MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsect Structured version   Visualization version   GIF version

Theorem fthsect 17889
Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthsect.s 𝑆 = (Sect‘𝐶)
fthsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fthsect (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthsect
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2729 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthsect.x . . . 4 (𝜑𝑋𝐵)
6 eqid 2729 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 fthfunc 17871 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5152 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
94, 8syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5108 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17825 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simpld 494 . . . . 5 (𝜑𝐶 ∈ Cat)
15 fthsect.y . . . . 5 (𝜑𝑌𝐵)
16 fthsect.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
17 fthsect.n . . . . 5 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
181, 2, 6, 14, 5, 15, 5, 16, 17catcocl 17646 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) ∈ (𝑋𝐻𝑋))
19 eqid 2729 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
201, 2, 19, 14, 5catidcl 17643 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
211, 2, 3, 4, 5, 5, 18, 20fthi 17882 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
22 eqid 2729 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
231, 2, 6, 22, 9, 5, 15, 5, 16, 17funcco 17833 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
24 eqid 2729 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
251, 19, 24, 9, 5funcid 17832 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) = ((Id‘𝐷)‘(𝐹𝑋)))
2623, 25eqeq12d 2745 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
2721, 26bitr3d 281 . 2 (𝜑 → ((𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
28 fthsect.s . . 3 𝑆 = (Sect‘𝐶)
291, 2, 6, 19, 28, 14, 5, 15, 16, 17issect2 17716 . 2 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
30 eqid 2729 . . 3 (Base‘𝐷) = (Base‘𝐷)
31 fthsect.t . . 3 𝑇 = (Sect‘𝐷)
3213simprd 495 . . 3 (𝜑𝐷 ∈ Cat)
331, 30, 9funcf1 17828 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
3433, 5ffvelcdmd 7057 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
3533, 15ffvelcdmd 7057 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
361, 2, 3, 9, 5, 15funcf2 17830 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
3736, 16ffvelcdmd 7057 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
381, 2, 3, 9, 15, 5funcf2 17830 . . . 4 (𝜑 → (𝑌𝐺𝑋):(𝑌𝐻𝑋)⟶((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
3938, 17ffvelcdmd 7057 . . 3 (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
4030, 3, 22, 24, 31, 32, 34, 35, 37, 39issect2 17716 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
4127, 29, 403bitr4d 311 1 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4595   class class class wbr 5107  cfv 6511  (class class class)co 7387  Basecbs 17179  Hom chom 17231  compcco 17232  Catccat 17625  Idccid 17626  Sectcsect 17706   Func cfunc 17816   Faith cfth 17867
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-op 4596  df-uni 4872  df-iun 4957  df-br 5108  df-opab 5170  df-mpt 5189  df-id 5533  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-1st 7968  df-2nd 7969  df-map 8801  df-ixp 8871  df-cat 17629  df-cid 17630  df-sect 17709  df-func 17820  df-fth 17869
This theorem is referenced by:  fthinv  17890
  Copyright terms: Public domain W3C validator