MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Visualization version   GIF version

Theorem ptuni2 23605
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptuni2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasid 23604 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
3 elssuni 4961 . . 3 (X𝑘𝐴 (𝐹𝑘) ∈ 𝐵X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
5 simpr2 1195 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦))
6 elssuni 4961 . . . . . . . . . . 11 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ⊆ (𝐹𝑦))
76ralimi 3089 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦))
8 ss2ixp 8968 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
95, 7, 83syl 18 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
10 fveq2 6920 . . . . . . . . . . 11 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
1110unieqd 4944 . . . . . . . . . 10 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
1211cbvixpv 8973 . . . . . . . . 9 X𝑦𝐴 (𝐹𝑦) = X𝑘𝐴 (𝐹𝑘)
139, 12sseqtrdi 4059 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘))
14 velpw 4627 . . . . . . . . 9 (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝑥X𝑘𝐴 (𝐹𝑘))
15 sseq1 4034 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1614, 15bitrid 283 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1713, 16syl5ibrcom 247 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1817expimpd 453 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1918exlimdv 1932 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
2019abssdv 4091 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
211, 20eqsstrid 4057 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
22 sspwuni 5123 . . 3 (𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝐵X𝑘𝐴 (𝐹𝑘))
2321, 22sylib 218 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵X𝑘𝐴 (𝐹𝑘))
244, 23eqssd 4026 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 395  w3a 1087   = wceq 1537  wex 1777  wcel 2108  {cab 2717  wral 3067  wrex 3076  cdif 3973  wss 3976  𝒫 cpw 4622   cuni 4931   Fn wfn 6568  wf 6569  cfv 6573  Xcixp 8955  Fincfn 9003  Topctop 22920
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-ord 6398  df-on 6399  df-lim 6400  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-om 7904  df-ixp 8956  df-en 9004  df-fin 9007  df-top 22921
This theorem is referenced by:  ptbasin2  23607  ptbasfi  23610  ptuni  23623
  Copyright terms: Public domain W3C validator