MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Visualization version   GIF version

Theorem ptuni2 22927
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptuni2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasid 22926 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
3 elssuni 4898 . . 3 (X𝑘𝐴 (𝐹𝑘) ∈ 𝐵X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
5 simpr2 1195 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦))
6 elssuni 4898 . . . . . . . . . . 11 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ⊆ (𝐹𝑦))
76ralimi 3086 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦))
8 ss2ixp 8848 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
95, 7, 83syl 18 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
10 fveq2 6842 . . . . . . . . . . 11 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
1110unieqd 4879 . . . . . . . . . 10 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
1211cbvixpv 8853 . . . . . . . . 9 X𝑦𝐴 (𝐹𝑦) = X𝑘𝐴 (𝐹𝑘)
139, 12sseqtrdi 3994 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘))
14 velpw 4565 . . . . . . . . 9 (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝑥X𝑘𝐴 (𝐹𝑘))
15 sseq1 3969 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1614, 15bitrid 282 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1713, 16syl5ibrcom 246 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1817expimpd 454 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1918exlimdv 1936 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
2019abssdv 4025 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
211, 20eqsstrid 3992 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
22 sspwuni 5060 . . 3 (𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝐵X𝑘𝐴 (𝐹𝑘))
2321, 22sylib 217 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵X𝑘𝐴 (𝐹𝑘))
244, 23eqssd 3961 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 396  w3a 1087   = wceq 1541  wex 1781  wcel 2106  {cab 2713  wral 3064  wrex 3073  cdif 3907  wss 3910  𝒫 cpw 4560   cuni 4865   Fn wfn 6491  wf 6492  cfv 6496  Xcixp 8835  Fincfn 8883  Topctop 22242
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-ral 3065  df-rex 3074  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-om 7803  df-ixp 8836  df-en 8884  df-fin 8887  df-top 22243
This theorem is referenced by:  ptbasin2  22929  ptbasfi  22932  ptuni  22945
  Copyright terms: Public domain W3C validator