Proof of Theorem ptuni2
Step | Hyp | Ref
| Expression |
1 | | ptbas.1 |
. . . 4
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} |
2 | 1 | ptbasid 22634 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) |
3 | | elssuni 4868 |
. . 3
⊢ (X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵 → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⊆ ∪ 𝐵) |
4 | 2, 3 | syl 17 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ⊆ ∪ 𝐵) |
5 | | simpr2 1193 |
. . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦)) |
6 | | elssuni 4868 |
. . . . . . . . . . 11
⊢ ((𝑔‘𝑦) ∈ (𝐹‘𝑦) → (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦)) |
7 | 6 | ralimi 3086 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦)) |
8 | | ss2ixp 8656 |
. . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
9 | 5, 7, 8 | 3syl 18 |
. . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) |
10 | | fveq2 6756 |
. . . . . . . . . . 11
⊢ (𝑦 = 𝑘 → (𝐹‘𝑦) = (𝐹‘𝑘)) |
11 | 10 | unieqd 4850 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑘 → ∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑘)) |
12 | 11 | cbvixpv 8661 |
. . . . . . . . 9
⊢ X𝑦 ∈
𝐴 ∪ (𝐹‘𝑦) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) |
13 | 9, 12 | sseqtrdi 3967 |
. . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
14 | | velpw 4535 |
. . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ 𝑥 ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
15 | | sseq1 3942 |
. . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘))) |
16 | 14, 15 | syl5bb 282 |
. . . . . . . 8
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘))) |
17 | 13, 16 | syl5ibrcom 246 |
. . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) |
18 | 17 | expimpd 453 |
. . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) |
19 | 18 | exlimdv 1937 |
. . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) |
20 | 19 | abssdv 3998 |
. . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) |
21 | 1, 20 | eqsstrid 3965 |
. . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) |
22 | | sspwuni 5025 |
. . 3
⊢ (𝐵 ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ ∪ 𝐵 ⊆ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) |
23 | 21, 22 | sylib 217 |
. 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵
⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) |
24 | 4, 23 | eqssd 3934 |
1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |