Proof of Theorem fthsect
Step | Hyp | Ref
| Expression |
1 | | fthsect.b |
. . . 4
⊢ 𝐵 = (Base‘𝐶) |
2 | | fthsect.h |
. . . 4
⊢ 𝐻 = (Hom ‘𝐶) |
3 | | eqid 2738 |
. . . 4
⊢ (Hom
‘𝐷) = (Hom
‘𝐷) |
4 | | fthsect.f |
. . . 4
⊢ (𝜑 → 𝐹(𝐶 Faith 𝐷)𝐺) |
5 | | fthsect.x |
. . . 4
⊢ (𝜑 → 𝑋 ∈ 𝐵) |
6 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐶) =
(comp‘𝐶) |
7 | | fthfunc 17623 |
. . . . . . . . . 10
⊢ (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷) |
8 | 7 | ssbri 5119 |
. . . . . . . . 9
⊢ (𝐹(𝐶 Faith 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
9 | 4, 8 | syl 17 |
. . . . . . . 8
⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
10 | | df-br 5075 |
. . . . . . . 8
⊢ (𝐹(𝐶 Func 𝐷)𝐺 ↔ 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
11 | 9, 10 | sylib 217 |
. . . . . . 7
⊢ (𝜑 → 〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷)) |
12 | | funcrcl 17578 |
. . . . . . 7
⊢
(〈𝐹, 𝐺〉 ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
13 | 11, 12 | syl 17 |
. . . . . 6
⊢ (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat)) |
14 | 13 | simpld 495 |
. . . . 5
⊢ (𝜑 → 𝐶 ∈ Cat) |
15 | | fthsect.y |
. . . . 5
⊢ (𝜑 → 𝑌 ∈ 𝐵) |
16 | | fthsect.m |
. . . . 5
⊢ (𝜑 → 𝑀 ∈ (𝑋𝐻𝑌)) |
17 | | fthsect.n |
. . . . 5
⊢ (𝜑 → 𝑁 ∈ (𝑌𝐻𝑋)) |
18 | 1, 2, 6, 14, 5, 15, 5, 16, 17 | catcocl 17394 |
. . . 4
⊢ (𝜑 → (𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀) ∈ (𝑋𝐻𝑋)) |
19 | | eqid 2738 |
. . . . 5
⊢
(Id‘𝐶) =
(Id‘𝐶) |
20 | 1, 2, 19, 14, 5 | catidcl 17391 |
. . . 4
⊢ (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋)) |
21 | 1, 2, 3, 4, 5, 5, 18, 20 | fthi 17634 |
. . 3
⊢ (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋))) |
22 | | eqid 2738 |
. . . . 5
⊢
(comp‘𝐷) =
(comp‘𝐷) |
23 | 1, 2, 6, 22, 9, 5,
15, 5, 16, 17 | funcco 17586 |
. . . 4
⊢ (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀))) |
24 | | eqid 2738 |
. . . . 5
⊢
(Id‘𝐷) =
(Id‘𝐷) |
25 | 1, 19, 24, 9, 5 | funcid 17585 |
. . . 4
⊢ (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) = ((Id‘𝐷)‘(𝐹‘𝑋))) |
26 | 23, 25 | eqeq12d 2754 |
. . 3
⊢ (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹‘𝑋)))) |
27 | 21, 26 | bitr3d 280 |
. 2
⊢ (𝜑 → ((𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋) ↔ (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹‘𝑋)))) |
28 | | fthsect.s |
. . 3
⊢ 𝑆 = (Sect‘𝐶) |
29 | 1, 2, 6, 19, 28, 14, 5, 15, 16, 17 | issect2 17466 |
. 2
⊢ (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑁(〈𝑋, 𝑌〉(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋))) |
30 | | eqid 2738 |
. . 3
⊢
(Base‘𝐷) =
(Base‘𝐷) |
31 | | fthsect.t |
. . 3
⊢ 𝑇 = (Sect‘𝐷) |
32 | 13 | simprd 496 |
. . 3
⊢ (𝜑 → 𝐷 ∈ Cat) |
33 | 1, 30, 9 | funcf1 17581 |
. . . 4
⊢ (𝜑 → 𝐹:𝐵⟶(Base‘𝐷)) |
34 | 33, 5 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝑋) ∈ (Base‘𝐷)) |
35 | 33, 15 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → (𝐹‘𝑌) ∈ (Base‘𝐷)) |
36 | 1, 2, 3, 9, 5, 15 | funcf2 17583 |
. . . 4
⊢ (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
37 | 36, 16 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹‘𝑋)(Hom ‘𝐷)(𝐹‘𝑌))) |
38 | 1, 2, 3, 9, 15, 5 | funcf2 17583 |
. . . 4
⊢ (𝜑 → (𝑌𝐺𝑋):(𝑌𝐻𝑋)⟶((𝐹‘𝑌)(Hom ‘𝐷)(𝐹‘𝑋))) |
39 | 38, 17 | ffvelrnd 6962 |
. . 3
⊢ (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹‘𝑌)(Hom ‘𝐷)(𝐹‘𝑋))) |
40 | 30, 3, 22, 24, 31, 32, 34, 35, 37, 39 | issect2 17466 |
. 2
⊢ (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(〈(𝐹‘𝑋), (𝐹‘𝑌)〉(comp‘𝐷)(𝐹‘𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹‘𝑋)))) |
41 | 27, 29, 40 | 3bitr4d 311 |
1
⊢ (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹‘𝑋)𝑇(𝐹‘𝑌))((𝑌𝐺𝑋)‘𝑁))) |