| Step | Hyp | Ref
| Expression |
| 1 | | prdstopn.y |
. . . . . 6
⊢ 𝑌 = (𝑆Xs𝑅) |
| 2 | | prdstopn.s |
. . . . . 6
⊢ (𝜑 → 𝑆 ∈ 𝑉) |
| 3 | | prdstopn.r |
. . . . . . 7
⊢ (𝜑 → 𝑅 Fn 𝐼) |
| 4 | | prdstopn.i |
. . . . . . 7
⊢ (𝜑 → 𝐼 ∈ 𝑊) |
| 5 | | fnex 7214 |
. . . . . . 7
⊢ ((𝑅 Fn 𝐼 ∧ 𝐼 ∈ 𝑊) → 𝑅 ∈ V) |
| 6 | 3, 4, 5 | syl2anc 584 |
. . . . . 6
⊢ (𝜑 → 𝑅 ∈ V) |
| 7 | | eqid 2736 |
. . . . . 6
⊢
(Base‘𝑌) =
(Base‘𝑌) |
| 8 | | eqidd 2737 |
. . . . . 6
⊢ (𝜑 → dom 𝑅 = dom 𝑅) |
| 9 | | eqid 2736 |
. . . . . 6
⊢
(TopSet‘𝑌) =
(TopSet‘𝑌) |
| 10 | 1, 2, 6, 7, 8, 9 | prdstset 17485 |
. . . . 5
⊢ (𝜑 → (TopSet‘𝑌) =
(∏t‘(TopOpen ∘ 𝑅))) |
| 11 | | topnfn 17444 |
. . . . . . . . . . 11
⊢ TopOpen
Fn V |
| 12 | | dffn2 6713 |
. . . . . . . . . . . 12
⊢ (𝑅 Fn 𝐼 ↔ 𝑅:𝐼⟶V) |
| 13 | 3, 12 | sylib 218 |
. . . . . . . . . . 11
⊢ (𝜑 → 𝑅:𝐼⟶V) |
| 14 | | fnfco 6748 |
. . . . . . . . . . 11
⊢ ((TopOpen
Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen
∘ 𝑅) Fn 𝐼) |
| 15 | 11, 13, 14 | sylancr 587 |
. . . . . . . . . 10
⊢ (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼) |
| 16 | | eqid 2736 |
. . . . . . . . . . 11
⊢ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} |
| 17 | 16 | ptval 23513 |
. . . . . . . . . 10
⊢ ((𝐼 ∈ 𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen
∘ 𝑅)) =
(topGen‘{𝑥 ∣
∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
| 18 | 4, 15, 17 | syl2anc 584 |
. . . . . . . . 9
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
| 19 | 18 | unieqd 4901 |
. . . . . . . 8
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) = ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))})) |
| 20 | | fvco2 6981 |
. . . . . . . . . . . . . . . . . . . . 21
⊢ ((𝑅 Fn 𝐼 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
| 21 | 3, 20 | sylan 580 |
. . . . . . . . . . . . . . . . . . . 20
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅‘𝑦))) |
| 22 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(Base‘(𝑅‘𝑦)) = (Base‘(𝑅‘𝑦)) |
| 23 | | eqid 2736 |
. . . . . . . . . . . . . . . . . . . . . 22
⊢
(TopSet‘(𝑅‘𝑦)) = (TopSet‘(𝑅‘𝑦)) |
| 24 | 22, 23 | topnval 17453 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((TopSet‘(𝑅‘𝑦)) ↾t (Base‘(𝑅‘𝑦))) = (TopOpen‘(𝑅‘𝑦)) |
| 25 | | restsspw 17450 |
. . . . . . . . . . . . . . . . . . . . 21
⊢
((TopSet‘(𝑅‘𝑦)) ↾t (Base‘(𝑅‘𝑦))) ⊆ 𝒫 (Base‘(𝑅‘𝑦)) |
| 26 | 24, 25 | eqsstrri 4011 |
. . . . . . . . . . . . . . . . . . . 20
⊢
(TopOpen‘(𝑅‘𝑦)) ⊆ 𝒫 (Base‘(𝑅‘𝑦)) |
| 27 | 21, 26 | eqsstrdi 4008 |
. . . . . . . . . . . . . . . . . . 19
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅‘𝑦))) |
| 28 | 27 | sseld 3962 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔‘𝑦) ∈ 𝒫 (Base‘(𝑅‘𝑦)))) |
| 29 | | fvex 6894 |
. . . . . . . . . . . . . . . . . . 19
⊢ (𝑔‘𝑦) ∈ V |
| 30 | 29 | elpw 4584 |
. . . . . . . . . . . . . . . . . 18
⊢ ((𝑔‘𝑦) ∈ 𝒫 (Base‘(𝑅‘𝑦)) ↔ (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦))) |
| 31 | 28, 30 | imbitrdi 251 |
. . . . . . . . . . . . . . . . 17
⊢ ((𝜑 ∧ 𝑦 ∈ 𝐼) → ((𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)))) |
| 32 | 31 | ralimdva 3153 |
. . . . . . . . . . . . . . . 16
⊢ (𝜑 → (∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)))) |
| 33 | | simpl2 1193 |
. . . . . . . . . . . . . . . 16
⊢ (((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦)) |
| 34 | 32, 33 | impel 505 |
. . . . . . . . . . . . . . 15
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦))) |
| 35 | | ss2ixp 8929 |
. . . . . . . . . . . . . . 15
⊢
(∀𝑦 ∈
𝐼 (𝑔‘𝑦) ⊆ (Base‘(𝑅‘𝑦)) → X𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
| 36 | 34, 35 | syl 17 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → X𝑦 ∈ 𝐼 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
| 37 | | simprr 772 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) |
| 38 | 1, 7, 2, 4, 3 | prdsbas2 17488 |
. . . . . . . . . . . . . . 15
⊢ (𝜑 → (Base‘𝑌) = X𝑦 ∈
𝐼 (Base‘(𝑅‘𝑦))) |
| 39 | 38 | adantr 480 |
. . . . . . . . . . . . . 14
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → (Base‘𝑌) = X𝑦 ∈ 𝐼 (Base‘(𝑅‘𝑦))) |
| 40 | 36, 37, 39 | 3sstr4d 4019 |
. . . . . . . . . . . . 13
⊢ ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))) → 𝑥 ⊆ (Base‘𝑌)) |
| 41 | 40 | ex 412 |
. . . . . . . . . . . 12
⊢ (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ⊆ (Base‘𝑌))) |
| 42 | 41 | exlimdv 1933 |
. . . . . . . . . . 11
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ⊆ (Base‘𝑌))) |
| 43 | | velpw 4585 |
. . . . . . . . . . 11
⊢ (𝑥 ∈ 𝒫
(Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌)) |
| 44 | 42, 43 | imbitrrdi 252 |
. . . . . . . . . 10
⊢ (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌))) |
| 45 | 44 | abssdv 4048 |
. . . . . . . . 9
⊢ (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌)) |
| 46 | | fvex 6894 |
. . . . . . . . . . 11
⊢
(Base‘𝑌)
∈ V |
| 47 | 46 | pwex 5355 |
. . . . . . . . . 10
⊢ 𝒫
(Base‘𝑌) ∈
V |
| 48 | 47 | ssex 5296 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ∈ V) |
| 49 | | unitg 22910 |
. . . . . . . . 9
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ∈ V → ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) = ∪ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
| 50 | 45, 48, 49 | 3syl 18 |
. . . . . . . 8
⊢ (𝜑 → ∪ (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) = ∪ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
| 51 | 19, 50 | eqtrd 2771 |
. . . . . . 7
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) = ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))}) |
| 52 | | sspwuni 5081 |
. . . . . . . 8
⊢ ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ (Base‘𝑌)) |
| 53 | 45, 52 | sylib 218 |
. . . . . . 7
⊢ (𝜑 → ∪ {𝑥
∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦 ∈ 𝐼 (𝑔‘𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼 ∖ 𝑧)(𝑔‘𝑦) = ∪ ((TopOpen
∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐼 (𝑔‘𝑦))} ⊆ (Base‘𝑌)) |
| 54 | 51, 53 | eqsstrd 3998 |
. . . . . 6
⊢ (𝜑 → ∪ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌)) |
| 55 | | sspwuni 5081 |
. . . . . 6
⊢
((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ ∪ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌)) |
| 56 | 54, 55 | sylibr 234 |
. . . . 5
⊢ (𝜑 →
(∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌)) |
| 57 | 10, 56 | eqsstrd 3998 |
. . . 4
⊢ (𝜑 → (TopSet‘𝑌) ⊆ 𝒫
(Base‘𝑌)) |
| 58 | 7, 9 | topnid 17454 |
. . . 4
⊢
((TopSet‘𝑌)
⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌)) |
| 59 | 57, 58 | syl 17 |
. . 3
⊢ (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌)) |
| 60 | | prdstopn.o |
. . 3
⊢ 𝑂 = (TopOpen‘𝑌) |
| 61 | 59, 60 | eqtr4di 2789 |
. 2
⊢ (𝜑 → (TopSet‘𝑌) = 𝑂) |
| 62 | 61, 10 | eqtr3d 2773 |
1
⊢ (𝜑 → 𝑂 = (∏t‘(TopOpen
∘ 𝑅))) |