HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  nlelchi Structured version   Visualization version   GIF version

Theorem nlelchi 31003
Description: The null space of a continuous linear functional is a closed subspace. Remark 3.8 of [Beran] p. 103. (Contributed by NM, 11-Feb-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
nlelch.1 𝑇 ∈ LinFn
nlelch.2 𝑇 ∈ ContFn
Assertion
Ref Expression
nlelchi (null‘𝑇) ∈ C

Proof of Theorem nlelchi
Dummy variables 𝑓 𝑛 𝑥 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nlelch.1 . . 3 𝑇 ∈ LinFn
21nlelshi 31002 . 2 (null‘𝑇) ∈ S
3 vex 3449 . . . . . 6 𝑥 ∈ V
43hlimveci 30132 . . . . 5 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
54adantl 482 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
6 eqid 2736 . . . . . . 7 (TopOpen‘ℂfld) = (TopOpen‘ℂfld)
76cnfldhaus 24148 . . . . . 6 (TopOpen‘ℂfld) ∈ Haus
87a1i 11 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ Haus)
9 eqid 2736 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
10 eqid 2736 . . . . . . . . . . 11 (norm ∘ − ) = (norm ∘ − )
119, 10hhims 30114 . . . . . . . . . 10 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
12 eqid 2736 . . . . . . . . . 10 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
139, 11, 12hhlm 30141 . . . . . . . . 9 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
14 resss 5962 . . . . . . . . 9 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1513, 14eqsstri 3978 . . . . . . . 8 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1615ssbri 5150 . . . . . . 7 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1716adantl 482 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
18 nlelch.2 . . . . . . . 8 𝑇 ∈ ContFn
1910, 12, 6hhcnf 30847 . . . . . . . 8 ContFn = ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2018, 19eleqtri 2836 . . . . . . 7 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld))
2120a1i 11 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (TopOpen‘ℂfld)))
2217, 21lmcn 22656 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))(𝑇𝑥))
231lnfnfi 30983 . . . . . . . . . 10 𝑇: ℋ⟶ℂ
24 ffvelcdm 7032 . . . . . . . . . . 11 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
2524adantlr 713 . . . . . . . . . 10 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑓𝑛) ∈ (null‘𝑇))
26 elnlfn2 30871 . . . . . . . . . 10 ((𝑇: ℋ⟶ℂ ∧ (𝑓𝑛) ∈ (null‘𝑇)) → (𝑇‘(𝑓𝑛)) = 0)
2723, 25, 26sylancr 587 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → (𝑇‘(𝑓𝑛)) = 0)
28 fvco3 6940 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
2928adantlr 713 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = (𝑇‘(𝑓𝑛)))
30 c0ex 11149 . . . . . . . . . . 11 0 ∈ V
3130fvconst2 7153 . . . . . . . . . 10 (𝑛 ∈ ℕ → ((ℕ × {0})‘𝑛) = 0)
3231adantl 482 . . . . . . . . 9 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((ℕ × {0})‘𝑛) = 0)
3327, 29, 323eqtr4d 2786 . . . . . . . 8 (((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) ∧ 𝑛 ∈ ℕ) → ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
3433ralrimiva 3143 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛))
35 ffn 6668 . . . . . . . . . 10 (𝑇: ℋ⟶ℂ → 𝑇 Fn ℋ)
3623, 35ax-mp 5 . . . . . . . . 9 𝑇 Fn ℋ
37 simpl 483 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶(null‘𝑇))
382shssii 30155 . . . . . . . . . 10 (null‘𝑇) ⊆ ℋ
39 fss 6685 . . . . . . . . . 10 ((𝑓:ℕ⟶(null‘𝑇) ∧ (null‘𝑇) ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . 9 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
41 fnfco 6707 . . . . . . . . 9 ((𝑇 Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → (𝑇𝑓) Fn ℕ)
4236, 40, 41sylancr 587 . . . . . . . 8 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) Fn ℕ)
4330fconst 6728 . . . . . . . . 9 (ℕ × {0}):ℕ⟶{0}
44 ffn 6668 . . . . . . . . 9 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
4543, 44ax-mp 5 . . . . . . . 8 (ℕ × {0}) Fn ℕ
46 eqfnfv 6982 . . . . . . . 8 (((𝑇𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4742, 45, 46sylancl 586 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → ((𝑇𝑓) = (ℕ × {0}) ↔ ∀𝑛 ∈ ℕ ((𝑇𝑓)‘𝑛) = ((ℕ × {0})‘𝑛)))
4834, 47mpbird 256 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓) = (ℕ × {0}))
496cnfldtopon 24146 . . . . . . . 8 (TopOpen‘ℂfld) ∈ (TopOn‘ℂ)
5049a1i 11 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (TopOpen‘ℂfld) ∈ (TopOn‘ℂ))
51 0cnd 11148 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 0 ∈ ℂ)
52 1zzd 12534 . . . . . . 7 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 1 ∈ ℤ)
53 nnuz 12806 . . . . . . . 8 ℕ = (ℤ‘1)
5453lmconst 22612 . . . . . . 7 (((TopOpen‘ℂfld) ∈ (TopOn‘ℂ) ∧ 0 ∈ ℂ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5550, 51, 52, 54syl3anc 1371 . . . . . 6 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(TopOpen‘ℂfld))0)
5648, 55eqbrtrd 5127 . . . . 5 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑓)(⇝𝑡‘(TopOpen‘ℂfld))0)
578, 22, 56lmmo 22731 . . . 4 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → (𝑇𝑥) = 0)
58 elnlfn 30870 . . . . 5 (𝑇: ℋ⟶ℂ → (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0)))
5923, 58ax-mp 5 . . . 4 (𝑥 ∈ (null‘𝑇) ↔ (𝑥 ∈ ℋ ∧ (𝑇𝑥) = 0))
605, 57, 59sylanbrc 583 . . 3 ((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
6160gen2 1798 . 2 𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))
62 isch2 30165 . 2 ((null‘𝑇) ∈ C ↔ ((null‘𝑇) ∈ S ∧ ∀𝑓𝑥((𝑓:ℕ⟶(null‘𝑇) ∧ 𝑓𝑣 𝑥) → 𝑥 ∈ (null‘𝑇))))
632, 61, 62mpbir2an 709 1 (null‘𝑇) ∈ C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1539   = wceq 1541  wcel 2106  wral 3064  wss 3910  {csn 4586  cop 4592   class class class wbr 5105   × cxp 5631  cres 5635  ccom 5637   Fn wfn 6491  wf 6492  cfv 6496  (class class class)co 7357  m cmap 8765  cc 11049  0cc0 11051  1c1 11052  cn 12153  cz 12499  TopOpenctopn 17303  MetOpencmopn 20786  fldccnfld 20796  TopOnctopon 22259   Cn ccn 22575  𝑡clm 22577  Hauscha 22659  chba 29861   + cva 29862   · csm 29863  normcno 29865   cmv 29867  𝑣 chli 29869   S csh 29870   C cch 29871  nullcnl 29894  ContFnccnfn 29895  LinFnclf 29896
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1913  ax-6 1971  ax-7 2011  ax-8 2108  ax-9 2116  ax-10 2137  ax-11 2154  ax-12 2171  ax-ext 2707  ax-rep 5242  ax-sep 5256  ax-nul 5263  ax-pow 5320  ax-pr 5384  ax-un 7672  ax-cnex 11107  ax-resscn 11108  ax-1cn 11109  ax-icn 11110  ax-addcl 11111  ax-addrcl 11112  ax-mulcl 11113  ax-mulrcl 11114  ax-mulcom 11115  ax-addass 11116  ax-mulass 11117  ax-distr 11118  ax-i2m1 11119  ax-1ne0 11120  ax-1rid 11121  ax-rnegex 11122  ax-rrecex 11123  ax-cnre 11124  ax-pre-lttri 11125  ax-pre-lttrn 11126  ax-pre-ltadd 11127  ax-pre-mulgt0 11128  ax-pre-sup 11129  ax-addf 11130  ax-mulf 11131  ax-hilex 29941  ax-hfvadd 29942  ax-hvcom 29943  ax-hvass 29944  ax-hv0cl 29945  ax-hvaddid 29946  ax-hfvmul 29947  ax-hvmulid 29948  ax-hvmulass 29949  ax-hvdistr1 29950  ax-hvdistr2 29951  ax-hvmul0 29952  ax-hfi 30021  ax-his1 30024  ax-his2 30025  ax-his3 30026  ax-his4 30027
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 846  df-3or 1088  df-3an 1089  df-tru 1544  df-fal 1554  df-ex 1782  df-nf 1786  df-sb 2068  df-mo 2538  df-eu 2567  df-clab 2714  df-cleq 2728  df-clel 2814  df-nfc 2889  df-ne 2944  df-nel 3050  df-ral 3065  df-rex 3074  df-rmo 3353  df-reu 3354  df-rab 3408  df-v 3447  df-sbc 3740  df-csb 3856  df-dif 3913  df-un 3915  df-in 3917  df-ss 3927  df-pss 3929  df-nul 4283  df-if 4487  df-pw 4562  df-sn 4587  df-pr 4589  df-tp 4591  df-op 4593  df-uni 4866  df-iun 4956  df-br 5106  df-opab 5168  df-mpt 5189  df-tr 5223  df-id 5531  df-eprel 5537  df-po 5545  df-so 5546  df-fr 5588  df-we 5590  df-xp 5639  df-rel 5640  df-cnv 5641  df-co 5642  df-dm 5643  df-rn 5644  df-res 5645  df-ima 5646  df-pred 6253  df-ord 6320  df-on 6321  df-lim 6322  df-suc 6323  df-iota 6448  df-fun 6498  df-fn 6499  df-f 6500  df-f1 6501  df-fo 6502  df-f1o 6503  df-fv 6504  df-riota 7313  df-ov 7360  df-oprab 7361  df-mpo 7362  df-om 7803  df-1st 7921  df-2nd 7922  df-frecs 8212  df-wrecs 8243  df-recs 8317  df-rdg 8356  df-1o 8412  df-er 8648  df-map 8767  df-pm 8768  df-en 8884  df-dom 8885  df-sdom 8886  df-fin 8887  df-sup 9378  df-inf 9379  df-pnf 11191  df-mnf 11192  df-xr 11193  df-ltxr 11194  df-le 11195  df-sub 11387  df-neg 11388  df-div 11813  df-nn 12154  df-2 12216  df-3 12217  df-4 12218  df-5 12219  df-6 12220  df-7 12221  df-8 12222  df-9 12223  df-n0 12414  df-z 12500  df-dec 12619  df-uz 12764  df-q 12874  df-rp 12916  df-xneg 13033  df-xadd 13034  df-xmul 13035  df-icc 13271  df-fz 13425  df-seq 13907  df-exp 13968  df-cj 14984  df-re 14985  df-im 14986  df-sqrt 15120  df-abs 15121  df-struct 17019  df-slot 17054  df-ndx 17066  df-base 17084  df-plusg 17146  df-mulr 17147  df-starv 17148  df-tset 17152  df-ple 17153  df-ds 17155  df-unif 17156  df-rest 17304  df-topn 17305  df-topgen 17325  df-psmet 20788  df-xmet 20789  df-met 20790  df-bl 20791  df-mopn 20792  df-cnfld 20797  df-top 22243  df-topon 22260  df-topsp 22282  df-bases 22296  df-cn 22578  df-cnp 22579  df-lm 22580  df-haus 22666  df-xms 23673  df-ms 23674  df-grpo 29435  df-gid 29436  df-ginv 29437  df-gdiv 29438  df-ablo 29487  df-vc 29501  df-nv 29534  df-va 29537  df-ba 29538  df-sm 29539  df-0v 29540  df-vs 29541  df-nmcv 29542  df-ims 29543  df-hnorm 29910  df-hvsub 29913  df-hlim 29914  df-sh 30149  df-ch 30163  df-nlfn 30788  df-cnfn 30789  df-lnfn 30790
This theorem is referenced by:  riesz3i  31004
  Copyright terms: Public domain W3C validator