MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Visualization version   GIF version

Theorem prdstopn 23538
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstopn.r (𝜑𝑅 Fn 𝐼)
prdstopn.o 𝑂 = (TopOpen‘𝑌)
Assertion
Ref Expression
prdstopn (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))

Proof of Theorem prdstopn
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
2 prdstopn.s . . . . . 6 (𝜑𝑆𝑉)
3 prdstopn.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
4 prdstopn.i . . . . . . 7 (𝜑𝐼𝑊)
5 fnex 7146 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 584 . . . . . 6 (𝜑𝑅 ∈ V)
7 eqid 2731 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
8 eqidd 2732 . . . . . 6 (𝜑 → dom 𝑅 = dom 𝑅)
9 eqid 2731 . . . . . 6 (TopSet‘𝑌) = (TopSet‘𝑌)
101, 2, 6, 7, 8, 9prdstset 17365 . . . . 5 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
11 topnfn 17324 . . . . . . . . . . 11 TopOpen Fn V
12 dffn2 6648 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
133, 12sylib 218 . . . . . . . . . . 11 (𝜑𝑅:𝐼⟶V)
14 fnfco 6683 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
1511, 13, 14sylancr 587 . . . . . . . . . 10 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
16 eqid 2731 . . . . . . . . . . 11 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}
1716ptval 23480 . . . . . . . . . 10 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
184, 15, 17syl2anc 584 . . . . . . . . 9 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
1918unieqd 4867 . . . . . . . 8 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
20 fvco2 6914 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Fn 𝐼𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
213, 20sylan 580 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
22 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
23 eqid 2731 . . . . . . . . . . . . . . . . . . . . . 22 (TopSet‘(𝑅𝑦)) = (TopSet‘(𝑅𝑦))
2422, 23topnval 17333 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) = (TopOpen‘(𝑅𝑦))
25 restsspw 17330 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) ⊆ 𝒫 (Base‘(𝑅𝑦))
2624, 25eqsstrri 3977 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘(𝑅𝑦)) ⊆ 𝒫 (Base‘(𝑅𝑦))
2721, 26eqsstrdi 3974 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅𝑦)))
2827sseld 3928 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦))))
29 fvex 6830 . . . . . . . . . . . . . . . . . . 19 (𝑔𝑦) ∈ V
3029elpw 4549 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦)) ↔ (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
3128, 30imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
3231ralimdva 3144 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
33 simpl2 1193 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦))
3432, 33impel 505 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
35 ss2ixp 8829 . . . . . . . . . . . . . . 15 (∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
37 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 = X𝑦𝐼 (𝑔𝑦))
381, 7, 2, 4, 3prdsbas2 17368 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
4036, 37, 393sstr4d 3985 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 ⊆ (Base‘𝑌))
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
4241exlimdv 1934 . . . . . . . . . . 11 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
43 velpw 4550 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌))
4442, 43imbitrrdi 252 . . . . . . . . . 10 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌)))
4544abssdv 4014 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌))
46 fvex 6830 . . . . . . . . . . 11 (Base‘𝑌) ∈ V
4746pwex 5313 . . . . . . . . . 10 𝒫 (Base‘𝑌) ∈ V
4847ssex 5254 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V)
49 unitg 22877 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5045, 48, 493syl 18 . . . . . . . 8 (𝜑 (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5119, 50eqtrd 2766 . . . . . . 7 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
52 sspwuni 5043 . . . . . . . 8 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5345, 52sylib 218 . . . . . . 7 (𝜑 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5451, 53eqsstrd 3964 . . . . . 6 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
55 sspwuni 5043 . . . . . 6 ((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
5654, 55sylibr 234 . . . . 5 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌))
5710, 56eqsstrd 3964 . . . 4 (𝜑 → (TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌))
587, 9topnid 17334 . . . 4 ((TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌))
5957, 58syl 17 . . 3 (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌))
60 prdstopn.o . . 3 𝑂 = (TopOpen‘𝑌)
6159, 60eqtr4di 2784 . 2 (𝜑 → (TopSet‘𝑌) = 𝑂)
6261, 10eqtr3d 2768 1 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1086   = wceq 1541  wex 1780  wcel 2111  {cab 2709  wral 3047  wrex 3056  Vcvv 3436  cdif 3894  wss 3897  𝒫 cpw 4545   cuni 4854  dom cdm 5611  ccom 5615   Fn wfn 6471  wf 6472  cfv 6476  (class class class)co 7341  Xcixp 8816  Fincfn 8864  Basecbs 17115  TopSetcts 17162  t crest 17319  TopOpenctopn 17320  topGenctg 17336  tcpt 17337  Xscprds 17344
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5212  ax-sep 5229  ax-nul 5239  ax-pow 5298  ax-pr 5365  ax-un 7663  ax-cnex 11057  ax-resscn 11058  ax-1cn 11059  ax-icn 11060  ax-addcl 11061  ax-addrcl 11062  ax-mulcl 11063  ax-mulrcl 11064  ax-mulcom 11065  ax-addass 11066  ax-mulass 11067  ax-distr 11068  ax-i2m1 11069  ax-1ne0 11070  ax-1rid 11071  ax-rnegex 11072  ax-rrecex 11073  ax-cnre 11074  ax-pre-lttri 11075  ax-pre-lttrn 11076  ax-pre-ltadd 11077  ax-pre-mulgt0 11078
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4279  df-if 4471  df-pw 4547  df-sn 4572  df-pr 4574  df-tp 4576  df-op 4578  df-uni 4855  df-iun 4938  df-br 5087  df-opab 5149  df-mpt 5168  df-tr 5194  df-id 5506  df-eprel 5511  df-po 5519  df-so 5520  df-fr 5564  df-we 5566  df-xp 5617  df-rel 5618  df-cnv 5619  df-co 5620  df-dm 5621  df-rn 5622  df-res 5623  df-ima 5624  df-pred 6243  df-ord 6304  df-on 6305  df-lim 6306  df-suc 6307  df-iota 6432  df-fun 6478  df-fn 6479  df-f 6480  df-f1 6481  df-fo 6482  df-f1o 6483  df-fv 6484  df-riota 7298  df-ov 7344  df-oprab 7345  df-mpo 7346  df-om 7792  df-1st 7916  df-2nd 7917  df-frecs 8206  df-wrecs 8237  df-recs 8286  df-rdg 8324  df-1o 8380  df-er 8617  df-map 8747  df-ixp 8817  df-en 8865  df-dom 8866  df-sdom 8867  df-fin 8868  df-sup 9321  df-pnf 11143  df-mnf 11144  df-xr 11145  df-ltxr 11146  df-le 11147  df-sub 11341  df-neg 11342  df-nn 12121  df-2 12183  df-3 12184  df-4 12185  df-5 12186  df-6 12187  df-7 12188  df-8 12189  df-9 12190  df-n0 12377  df-z 12464  df-dec 12584  df-uz 12728  df-fz 13403  df-struct 17053  df-slot 17088  df-ndx 17100  df-base 17116  df-plusg 17169  df-mulr 17170  df-sca 17172  df-vsca 17173  df-ip 17174  df-tset 17175  df-ple 17176  df-ds 17178  df-hom 17180  df-cco 17181  df-rest 17321  df-topn 17322  df-topgen 17342  df-pt 17343  df-prds 17346
This theorem is referenced by:  xpstopnlem2  23721  prdstmdd  24034  prdstgpd  24035  prdsxmslem2  24439
  Copyright terms: Public domain W3C validator