HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Visualization version   GIF version

Theorem nlelchi 32041
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nlelchi (null‘𝑇) ∈ C

Proof of Theorem nlelchi
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3 𝑇 ∈ LinFn
21nlelshi 32040 . 2 (null‘𝑇) ∈ S
3 vex 3440 . . . . . 6 𝑥 ∈ V
43hlimveci 31170 . . . . 5 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
54adantl 481 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
6 eqid 2731 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldhaus 24699 . . . . . 6 (TopOpen‘ℂfld) ∈ Haus
87a1i 11 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ Haus)
9 eqid 2731 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
10 eqid 2731 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
119, 10hhims 31152 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2731 . . . . . . . . . 10 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
139, 11, 12hhlm 31179 . . . . . . . . 9 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
14 resss 5949 . . . . . . . . 9 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1513, 14eqsstri 3976 . . . . . . . 8 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1615ssbri 5134 . . . . . . 7 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1716adantl 481 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
18 nlelch.2 . . . . . . . 8 𝑇 ∈ ContFn
1910, 12, 6hhcnf 31885 . . . . . . . 8 ContFn = ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2018, 19eleqtri 2829 . . . . . . 7 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2120a1i 11 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
2217, 21lmcn 23220 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))(𝑇𝑥))
231lnfnfi 32021 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
24 ffvelcdm 7014 . . . . . . . . . . 11 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
2524adantlr 715 . . . . . . . . . 10 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
26 elnlfn2 31909 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝑓𝑛) ∈ (null‘𝑇)) → (𝑇‘(𝑓𝑛)) = 0)
2723, 25, 26sylancr 587 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑇‘(𝑓𝑛)) = 0)
28 fvco3 6921 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
2928adantlr 715 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
30 c0ex 11106 . . . . . . . . . . 11 0 ∈ V
3130fvconst2 7138 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3231adantl 481 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((ℕ × {0})‘𝑛) = 0)
3327, 29, 323eqtr4d 2776 . . . . . . . 8 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
3433ralrimiva 3124 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
35 ffn 6651 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
3623, 35ax-mp 5 . . . . . . . . 9 𝑇 Fn ℋ
37 simpl 482 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶(null‘𝑇))
382shssii 31193 . . . . . . . . . 10 (null‘𝑇) ⊆ ℋ
39 fss 6667 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ (null‘𝑇) ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . 9 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
41 fnfco 6688 . . . . . . . . 9 ((𝑇 Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → (𝑇𝑓) Fn ℕ)
4236, 40, 41sylancr 587 . . . . . . . 8 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) Fn ℕ)
4330fconst 6709 . . . . . . . . 9 (ℕ × {0}):ℕ⟶{0}
44 ffn 6651 . . . . . . . . 9 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
4543, 44ax-mp 5 . . . . . . . 8 (ℕ × {0}) Fn ℕ
46 eqfnfv 6964 . . . . . . . 8 (((𝑇𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4742, 45, 46sylancl 586 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4834, 47mpbird 257 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) = (ℕ × {0}))
496cnfldtopon 24697 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5049a1i 11 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
51 0cnd 11105 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 0 ∈ ℂ)
52 1zzd 12503 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 1 ∈ ℤ)
53 nnuz 12775 . . . . . . . 8 ℕ = (ℤ‘1)
5453lmconst 23176 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5550, 51, 52, 54syl3anc 1373 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5648, 55eqbrtrd 5111 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))0)
578, 22, 56lmmo 23295 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑥) = 0)
58 elnlfn 31908 . . . . 5 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
5923, 58ax-mp 5 . . . 4 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
605, 57, 59sylanbrc 583 . . 3 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
6160gen2 1797 . 2 𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
62 isch2 31203 . 2 ((null‘𝑇) ∈ C ↔ ((null‘𝑇) ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))))
632, 61, 62mpbir2an 711 1 (null‘𝑇) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1539   = wceq 1541  wcel 2111  wral 3047  wss 3897  {csn 4573  cop 4579   class class class wbr 5089   × cxp 5612  cres 5616  ccom 5618   Fn wfn 6476  wf 6477  cfv 6481  (class class class)co 7346  m cmap 8750  cc 11004  0cc0 11006  1c1 11007  cn 12125  cz 12468  TopOpenctopn 17325  MetOpencmopn 21281  fldccnfld 21291  TopOnctopon 22825   Cn ccn 23139  𝑡clm 23141  Hauscha 23223  chba 30899   + cva 30900   · csm 30901  normcno 30903   cmv 30905  𝑣 chli 30907   S csh 30908   C cch 30909  nullcnl 30932  ContFnccnfn 30933  LinFnclf 30934
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1796  ax-4 1810  ax-5 1911  ax-6 1968  ax-7 2009  ax-8 2113  ax-9 2121  ax-10 2144  ax-11 2160  ax-12 2180  ax-ext 2703  ax-rep 5215  ax-sep 5232  ax-nul 5242  ax-pow 5301  ax-pr 5368  ax-un 7668  ax-cnex 11062  ax-resscn 11063  ax-1cn 11064  ax-icn 11065  ax-addcl 11066  ax-addrcl 11067  ax-mulcl 11068  ax-mulrcl 11069  ax-mulcom 11070  ax-addass 11071  ax-mulass 11072  ax-distr 11073  ax-i2m1 11074  ax-1ne0 11075  ax-1rid 11076  ax-rnegex 11077  ax-rrecex 11078  ax-cnre 11079  ax-pre-lttri 11080  ax-pre-lttrn 11081  ax-pre-ltadd 11082  ax-pre-mulgt0 11083  ax-pre-sup 11084  ax-addf 11085  ax-mulf 11086  ax-hilex 30979  ax-hfvadd 30980  ax-hvcom 30981  ax-hvass 30982  ax-hv0cl 30983  ax-hvaddid 30984  ax-hfvmul 30985  ax-hvmulid 30986  ax-hvmulass 30987  ax-hvdistr1 30988  ax-hvdistr2 30989  ax-hvmul0 30990  ax-hfi 31059  ax-his1 31062  ax-his2 31063  ax-his3 31064  ax-his4 31065
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1544  df-fal 1554  df-ex 1781  df-nf 1785  df-sb 2068  df-mo 2535  df-eu 2564  df-clab 2710  df-cleq 2723  df-clel 2806  df-nfc 2881  df-ne 2929  df-nel 3033  df-ral 3048  df-rex 3057  df-rmo 3346  df-reu 3347  df-rab 3396  df-v 3438  df-sbc 3737  df-csb 3846  df-dif 3900  df-un 3902  df-in 3904  df-ss 3914  df-pss 3917  df-nul 4281  df-if 4473  df-pw 4549  df-sn 4574  df-pr 4576  df-tp 4578  df-op 4580  df-uni 4857  df-iun 4941  df-br 5090  df-opab 5152  df-mpt 5171  df-tr 5197  df-id 5509  df-eprel 5514  df-po 5522  df-so 5523  df-fr 5567  df-we 5569  df-xp 5620  df-rel 5621  df-cnv 5622  df-co 5623  df-dm 5624  df-rn 5625  df-res 5626  df-ima 5627  df-pred 6248  df-ord 6309  df-on 6310  df-lim 6311  df-suc 6312  df-iota 6437  df-fun 6483  df-fn 6484  df-f 6485  df-f1 6486  df-fo 6487  df-f1o 6488  df-fv 6489  df-riota 7303  df-ov 7349  df-oprab 7350  df-mpo 7351  df-om 7797  df-1st 7921  df-2nd 7922  df-frecs 8211  df-wrecs 8242  df-recs 8291  df-rdg 8329  df-1o 8385  df-er 8622  df-map 8752  df-pm 8753  df-en 8870  df-dom 8871  df-sdom 8872  df-fin 8873  df-sup 9326  df-inf 9327  df-pnf 11148  df-mnf 11149  df-xr 11150  df-ltxr 11151  df-le 11152  df-sub 11346  df-neg 11347  df-div 11775  df-nn 12126  df-2 12188  df-3 12189  df-4 12190  df-5 12191  df-6 12192  df-7 12193  df-8 12194  df-9 12195  df-n0 12382  df-z 12469  df-dec 12589  df-uz 12733  df-q 12847  df-rp 12891  df-xneg 13011  df-xadd 13012  df-xmul 13013  df-icc 13252  df-fz 13408  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21283  df-xmet 21284  df-met 21285  df-bl 21286  df-mopn 21287  df-cnfld 21292  df-top 22809  df-topon 22826  df-topsp 22848  df-bases 22861  df-cn 23142  df-cnp 23143  df-lm 23144  df-haus 23230  df-xms 24235  df-ms 24236  df-grpo 30473  df-gid 30474  df-ginv 30475  df-gdiv 30476  df-ablo 30525  df-vc 30539  df-nv 30572  df-va 30575  df-ba 30576  df-sm 30577  df-0v 30578  df-vs 30579  df-nmcv 30580  df-ims 30581  df-hnorm 30948  df-hvsub 30951  df-hlim 30952  df-sh 31187  df-ch 31201  df-nlfn 31826  df-cnfn 31827  df-lnfn 31828
This theorem is referenced by:  riesz3i  32042
  Copyright terms: Public domain W3C validator