑 ∧ 𝑝 ∈ 𝑃) → (𝑝(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))))𝐹) = 𝐹) |
| 40 | 39 | ralrimiva 3121 |
. . 3
⊢ (𝜑 → ∀𝑝 ∈ 𝑃 (𝑝(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))))𝐹) = 𝐹) |
| 41 | | issply.p |
. . . 4
⊢ 𝑃 = (Base‘𝑆) |
| 42 | | issply.s |
. . . . 5
⊢ 𝑆 = (SymGrp‘𝐼) |
| 43 | | issply.i |
. . . . 5
⊢ (𝜑 → 𝐼 ∈ 𝑉) |
| 44 | 42, 41, 35, 14, 43 | mplvrpmga 33543 |
. . . 4
⊢ (𝜑 → (𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))) ∈ (𝑆 GrpAct 𝑀)) |
| 45 | 41, 44, 26 | isfxp 33105 |
. . 3
⊢ (𝜑 → (𝐹 ∈ (𝑀FixPts(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))))) ↔ ∀𝑝 ∈ 𝑃 (𝑝(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐))))𝐹) = 𝐹)) |
| 46 | 40, 45 | mpbird 257 |
. 2
⊢ (𝜑 → 𝐹 ∈ (𝑀FixPts(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))))) |
| 47 | | issply.r |
. . 3
⊢ (𝜑 → 𝑅 ∈ 𝑊) |
| 48 | 42, 41, 35, 14, 43, 47 | splyval 33550 |
. 2
⊢ (𝜑 → (𝐼SymPoly𝑅) = (𝑀FixPts(𝑐 ∈ 𝑃, 𝑒 ∈ 𝑀 ↦ (𝑦 ∈ {ℎ ∈ (ℕ0
↑m 𝐼)
∣ ℎ finSupp 0} ↦
(𝑒‘(𝑦 ∘ 𝑐)))))) |
| 49 | 46, 48 | eleqtrrd 2831 |
1
⊢ (𝜑 → 𝐹 ∈ (𝐼SymPoly𝑅)) |