Proof of Theorem ptuni2
| Step | Hyp | Ref | Expression | 
|---|
| 1 |  | ptbas.1 | . . . 4
⊢ 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} | 
| 2 | 1 | ptbasid 23584 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵) | 
| 3 |  | elssuni 4936 | . . 3
⊢ (X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ∈ 𝐵 → X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ⊆ ∪ 𝐵) | 
| 4 | 2, 3 | syl 17 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ⊆ ∪ 𝐵) | 
| 5 |  | simpr2 1195 | . . . . . . . . . 10
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦)) | 
| 6 |  | elssuni 4936 | . . . . . . . . . . 11
⊢ ((𝑔‘𝑦) ∈ (𝐹‘𝑦) → (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦)) | 
| 7 | 6 | ralimi 3082 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) → ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦)) | 
| 8 |  | ss2ixp 8951 | . . . . . . . . . 10
⊢
(∀𝑦 ∈
𝐴 (𝑔‘𝑦) ⊆ ∪ (𝐹‘𝑦) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) | 
| 9 | 5, 7, 8 | 3syl 18 | . . . . . . . . 9
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑦 ∈ 𝐴 ∪ (𝐹‘𝑦)) | 
| 10 |  | fveq2 6905 | . . . . . . . . . . 11
⊢ (𝑦 = 𝑘 → (𝐹‘𝑦) = (𝐹‘𝑘)) | 
| 11 | 10 | unieqd 4919 | . . . . . . . . . 10
⊢ (𝑦 = 𝑘 → ∪ (𝐹‘𝑦) = ∪ (𝐹‘𝑘)) | 
| 12 | 11 | cbvixpv 8956 | . . . . . . . . 9
⊢ X𝑦 ∈
𝐴 ∪ (𝐹‘𝑦) = X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) | 
| 13 | 9, 12 | sseqtrdi 4023 | . . . . . . . 8
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 14 |  | velpw 4604 | . . . . . . . . 9
⊢ (𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ 𝑥 ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 15 |  | sseq1 4008 | . . . . . . . . 9
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘) ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘))) | 
| 16 | 14, 15 | bitrid 283 | . . . . . . . 8
⊢ (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → (𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ X𝑦 ∈ 𝐴 (𝑔‘𝑦) ⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘))) | 
| 17 | 13, 16 | syl5ibrcom 247 | . . . . . . 7
⊢ (((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦))) → (𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) | 
| 18 | 17 | expimpd 453 | . . . . . 6
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) | 
| 19 | 18 | exlimdv 1932 | . . . . 5
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦)) → 𝑥 ∈ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘))) | 
| 20 | 19 | abssdv 4067 | . . . 4
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦 ∈ 𝐴 (𝑔‘𝑦) ∈ (𝐹‘𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴 ∖ 𝑧)(𝑔‘𝑦) = ∪ (𝐹‘𝑦)) ∧ 𝑥 = X𝑦 ∈ 𝐴 (𝑔‘𝑦))} ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) | 
| 21 | 1, 20 | eqsstrid 4021 | . . 3
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) | 
| 22 |  | sspwuni 5099 | . . 3
⊢ (𝐵 ⊆ 𝒫 X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) ↔ ∪ 𝐵 ⊆ X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘)) | 
| 23 | 21, 22 | sylib 218 | . 2
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → ∪ 𝐵
⊆ X𝑘 ∈ 𝐴 ∪ (𝐹‘𝑘)) | 
| 24 | 4, 23 | eqssd 4000 | 1
⊢ ((𝐴 ∈ 𝑉 ∧ 𝐹:𝐴⟶Top) → X𝑘 ∈
𝐴 ∪ (𝐹‘𝑘) = ∪ 𝐵) |