MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsect Structured version   Visualization version   GIF version

Theorem fthsect 17187
Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthsect.s 𝑆 = (Sect‘𝐶)
fthsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fthsect (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthsect
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2798 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthsect.x . . . 4 (𝜑𝑋𝐵)
6 eqid 2798 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 fthfunc 17169 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5075 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
94, 8syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5031 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 221 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17125 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simpld 498 . . . . 5 (𝜑𝐶 ∈ Cat)
15 fthsect.y . . . . 5 (𝜑𝑌𝐵)
16 fthsect.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
17 fthsect.n . . . . 5 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
181, 2, 6, 14, 5, 15, 5, 16, 17catcocl 16948 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) ∈ (𝑋𝐻𝑋))
19 eqid 2798 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
201, 2, 19, 14, 5catidcl 16945 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
211, 2, 3, 4, 5, 5, 18, 20fthi 17180 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
22 eqid 2798 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
231, 2, 6, 22, 9, 5, 15, 5, 16, 17funcco 17133 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
24 eqid 2798 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
251, 19, 24, 9, 5funcid 17132 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) = ((Id‘𝐷)‘(𝐹𝑋)))
2623, 25eqeq12d 2814 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
2721, 26bitr3d 284 . 2 (𝜑 → ((𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
28 fthsect.s . . 3 𝑆 = (Sect‘𝐶)
291, 2, 6, 19, 28, 14, 5, 15, 16, 17issect2 17016 . 2 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
30 eqid 2798 . . 3 (Base‘𝐷) = (Base‘𝐷)
31 fthsect.t . . 3 𝑇 = (Sect‘𝐷)
3213simprd 499 . . 3 (𝜑𝐷 ∈ Cat)
331, 30, 9funcf1 17128 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
3433, 5ffvelrnd 6829 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
3533, 15ffvelrnd 6829 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
361, 2, 3, 9, 5, 15funcf2 17130 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
3736, 16ffvelrnd 6829 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
381, 2, 3, 9, 15, 5funcf2 17130 . . . 4 (𝜑 → (𝑌𝐺𝑋):(𝑌𝐻𝑋)⟶((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
3938, 17ffvelrnd 6829 . . 3 (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
4030, 3, 22, 24, 31, 32, 34, 35, 37, 39issect2 17016 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
4127, 29, 403bitr4d 314 1 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 209  wa 399   = wceq 1538  wcel 2111  cop 4531   class class class wbr 5030  cfv 6324  (class class class)co 7135  Basecbs 16475  Hom chom 16568  compcco 16569  Catccat 16927  Idccid 16928  Sectcsect 17006   Func cfunc 17116   Faith cfth 17165
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1797  ax-4 1811  ax-5 1911  ax-6 1970  ax-7 2015  ax-8 2113  ax-9 2121  ax-10 2142  ax-11 2158  ax-12 2175  ax-ext 2770  ax-rep 5154  ax-sep 5167  ax-nul 5174  ax-pow 5231  ax-pr 5295  ax-un 7441
This theorem depends on definitions:  df-bi 210  df-an 400  df-or 845  df-3an 1086  df-tru 1541  df-ex 1782  df-nf 1786  df-sb 2070  df-mo 2598  df-eu 2629  df-clab 2777  df-cleq 2791  df-clel 2870  df-nfc 2938  df-ne 2988  df-ral 3111  df-rex 3112  df-reu 3113  df-rmo 3114  df-rab 3115  df-v 3443  df-sbc 3721  df-csb 3829  df-dif 3884  df-un 3886  df-in 3888  df-ss 3898  df-nul 4244  df-if 4426  df-pw 4499  df-sn 4526  df-pr 4528  df-op 4532  df-uni 4801  df-iun 4883  df-br 5031  df-opab 5093  df-mpt 5111  df-id 5425  df-xp 5525  df-rel 5526  df-cnv 5527  df-co 5528  df-dm 5529  df-rn 5530  df-res 5531  df-ima 5532  df-iota 6283  df-fun 6326  df-fn 6327  df-f 6328  df-f1 6329  df-fo 6330  df-f1o 6331  df-fv 6332  df-riota 7093  df-ov 7138  df-oprab 7139  df-mpo 7140  df-1st 7671  df-2nd 7672  df-map 8391  df-ixp 8445  df-cat 16931  df-cid 16932  df-sect 17009  df-func 17120  df-fth 17167
This theorem is referenced by:  fthinv  17188
  Copyright terms: Public domain W3C validator