MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsect Structured version   Visualization version   GIF version

Theorem fthsect 17992
Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthsect.s 𝑆 = (Sect‘𝐶)
fthsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fthsect (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthsect
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2740 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthsect.x . . . 4 (𝜑𝑋𝐵)
6 eqid 2740 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 fthfunc 17974 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5211 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
94, 8syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5167 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17927 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simpld 494 . . . . 5 (𝜑𝐶 ∈ Cat)
15 fthsect.y . . . . 5 (𝜑𝑌𝐵)
16 fthsect.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
17 fthsect.n . . . . 5 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
181, 2, 6, 14, 5, 15, 5, 16, 17catcocl 17743 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) ∈ (𝑋𝐻𝑋))
19 eqid 2740 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
201, 2, 19, 14, 5catidcl 17740 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
211, 2, 3, 4, 5, 5, 18, 20fthi 17985 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
22 eqid 2740 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
231, 2, 6, 22, 9, 5, 15, 5, 16, 17funcco 17935 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
24 eqid 2740 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
251, 19, 24, 9, 5funcid 17934 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) = ((Id‘𝐷)‘(𝐹𝑋)))
2623, 25eqeq12d 2756 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
2721, 26bitr3d 281 . 2 (𝜑 → ((𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
28 fthsect.s . . 3 𝑆 = (Sect‘𝐶)
291, 2, 6, 19, 28, 14, 5, 15, 16, 17issect2 17815 . 2 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
30 eqid 2740 . . 3 (Base‘𝐷) = (Base‘𝐷)
31 fthsect.t . . 3 𝑇 = (Sect‘𝐷)
3213simprd 495 . . 3 (𝜑𝐷 ∈ Cat)
331, 30, 9funcf1 17930 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
3433, 5ffvelcdmd 7119 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
3533, 15ffvelcdmd 7119 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
361, 2, 3, 9, 5, 15funcf2 17932 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
3736, 16ffvelcdmd 7119 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
381, 2, 3, 9, 15, 5funcf2 17932 . . . 4 (𝜑 → (𝑌𝐺𝑋):(𝑌𝐻𝑋)⟶((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
3938, 17ffvelcdmd 7119 . . 3 (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
4030, 3, 22, 24, 31, 32, 34, 35, 37, 39issect2 17815 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
4127, 29, 403bitr4d 311 1 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1537  wcel 2108  cop 4654   class class class wbr 5166  cfv 6573  (class class class)co 7448  Basecbs 17258  Hom chom 17322  compcco 17323  Catccat 17722  Idccid 17723  Sectcsect 17805   Func cfunc 17918   Faith cfth 17970
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1793  ax-4 1807  ax-5 1909  ax-6 1967  ax-7 2007  ax-8 2110  ax-9 2118  ax-10 2141  ax-11 2158  ax-12 2178  ax-ext 2711  ax-rep 5303  ax-sep 5317  ax-nul 5324  ax-pow 5383  ax-pr 5447  ax-un 7770
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 847  df-3an 1089  df-tru 1540  df-fal 1550  df-ex 1778  df-nf 1782  df-sb 2065  df-mo 2543  df-eu 2572  df-clab 2718  df-cleq 2732  df-clel 2819  df-nfc 2895  df-ne 2947  df-ral 3068  df-rex 3077  df-rmo 3388  df-reu 3389  df-rab 3444  df-v 3490  df-sbc 3805  df-csb 3922  df-dif 3979  df-un 3981  df-in 3983  df-ss 3993  df-nul 4353  df-if 4549  df-pw 4624  df-sn 4649  df-pr 4651  df-op 4655  df-uni 4932  df-iun 5017  df-br 5167  df-opab 5229  df-mpt 5250  df-id 5593  df-xp 5706  df-rel 5707  df-cnv 5708  df-co 5709  df-dm 5710  df-rn 5711  df-res 5712  df-ima 5713  df-iota 6525  df-fun 6575  df-fn 6576  df-f 6577  df-f1 6578  df-fo 6579  df-f1o 6580  df-fv 6581  df-riota 7404  df-ov 7451  df-oprab 7452  df-mpo 7453  df-1st 8030  df-2nd 8031  df-map 8886  df-ixp 8956  df-cat 17726  df-cid 17727  df-sect 17808  df-func 17922  df-fth 17972
This theorem is referenced by:  fthinv  17993
  Copyright terms: Public domain W3C validator