MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Visualization version   GIF version

Theorem prdstopn 23657
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstopn.r (𝜑𝑅 Fn 𝐼)
prdstopn.o 𝑂 = (TopOpen‘𝑌)
Assertion
Ref Expression
prdstopn (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))

Proof of Theorem prdstopn
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
2 prdstopn.s . . . . . 6 (𝜑𝑆𝑉)
3 prdstopn.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
4 prdstopn.i . . . . . . 7 (𝜑𝐼𝑊)
5 fnex 7254 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 583 . . . . . 6 (𝜑𝑅 ∈ V)
7 eqid 2740 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
8 eqidd 2741 . . . . . 6 (𝜑 → dom 𝑅 = dom 𝑅)
9 eqid 2740 . . . . . 6 (TopSet‘𝑌) = (TopSet‘𝑌)
101, 2, 6, 7, 8, 9prdstset 17526 . . . . 5 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
11 topnfn 17485 . . . . . . . . . . 11 TopOpen Fn V
12 dffn2 6749 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
133, 12sylib 218 . . . . . . . . . . 11 (𝜑𝑅:𝐼⟶V)
14 fnfco 6786 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
1511, 13, 14sylancr 586 . . . . . . . . . 10 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
16 eqid 2740 . . . . . . . . . . 11 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}
1716ptval 23599 . . . . . . . . . 10 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
184, 15, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
1918unieqd 4944 . . . . . . . 8 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
20 fvco2 7019 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Fn 𝐼𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
213, 20sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
22 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
23 eqid 2740 . . . . . . . . . . . . . . . . . . . . . 22 (TopSet‘(𝑅𝑦)) = (TopSet‘(𝑅𝑦))
2422, 23topnval 17494 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) = (TopOpen‘(𝑅𝑦))
25 restsspw 17491 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) ⊆ 𝒫 (Base‘(𝑅𝑦))
2624, 25eqsstrri 4044 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘(𝑅𝑦)) ⊆ 𝒫 (Base‘(𝑅𝑦))
2721, 26eqsstrdi 4063 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅𝑦)))
2827sseld 4007 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦))))
29 fvex 6933 . . . . . . . . . . . . . . . . . . 19 (𝑔𝑦) ∈ V
3029elpw 4626 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦)) ↔ (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
3128, 30imbitrdi 251 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
3231ralimdva 3173 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
33 simpl2 1192 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦))
3432, 33impel 505 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
35 ss2ixp 8968 . . . . . . . . . . . . . . 15 (∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
37 simprr 772 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 = X𝑦𝐼 (𝑔𝑦))
381, 7, 2, 4, 3prdsbas2 17529 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
4036, 37, 393sstr4d 4056 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 ⊆ (Base‘𝑌))
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
4241exlimdv 1932 . . . . . . . . . . 11 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
43 velpw 4627 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌))
4442, 43imbitrrdi 252 . . . . . . . . . 10 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌)))
4544abssdv 4091 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌))
46 fvex 6933 . . . . . . . . . . 11 (Base‘𝑌) ∈ V
4746pwex 5398 . . . . . . . . . 10 𝒫 (Base‘𝑌) ∈ V
4847ssex 5339 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V)
49 unitg 22995 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5045, 48, 493syl 18 . . . . . . . 8 (𝜑 (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5119, 50eqtrd 2780 . . . . . . 7 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
52 sspwuni 5123 . . . . . . . 8 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5345, 52sylib 218 . . . . . . 7 (𝜑 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5451, 53eqsstrd 4047 . . . . . 6 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
55 sspwuni 5123 . . . . . 6 ((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
5654, 55sylibr 234 . . . . 5 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌))
5710, 56eqsstrd 4047 . . . 4 (𝜑 → (TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌))
587, 9topnid 17495 . . . 4 ((TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌))
5957, 58syl 17 . . 3 (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌))
60 prdstopn.o . . 3 𝑂 = (TopOpen‘𝑌)
6159, 60eqtr4di 2798 . 2 (𝜑 → (TopSet‘𝑌) = 𝑂)
6261, 10eqtr3d 2782 1 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  Vcvv 3488  cdif 3973  wss 3976  𝒫 cpw 4622   cuni 4931  dom cdm 5700  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  Xcixp 8955  Fincfn 9003  Basecbs 17258  TopSetcts 17317  t crest 17480  TopOpenctopn 17481  topGenctg 17497  tcpt 17498  Xscprds 17505
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-ixp 8956  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-fz 13568  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-sca 17327  df-vsca 17328  df-ip 17329  df-tset 17330  df-ple 17331  df-ds 17333  df-hom 17335  df-cco 17336  df-rest 17482  df-topn 17483  df-topgen 17503  df-pt 17504  df-prds 17507
This theorem is referenced by:  xpstopnlem2  23840  prdstmdd  24153  prdstgpd  24154  prdsxmslem2  24563
  Copyright terms: Public domain W3C validator