MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  ptuni2 Structured version   Visualization version   GIF version

Theorem ptuni2 22184
Description: The base set for the product topology. (Contributed by Mario Carneiro, 3-Feb-2015.)
Hypothesis
Ref Expression
ptbas.1 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
Assertion
Ref Expression
ptuni2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Distinct variable groups:   𝐵,𝑘   𝑥,𝑔,𝑦,𝑘,𝑧,𝐴   𝑔,𝐹,𝑘,𝑥,𝑦,𝑧   𝑔,𝑉,𝑘,𝑥,𝑦,𝑧
Allowed substitution hints:   𝐵(𝑥,𝑦,𝑧,𝑔)

Proof of Theorem ptuni2
StepHypRef Expression
1 ptbas.1 . . . 4 𝐵 = {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))}
21ptbasid 22183 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ∈ 𝐵)
3 elssuni 4868 . . 3 (X𝑘𝐴 (𝐹𝑘) ∈ 𝐵X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
42, 3syl 17 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) ⊆ 𝐵)
5 simpr2 1191 . . . . . . . . . 10 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦))
6 elssuni 4868 . . . . . . . . . . 11 ((𝑔𝑦) ∈ (𝐹𝑦) → (𝑔𝑦) ⊆ (𝐹𝑦))
76ralimi 3160 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) → ∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦))
8 ss2ixp 8474 . . . . . . . . . 10 (∀𝑦𝐴 (𝑔𝑦) ⊆ (𝐹𝑦) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
95, 7, 83syl 18 . . . . . . . . 9 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑦𝐴 (𝐹𝑦))
10 fveq2 6670 . . . . . . . . . . 11 (𝑦 = 𝑘 → (𝐹𝑦) = (𝐹𝑘))
1110unieqd 4852 . . . . . . . . . 10 (𝑦 = 𝑘 (𝐹𝑦) = (𝐹𝑘))
1211cbvixpv 8479 . . . . . . . . 9 X𝑦𝐴 (𝐹𝑦) = X𝑘𝐴 (𝐹𝑘)
139, 12sseqtrdi 4017 . . . . . . . 8 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘))
14 velpw 4544 . . . . . . . . 9 (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝑥X𝑘𝐴 (𝐹𝑘))
15 sseq1 3992 . . . . . . . . 9 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1614, 15syl5bb 285 . . . . . . . 8 (𝑥 = X𝑦𝐴 (𝑔𝑦) → (𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ X𝑦𝐴 (𝑔𝑦) ⊆ X𝑘𝐴 (𝐹𝑘)))
1713, 16syl5ibrcom 249 . . . . . . 7 (((𝐴𝑉𝐹:𝐴⟶Top) ∧ (𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦))) → (𝑥 = X𝑦𝐴 (𝑔𝑦) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1817expimpd 456 . . . . . 6 ((𝐴𝑉𝐹:𝐴⟶Top) → (((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
1918exlimdv 1934 . . . . 5 ((𝐴𝑉𝐹:𝐴⟶Top) → (∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦)) → 𝑥 ∈ 𝒫 X𝑘𝐴 (𝐹𝑘)))
2019abssdv 4045 . . . 4 ((𝐴𝑉𝐹:𝐴⟶Top) → {𝑥 ∣ ∃𝑔((𝑔 Fn 𝐴 ∧ ∀𝑦𝐴 (𝑔𝑦) ∈ (𝐹𝑦) ∧ ∃𝑧 ∈ Fin ∀𝑦 ∈ (𝐴𝑧)(𝑔𝑦) = (𝐹𝑦)) ∧ 𝑥 = X𝑦𝐴 (𝑔𝑦))} ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
211, 20eqsstrid 4015 . . 3 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘))
22 sspwuni 5022 . . 3 (𝐵 ⊆ 𝒫 X𝑘𝐴 (𝐹𝑘) ↔ 𝐵X𝑘𝐴 (𝐹𝑘))
2321, 22sylib 220 . 2 ((𝐴𝑉𝐹:𝐴⟶Top) → 𝐵X𝑘𝐴 (𝐹𝑘))
244, 23eqssd 3984 1 ((𝐴𝑉𝐹:𝐴⟶Top) → X𝑘𝐴 (𝐹𝑘) = 𝐵)
Colors of variables: wff setvar class
Syntax hints:  wi 4  wa 398  w3a 1083   = wceq 1537  wex 1780  wcel 2114  {cab 2799  wral 3138  wrex 3139  cdif 3933  wss 3936  𝒫 cpw 4539   cuni 4838   Fn wfn 6350  wf 6351  cfv 6355  Xcixp 8461  Fincfn 8509  Topctop 21501
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2116  ax-9 2124  ax-10 2145  ax-11 2161  ax-12 2177  ax-ext 2793  ax-rep 5190  ax-sep 5203  ax-nul 5210  ax-pow 5266  ax-pr 5330  ax-un 7461
This theorem depends on definitions:  df-bi 209  df-an 399  df-or 844  df-3or 1084  df-3an 1085  df-tru 1540  df-ex 1781  df-nf 1785  df-sb 2070  df-mo 2622  df-eu 2654  df-clab 2800  df-cleq 2814  df-clel 2893  df-nfc 2963  df-ne 3017  df-ral 3143  df-rex 3144  df-reu 3145  df-rab 3147  df-v 3496  df-sbc 3773  df-csb 3884  df-dif 3939  df-un 3941  df-in 3943  df-ss 3952  df-pss 3954  df-nul 4292  df-if 4468  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4839  df-iun 4921  df-br 5067  df-opab 5129  df-mpt 5147  df-tr 5173  df-id 5460  df-eprel 5465  df-po 5474  df-so 5475  df-fr 5514  df-we 5516  df-xp 5561  df-rel 5562  df-cnv 5563  df-co 5564  df-dm 5565  df-rn 5566  df-res 5567  df-ima 5568  df-ord 6194  df-on 6195  df-lim 6196  df-suc 6197  df-iota 6314  df-fun 6357  df-fn 6358  df-f 6359  df-f1 6360  df-fo 6361  df-f1o 6362  df-fv 6363  df-om 7581  df-ixp 8462  df-en 8510  df-fin 8513  df-top 21502
This theorem is referenced by:  ptbasin2  22186  ptbasfi  22189  ptuni  22202
  Copyright terms: Public domain W3C validator