MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  prdstopn Structured version   Visualization version   GIF version

Theorem prdstopn 22687
Description: Topology of a structure product. (Contributed by Mario Carneiro, 27-Aug-2015.)
Hypotheses
Ref Expression
prdstopn.y 𝑌 = (𝑆Xs𝑅)
prdstopn.s (𝜑𝑆𝑉)
prdstopn.i (𝜑𝐼𝑊)
prdstopn.r (𝜑𝑅 Fn 𝐼)
prdstopn.o 𝑂 = (TopOpen‘𝑌)
Assertion
Ref Expression
prdstopn (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))

Proof of Theorem prdstopn
Dummy variables 𝑥 𝑔 𝑦 𝑧 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 prdstopn.y . . . . . 6 𝑌 = (𝑆Xs𝑅)
2 prdstopn.s . . . . . 6 (𝜑𝑆𝑉)
3 prdstopn.r . . . . . . 7 (𝜑𝑅 Fn 𝐼)
4 prdstopn.i . . . . . . 7 (𝜑𝐼𝑊)
5 fnex 7075 . . . . . . 7 ((𝑅 Fn 𝐼𝐼𝑊) → 𝑅 ∈ V)
63, 4, 5syl2anc 583 . . . . . 6 (𝜑𝑅 ∈ V)
7 eqid 2738 . . . . . 6 (Base‘𝑌) = (Base‘𝑌)
8 eqidd 2739 . . . . . 6 (𝜑 → dom 𝑅 = dom 𝑅)
9 eqid 2738 . . . . . 6 (TopSet‘𝑌) = (TopSet‘𝑌)
101, 2, 6, 7, 8, 9prdstset 17094 . . . . 5 (𝜑 → (TopSet‘𝑌) = (∏t‘(TopOpen ∘ 𝑅)))
11 topnfn 17053 . . . . . . . . . . 11 TopOpen Fn V
12 dffn2 6586 . . . . . . . . . . . 12 (𝑅 Fn 𝐼𝑅:𝐼⟶V)
133, 12sylib 217 . . . . . . . . . . 11 (𝜑𝑅:𝐼⟶V)
14 fnfco 6623 . . . . . . . . . . 11 ((TopOpen Fn V ∧ 𝑅:𝐼⟶V) → (TopOpen ∘ 𝑅) Fn 𝐼)
1511, 13, 14sylancr 586 . . . . . . . . . 10 (𝜑 → (TopOpen ∘ 𝑅) Fn 𝐼)
16 eqid 2738 . . . . . . . . . . 11 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}
1716ptval 22629 . . . . . . . . . 10 ((𝐼𝑊 ∧ (TopOpen ∘ 𝑅) Fn 𝐼) → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
184, 15, 17syl2anc 583 . . . . . . . . 9 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
1918unieqd 4850 . . . . . . . 8 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}))
20 fvco2 6847 . . . . . . . . . . . . . . . . . . . . 21 ((𝑅 Fn 𝐼𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
213, 20sylan 579 . . . . . . . . . . . . . . . . . . . 20 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) = (TopOpen‘(𝑅𝑦)))
22 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (Base‘(𝑅𝑦)) = (Base‘(𝑅𝑦))
23 eqid 2738 . . . . . . . . . . . . . . . . . . . . . 22 (TopSet‘(𝑅𝑦)) = (TopSet‘(𝑅𝑦))
2422, 23topnval 17062 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) = (TopOpen‘(𝑅𝑦))
25 restsspw 17059 . . . . . . . . . . . . . . . . . . . . 21 ((TopSet‘(𝑅𝑦)) ↾t (Base‘(𝑅𝑦))) ⊆ 𝒫 (Base‘(𝑅𝑦))
2624, 25eqsstrri 3952 . . . . . . . . . . . . . . . . . . . 20 (TopOpen‘(𝑅𝑦)) ⊆ 𝒫 (Base‘(𝑅𝑦))
2721, 26eqsstrdi 3971 . . . . . . . . . . . . . . . . . . 19 ((𝜑𝑦𝐼) → ((TopOpen ∘ 𝑅)‘𝑦) ⊆ 𝒫 (Base‘(𝑅𝑦)))
2827sseld 3916 . . . . . . . . . . . . . . . . . 18 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦))))
29 fvex 6769 . . . . . . . . . . . . . . . . . . 19 (𝑔𝑦) ∈ V
3029elpw 4534 . . . . . . . . . . . . . . . . . 18 ((𝑔𝑦) ∈ 𝒫 (Base‘(𝑅𝑦)) ↔ (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
3128, 30syl6ib 250 . . . . . . . . . . . . . . . . 17 ((𝜑𝑦𝐼) → ((𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
3231ralimdva 3102 . . . . . . . . . . . . . . . 16 (𝜑 → (∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦))))
33 simpl2 1190 . . . . . . . . . . . . . . . 16 (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦))
3432, 33impel 505 . . . . . . . . . . . . . . 15 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → ∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)))
35 ss2ixp 8656 . . . . . . . . . . . . . . 15 (∀𝑦𝐼 (𝑔𝑦) ⊆ (Base‘(𝑅𝑦)) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
3634, 35syl 17 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → X𝑦𝐼 (𝑔𝑦) ⊆ X𝑦𝐼 (Base‘(𝑅𝑦)))
37 simprr 769 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 = X𝑦𝐼 (𝑔𝑦))
381, 7, 2, 4, 3prdsbas2 17097 . . . . . . . . . . . . . . 15 (𝜑 → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
3938adantr 480 . . . . . . . . . . . . . 14 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → (Base‘𝑌) = X𝑦𝐼 (Base‘(𝑅𝑦)))
4036, 37, 393sstr4d 3964 . . . . . . . . . . . . 13 ((𝜑 ∧ ((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))) → 𝑥 ⊆ (Base‘𝑌))
4140ex 412 . . . . . . . . . . . 12 (𝜑 → (((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
4241exlimdv 1937 . . . . . . . . . . 11 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ⊆ (Base‘𝑌)))
43 velpw 4535 . . . . . . . . . . 11 (𝑥 ∈ 𝒫 (Base‘𝑌) ↔ 𝑥 ⊆ (Base‘𝑌))
4442, 43syl6ibr 251 . . . . . . . . . 10 (𝜑 → (∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦)) → 𝑥 ∈ 𝒫 (Base‘𝑌)))
4544abssdv 3998 . . . . . . . . 9 (𝜑 → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌))
46 fvex 6769 . . . . . . . . . . 11 (Base‘𝑌) ∈ V
4746pwex 5298 . . . . . . . . . 10 𝒫 (Base‘𝑌) ∈ V
4847ssex 5240 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V)
49 unitg 22025 . . . . . . . . 9 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ∈ V → (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5045, 48, 493syl 18 . . . . . . . 8 (𝜑 (topGen‘{𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))}) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
5119, 50eqtrd 2778 . . . . . . 7 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))})
52 sspwuni 5025 . . . . . . . 8 ({𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ 𝒫 (Base‘𝑌) ↔ {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5345, 52sylib 217 . . . . . . 7 (𝜑 {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐼 ∧ ∀𝑦𝐼 (𝑔𝑦) ∈ ((TopOpen ∘ 𝑅)‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐼𝑧)(𝑔𝑦) = ((TopOpen ∘ 𝑅)‘𝑦)) ∧ 𝑥 = X𝑦𝐼 (𝑔𝑦))} ⊆ (Base‘𝑌))
5451, 53eqsstrd 3955 . . . . . 6 (𝜑 (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
55 sspwuni 5025 . . . . . 6 ((∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌) ↔ (∏t‘(TopOpen ∘ 𝑅)) ⊆ (Base‘𝑌))
5654, 55sylibr 233 . . . . 5 (𝜑 → (∏t‘(TopOpen ∘ 𝑅)) ⊆ 𝒫 (Base‘𝑌))
5710, 56eqsstrd 3955 . . . 4 (𝜑 → (TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌))
587, 9topnid 17063 . . . 4 ((TopSet‘𝑌) ⊆ 𝒫 (Base‘𝑌) → (TopSet‘𝑌) = (TopOpen‘𝑌))
5957, 58syl 17 . . 3 (𝜑 → (TopSet‘𝑌) = (TopOpen‘𝑌))
60 prdstopn.o . . 3 𝑂 = (TopOpen‘𝑌)
6159, 60eqtr4di 2797 . 2 (𝜑 → (TopSet‘𝑌) = 𝑂)
6261, 10eqtr3d 2780 1 (𝜑𝑂 = (∏t‘(TopOpen ∘ 𝑅)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1085   = wceq 1539  wex 1783  wcel 2108  {cab 2715  wral 3063  wrex 3064  Vcvv 3422  cdif 3880  wss 3883  𝒫 cpw 4530   cuni 4836  dom cdm 5580  ccom 5584   Fn wfn 6413  wf 6414  cfv 6418  (class class class)co 7255  Xcixp 8643  Fincfn 8691  Basecbs 16840  TopSetcts 16894  t crest 17048  TopOpenctopn 17049  topGenctg 17065  tcpt 17066  Xscprds 17073
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1799  ax-4 1813  ax-5 1914  ax-6 1972  ax-7 2012  ax-8 2110  ax-9 2118  ax-10 2139  ax-11 2156  ax-12 2173  ax-ext 2709  ax-rep 5205  ax-sep 5218  ax-nul 5225  ax-pow 5283  ax-pr 5347  ax-un 7566  ax-cnex 10858  ax-resscn 10859  ax-1cn 10860  ax-icn 10861  ax-addcl 10862  ax-addrcl 10863  ax-mulcl 10864  ax-mulrcl 10865  ax-mulcom 10866  ax-addass 10867  ax-mulass 10868  ax-distr 10869  ax-i2m1 10870  ax-1ne0 10871  ax-1rid 10872  ax-rnegex 10873  ax-rrecex 10874  ax-cnre 10875  ax-pre-lttri 10876  ax-pre-lttrn 10877  ax-pre-ltadd 10878  ax-pre-mulgt0 10879
This theorem depends on definitions:  df-bi 206  df-an 396  df-or 844  df-3or 1086  df-3an 1087  df-tru 1542  df-fal 1552  df-ex 1784  df-nf 1788  df-sb 2069  df-mo 2540  df-eu 2569  df-clab 2716  df-cleq 2730  df-clel 2817  df-nfc 2888  df-ne 2943  df-nel 3049  df-ral 3068  df-rex 3069  df-reu 3070  df-rab 3072  df-v 3424  df-sbc 3712  df-csb 3829  df-dif 3886  df-un 3888  df-in 3890  df-ss 3900  df-pss 3902  df-nul 4254  df-if 4457  df-pw 4532  df-sn 4559  df-pr 4561  df-tp 4563  df-op 4565  df-uni 4837  df-iun 4923  df-br 5071  df-opab 5133  df-mpt 5154  df-tr 5188  df-id 5480  df-eprel 5486  df-po 5494  df-so 5495  df-fr 5535  df-we 5537  df-xp 5586  df-rel 5587  df-cnv 5588  df-co 5589  df-dm 5590  df-rn 5591  df-res 5592  df-ima 5593  df-pred 6191  df-ord 6254  df-on 6255  df-lim 6256  df-suc 6257  df-iota 6376  df-fun 6420  df-fn 6421  df-f 6422  df-f1 6423  df-fo 6424  df-f1o 6425  df-fv 6426  df-riota 7212  df-ov 7258  df-oprab 7259  df-mpo 7260  df-om 7688  df-1st 7804  df-2nd 7805  df-frecs 8068  df-wrecs 8099  df-recs 8173  df-rdg 8212  df-1o 8267  df-er 8456  df-map 8575  df-ixp 8644  df-en 8692  df-dom 8693  df-sdom 8694  df-fin 8695  df-sup 9131  df-pnf 10942  df-mnf 10943  df-xr 10944  df-ltxr 10945  df-le 10946  df-sub 11137  df-neg 11138  df-nn 11904  df-2 11966  df-3 11967  df-4 11968  df-5 11969  df-6 11970  df-7 11971  df-8 11972  df-9 11973  df-n0 12164  df-z 12250  df-dec 12367  df-uz 12512  df-fz 13169  df-struct 16776  df-slot 16811  df-ndx 16823  df-base 16841  df-plusg 16901  df-mulr 16902  df-sca 16904  df-vsca 16905  df-ip 16906  df-tset 16907  df-ple 16908  df-ds 16910  df-hom 16912  df-cco 16913  df-rest 17050  df-topn 17051  df-topgen 17071  df-pt 17072  df-prds 17075
This theorem is referenced by:  xpstopnlem2  22870  prdstmdd  23183  prdstgpd  23184  prdsxmslem2  23591
  Copyright terms: Public domain W3C validator