HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Visualization version   GIF version

Theorem nlelchi 32005
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nlelchi (null‘𝑇) ∈ C

Proof of Theorem nlelchi
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3 𝑇 ∈ LinFn
21nlelshi 32004 . 2 (null‘𝑇) ∈ S
3 vex 3440 . . . . . 6 𝑥 ∈ V
43hlimveci 31134 . . . . 5 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
54adantl 481 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
6 eqid 2729 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldhaus 24670 . . . . . 6 (TopOpen‘ℂfld) ∈ Haus
87a1i 11 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ Haus)
9 eqid 2729 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
10 eqid 2729 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
119, 10hhims 31116 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2729 . . . . . . . . . 10 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
139, 11, 12hhlm 31143 . . . . . . . . 9 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
14 resss 5952 . . . . . . . . 9 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1513, 14eqsstri 3982 . . . . . . . 8 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1615ssbri 5137 . . . . . . 7 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1716adantl 481 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
18 nlelch.2 . . . . . . . 8 𝑇 ∈ ContFn
1910, 12, 6hhcnf 31849 . . . . . . . 8 ContFn = ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2018, 19eleqtri 2826 . . . . . . 7 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2120a1i 11 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
2217, 21lmcn 23190 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))(𝑇𝑥))
231lnfnfi 31985 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
24 ffvelcdm 7015 . . . . . . . . . . 11 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
2524adantlr 715 . . . . . . . . . 10 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
26 elnlfn2 31873 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝑓𝑛) ∈ (null‘𝑇)) → (𝑇‘(𝑓𝑛)) = 0)
2723, 25, 26sylancr 587 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑇‘(𝑓𝑛)) = 0)
28 fvco3 6922 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
2928adantlr 715 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
30 c0ex 11109 . . . . . . . . . . 11 0 ∈ V
3130fvconst2 7140 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3231adantl 481 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((ℕ × {0})‘𝑛) = 0)
3327, 29, 323eqtr4d 2774 . . . . . . . 8 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
3433ralrimiva 3121 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
35 ffn 6652 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
3623, 35ax-mp 5 . . . . . . . . 9 𝑇 Fn ℋ
37 simpl 482 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶(null‘𝑇))
382shssii 31157 . . . . . . . . . 10 (null‘𝑇) ⊆ ℋ
39 fss 6668 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ (null‘𝑇) ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . 9 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
41 fnfco 6689 . . . . . . . . 9 ((𝑇 Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → (𝑇𝑓) Fn ℕ)
4236, 40, 41sylancr 587 . . . . . . . 8 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) Fn ℕ)
4330fconst 6710 . . . . . . . . 9 (ℕ × {0}):ℕ⟶{0}
44 ffn 6652 . . . . . . . . 9 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
4543, 44ax-mp 5 . . . . . . . 8 (ℕ × {0}) Fn ℕ
46 eqfnfv 6965 . . . . . . . 8 (((𝑇𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4742, 45, 46sylancl 586 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4834, 47mpbird 257 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) = (ℕ × {0}))
496cnfldtopon 24668 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5049a1i 11 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
51 0cnd 11108 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 0 ∈ ℂ)
52 1zzd 12506 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 1 ∈ ℤ)
53 nnuz 12778 . . . . . . . 8 ℕ = (ℤ‘1)
5453lmconst 23146 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5550, 51, 52, 54syl3anc 1373 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5648, 55eqbrtrd 5114 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))0)
578, 22, 56lmmo 23265 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑥) = 0)
58 elnlfn 31872 . . . . 5 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
5923, 58ax-mp 5 . . . 4 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
605, 57, 59sylanbrc 583 . . 3 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
6160gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
62 isch2 31167 . 2 ((null‘𝑇) ∈ C ↔ ((null‘𝑇) ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))))
632, 61, 62mpbir2an 711 1 (null‘𝑇) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wss 3903  {csn 4577  cop 4583   class class class wbr 5092   × cxp 5617  cres 5621  ccom 5623   Fn wfn 6477  wf 6478  cfv 6482  (class class class)co 7349  m cmap 8753  cc 11007  0cc0 11009  1c1 11010  cn 12128  cz 12471  TopOpenctopn 17325  MetOpencmopn 21251  fldccnfld 21261  TopOnctopon 22795   Cn ccn 23109  𝑡clm 23111  Hauscha 23193  chba 30863   + cva 30864   · csm 30865  normcno 30867   cmv 30869  𝑣 chli 30871   S csh 30872   C cch 30873  nullcnl 30896  ContFnccnfn 30897  LinFnclf 30898
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5218  ax-sep 5235  ax-nul 5245  ax-pow 5304  ax-pr 5371  ax-un 7671  ax-cnex 11065  ax-resscn 11066  ax-1cn 11067  ax-icn 11068  ax-addcl 11069  ax-addrcl 11070  ax-mulcl 11071  ax-mulrcl 11072  ax-mulcom 11073  ax-addass 11074  ax-mulass 11075  ax-distr 11076  ax-i2m1 11077  ax-1ne0 11078  ax-1rid 11079  ax-rnegex 11080  ax-rrecex 11081  ax-cnre 11082  ax-pre-lttri 11083  ax-pre-lttrn 11084  ax-pre-ltadd 11085  ax-pre-mulgt0 11086  ax-pre-sup 11087  ax-addf 11088  ax-mulf 11089  ax-hilex 30943  ax-hfvadd 30944  ax-hvcom 30945  ax-hvass 30946  ax-hv0cl 30947  ax-hvaddid 30948  ax-hfvmul 30949  ax-hvmulid 30950  ax-hvmulass 30951  ax-hvdistr1 30952  ax-hvdistr2 30953  ax-hvmul0 30954  ax-hfi 31023  ax-his1 31026  ax-his2 31027  ax-his3 31028  ax-his4 31029
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3343  df-reu 3344  df-rab 3395  df-v 3438  df-sbc 3743  df-csb 3852  df-dif 3906  df-un 3908  df-in 3910  df-ss 3920  df-pss 3923  df-nul 4285  df-if 4477  df-pw 4553  df-sn 4578  df-pr 4580  df-tp 4582  df-op 4584  df-uni 4859  df-iun 4943  df-br 5093  df-opab 5155  df-mpt 5174  df-tr 5200  df-id 5514  df-eprel 5519  df-po 5527  df-so 5528  df-fr 5572  df-we 5574  df-xp 5625  df-rel 5626  df-cnv 5627  df-co 5628  df-dm 5629  df-rn 5630  df-res 5631  df-ima 5632  df-pred 6249  df-ord 6310  df-on 6311  df-lim 6312  df-suc 6313  df-iota 6438  df-fun 6484  df-fn 6485  df-f 6486  df-f1 6487  df-fo 6488  df-f1o 6489  df-fv 6490  df-riota 7306  df-ov 7352  df-oprab 7353  df-mpo 7354  df-om 7800  df-1st 7924  df-2nd 7925  df-frecs 8214  df-wrecs 8245  df-recs 8294  df-rdg 8332  df-1o 8388  df-er 8625  df-map 8755  df-pm 8756  df-en 8873  df-dom 8874  df-sdom 8875  df-fin 8876  df-sup 9332  df-inf 9333  df-pnf 11151  df-mnf 11152  df-xr 11153  df-ltxr 11154  df-le 11155  df-sub 11349  df-neg 11350  df-div 11778  df-nn 12129  df-2 12191  df-3 12192  df-4 12193  df-5 12194  df-6 12195  df-7 12196  df-8 12197  df-9 12198  df-n0 12385  df-z 12472  df-dec 12592  df-uz 12736  df-q 12850  df-rp 12894  df-xneg 13014  df-xadd 13015  df-xmul 13016  df-icc 13255  df-fz 13411  df-seq 13909  df-exp 13969  df-cj 15006  df-re 15007  df-im 15008  df-sqrt 15142  df-abs 15143  df-struct 17058  df-slot 17093  df-ndx 17105  df-base 17121  df-plusg 17174  df-mulr 17175  df-starv 17176  df-tset 17180  df-ple 17181  df-ds 17183  df-unif 17184  df-rest 17326  df-topn 17327  df-topgen 17347  df-psmet 21253  df-xmet 21254  df-met 21255  df-bl 21256  df-mopn 21257  df-cnfld 21262  df-top 22779  df-topon 22796  df-topsp 22818  df-bases 22831  df-cn 23112  df-cnp 23113  df-lm 23114  df-haus 23200  df-xms 24206  df-ms 24207  df-grpo 30437  df-gid 30438  df-ginv 30439  df-gdiv 30440  df-ablo 30489  df-vc 30503  df-nv 30536  df-va 30539  df-ba 30540  df-sm 30541  df-0v 30542  df-vs 30543  df-nmcv 30544  df-ims 30545  df-hnorm 30912  df-hvsub 30915  df-hlim 30916  df-sh 31151  df-ch 31165  df-nlfn 31790  df-cnfn 31791  df-lnfn 31792
This theorem is referenced by:  riesz3i  32006
  Copyright terms: Public domain W3C validator