HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Visualization version   GIF version

Theorem nlelchi 32093
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nlelchi (null‘𝑇) ∈ C

Proof of Theorem nlelchi
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3 𝑇 ∈ LinFn
21nlelshi 32092 . 2 (null‘𝑇) ∈ S
3 vex 3492 . . . . . 6 𝑥 ∈ V
43hlimveci 31222 . . . . 5 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
54adantl 481 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
6 eqid 2740 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldhaus 24826 . . . . . 6 (TopOpen‘ℂfld) ∈ Haus
87a1i 11 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ Haus)
9 eqid 2740 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
10 eqid 2740 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
119, 10hhims 31204 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2740 . . . . . . . . . 10 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
139, 11, 12hhlm 31231 . . . . . . . . 9 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
14 resss 6031 . . . . . . . . 9 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1513, 14eqsstri 4043 . . . . . . . 8 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1615ssbri 5211 . . . . . . 7 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1716adantl 481 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
18 nlelch.2 . . . . . . . 8 𝑇 ∈ ContFn
1910, 12, 6hhcnf 31937 . . . . . . . 8 ContFn = ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2018, 19eleqtri 2842 . . . . . . 7 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2120a1i 11 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
2217, 21lmcn 23334 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))(𝑇𝑥))
231lnfnfi 32073 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
24 ffvelcdm 7115 . . . . . . . . . . 11 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
2524adantlr 714 . . . . . . . . . 10 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
26 elnlfn2 31961 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝑓𝑛) ∈ (null‘𝑇)) → (𝑇‘(𝑓𝑛)) = 0)
2723, 25, 26sylancr 586 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑇‘(𝑓𝑛)) = 0)
28 fvco3 7021 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
2928adantlr 714 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
30 c0ex 11284 . . . . . . . . . . 11 0 ∈ V
3130fvconst2 7241 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3231adantl 481 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((ℕ × {0})‘𝑛) = 0)
3327, 29, 323eqtr4d 2790 . . . . . . . 8 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
3433ralrimiva 3152 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
35 ffn 6747 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
3623, 35ax-mp 5 . . . . . . . . 9 𝑇 Fn ℋ
37 simpl 482 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶(null‘𝑇))
382shssii 31245 . . . . . . . . . 10 (null‘𝑇) ⊆ ℋ
39 fss 6763 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ (null‘𝑇) ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 585 . . . . . . . . 9 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
41 fnfco 6786 . . . . . . . . 9 ((𝑇 Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → (𝑇𝑓) Fn ℕ)
4236, 40, 41sylancr 586 . . . . . . . 8 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) Fn ℕ)
4330fconst 6807 . . . . . . . . 9 (ℕ × {0}):ℕ⟶{0}
44 ffn 6747 . . . . . . . . 9 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
4543, 44ax-mp 5 . . . . . . . 8 (ℕ × {0}) Fn ℕ
46 eqfnfv 7064 . . . . . . . 8 (((𝑇𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4742, 45, 46sylancl 585 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4834, 47mpbird 257 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) = (ℕ × {0}))
496cnfldtopon 24824 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5049a1i 11 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
51 0cnd 11283 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 0 ∈ ℂ)
52 1zzd 12674 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 1 ∈ ℤ)
53 nnuz 12946 . . . . . . . 8 ℕ = (ℤ‘1)
5453lmconst 23290 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5550, 51, 52, 54syl3anc 1371 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5648, 55eqbrtrd 5188 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))0)
578, 22, 56lmmo 23409 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑥) = 0)
58 elnlfn 31960 . . . . 5 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
5923, 58ax-mp 5 . . . 4 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
605, 57, 59sylanbrc 582 . . 3 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
6160gen2 1794 . 2 𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
62 isch2 31255 . 2 ((null‘𝑇) ∈ C ↔ ((null‘𝑇) ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))))
632, 61, 62mpbir2an 710 1 (null‘𝑇) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1535   = wceq 1537  wcel 2108  wral 3067  wss 3976  {csn 4648  cop 4654   class class class wbr 5166   × cxp 5698  cres 5702  ccom 5704   Fn wfn 6568  wf 6569  cfv 6573  (class class class)co 7448  m cmap 8884  cc 11182  0cc0 11184  1c1 11185  cn 12293  cz 12639  TopOpenctopn 17481  MetOpencmopn 21377  fldccnfld 21387  TopOnctopon 22937   Cn ccn 23253  𝑡clm 23255  Hauscha 23337  chba 30951   + cva 30952   · csm 30953  normcno 30955   cmv 30957  𝑣 chli 30959   S csh 30960   C cch 30961  nullcnl 30984  ContFnccnfn 30985  LinFnclf 30986
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770  ax-cnex 11240  ax-resscn 11241  ax-1cn 11242  ax-icn 11243  ax-addcl 11244  ax-addrcl 11245  ax-mulcl 11246  ax-mulrcl 11247  ax-mulcom 11248  ax-addass 11249  ax-mulass 11250  ax-distr 11251  ax-i2m1 11252  ax-1ne0 11253  ax-1rid 11254  ax-rnegex 11255  ax-rrecex 11256  ax-cnre 11257  ax-pre-lttri 11258  ax-pre-lttrn 11259  ax-pre-ltadd 11260  ax-pre-mulgt0 11261  ax-pre-sup 11262  ax-addf 11263  ax-mulf 11264  ax-hilex 31031  ax-hfvadd 31032  ax-hvcom 31033  ax-hvass 31034  ax-hv0cl 31035  ax-hvaddid 31036  ax-hfvmul 31037  ax-hvmulid 31038  ax-hvmulass 31039  ax-hvdistr1 31040  ax-hvdistr2 31041  ax-hvmul0 31042  ax-hfi 31111  ax-his1 31114  ax-his2 31115  ax-his3 31116  ax-his4 31117
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3or 1088  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-nel 3053  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-pss 3996  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-tp 4653  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-tr 5284  df-id 5593  df-eprel 5599  df-po 5607  df-so 5608  df-fr 5652  df-we 5654  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-pred 6332  df-ord 6398  df-on 6399  df-lim 6400  df-suc 6401  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-om 7904  df-1st 8030  df-2nd 8031  df-frecs 8322  df-wrecs 8353  df-recs 8427  df-rdg 8466  df-1o 8522  df-er 8763  df-map 8886  df-pm 8887  df-en 9004  df-dom 9005  df-sdom 9006  df-fin 9007  df-sup 9511  df-inf 9512  df-pnf 11326  df-mnf 11327  df-xr 11328  df-ltxr 11329  df-le 11330  df-sub 11522  df-neg 11523  df-div 11948  df-nn 12294  df-2 12356  df-3 12357  df-4 12358  df-5 12359  df-6 12360  df-7 12361  df-8 12362  df-9 12363  df-n0 12554  df-z 12640  df-dec 12759  df-uz 12904  df-q 13014  df-rp 13058  df-xneg 13175  df-xadd 13176  df-xmul 13177  df-icc 13414  df-fz 13568  df-seq 14053  df-exp 14113  df-cj 15148  df-re 15149  df-im 15150  df-sqrt 15284  df-abs 15285  df-struct 17194  df-slot 17229  df-ndx 17241  df-base 17259  df-plusg 17324  df-mulr 17325  df-starv 17326  df-tset 17330  df-ple 17331  df-ds 17333  df-unif 17334  df-rest 17482  df-topn 17483  df-topgen 17503  df-psmet 21379  df-xmet 21380  df-met 21381  df-bl 21382  df-mopn 21383  df-cnfld 21388  df-top 22921  df-topon 22938  df-topsp 22960  df-bases 22974  df-cn 23256  df-cnp 23257  df-lm 23258  df-haus 23344  df-xms 24351  df-ms 24352  df-grpo 30525  df-gid 30526  df-ginv 30527  df-gdiv 30528  df-ablo 30577  df-vc 30591  df-nv 30624  df-va 30627  df-ba 30628  df-sm 30629  df-0v 30630  df-vs 30631  df-nmcv 30632  df-ims 30633  df-hnorm 31000  df-hvsub 31003  df-hlim 31004  df-sh 31239  df-ch 31253  df-nlfn 31878  df-cnfn 31879  df-lnfn 31880
This theorem is referenced by:  riesz3i  32094
  Copyright terms: Public domain W3C validator