MPE Home Metamath Proof Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  MPE Home  >  Th. List  >  fthsect Structured version   Visualization version   GIF version

Theorem fthsect 17895
Description: A faithful functor reflects sections. (Contributed by Mario Carneiro, 27-Jan-2017.)
Hypotheses
Ref Expression
fthsect.b 𝐵 = (Base‘𝐶)
fthsect.h 𝐻 = (Hom ‘𝐶)
fthsect.f (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
fthsect.x (𝜑𝑋𝐵)
fthsect.y (𝜑𝑌𝐵)
fthsect.m (𝜑𝑀 ∈ (𝑋𝐻𝑌))
fthsect.n (𝜑𝑁 ∈ (𝑌𝐻𝑋))
fthsect.s 𝑆 = (Sect‘𝐶)
fthsect.t 𝑇 = (Sect‘𝐷)
Assertion
Ref Expression
fthsect (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))

Proof of Theorem fthsect
StepHypRef Expression
1 fthsect.b . . . 4 𝐵 = (Base‘𝐶)
2 fthsect.h . . . 4 𝐻 = (Hom ‘𝐶)
3 eqid 2730 . . . 4 (Hom ‘𝐷) = (Hom ‘𝐷)
4 fthsect.f . . . 4 (𝜑𝐹(𝐶 Faith 𝐷)𝐺)
5 fthsect.x . . . 4 (𝜑𝑋𝐵)
6 eqid 2730 . . . . 5 (comp‘𝐶) = (comp‘𝐶)
7 fthfunc 17877 . . . . . . . . . 10 (𝐶 Faith 𝐷) ⊆ (𝐶 Func 𝐷)
87ssbri 5154 . . . . . . . . 9 (𝐹(𝐶 Faith 𝐷)𝐺𝐹(𝐶 Func 𝐷)𝐺)
94, 8syl 17 . . . . . . . 8 (𝜑𝐹(𝐶 Func 𝐷)𝐺)
10 df-br 5110 . . . . . . . 8 (𝐹(𝐶 Func 𝐷)𝐺 ↔ ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
119, 10sylib 218 . . . . . . 7 (𝜑 → ⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷))
12 funcrcl 17831 . . . . . . 7 (⟨𝐹, 𝐺⟩ ∈ (𝐶 Func 𝐷) → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1311, 12syl 17 . . . . . 6 (𝜑 → (𝐶 ∈ Cat ∧ 𝐷 ∈ Cat))
1413simpld 494 . . . . 5 (𝜑𝐶 ∈ Cat)
15 fthsect.y . . . . 5 (𝜑𝑌𝐵)
16 fthsect.m . . . . 5 (𝜑𝑀 ∈ (𝑋𝐻𝑌))
17 fthsect.n . . . . 5 (𝜑𝑁 ∈ (𝑌𝐻𝑋))
181, 2, 6, 14, 5, 15, 5, 16, 17catcocl 17652 . . . 4 (𝜑 → (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) ∈ (𝑋𝐻𝑋))
19 eqid 2730 . . . . 5 (Id‘𝐶) = (Id‘𝐶)
201, 2, 19, 14, 5catidcl 17649 . . . 4 (𝜑 → ((Id‘𝐶)‘𝑋) ∈ (𝑋𝐻𝑋))
211, 2, 3, 4, 5, 5, 18, 20fthi 17888 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
22 eqid 2730 . . . . 5 (comp‘𝐷) = (comp‘𝐷)
231, 2, 6, 22, 9, 5, 15, 5, 16, 17funcco 17839 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)))
24 eqid 2730 . . . . 5 (Id‘𝐷) = (Id‘𝐷)
251, 19, 24, 9, 5funcid 17838 . . . 4 (𝜑 → ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) = ((Id‘𝐷)‘(𝐹𝑋)))
2623, 25eqeq12d 2746 . . 3 (𝜑 → (((𝑋𝐺𝑋)‘(𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀)) = ((𝑋𝐺𝑋)‘((Id‘𝐶)‘𝑋)) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
2721, 26bitr3d 281 . 2 (𝜑 → ((𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
28 fthsect.s . . 3 𝑆 = (Sect‘𝐶)
291, 2, 6, 19, 28, 14, 5, 15, 16, 17issect2 17722 . 2 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ (𝑁(⟨𝑋, 𝑌⟩(comp‘𝐶)𝑋)𝑀) = ((Id‘𝐶)‘𝑋)))
30 eqid 2730 . . 3 (Base‘𝐷) = (Base‘𝐷)
31 fthsect.t . . 3 𝑇 = (Sect‘𝐷)
3213simprd 495 . . 3 (𝜑𝐷 ∈ Cat)
331, 30, 9funcf1 17834 . . . 4 (𝜑𝐹:𝐵⟶(Base‘𝐷))
3433, 5ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑋) ∈ (Base‘𝐷))
3533, 15ffvelcdmd 7059 . . 3 (𝜑 → (𝐹𝑌) ∈ (Base‘𝐷))
361, 2, 3, 9, 5, 15funcf2 17836 . . . 4 (𝜑 → (𝑋𝐺𝑌):(𝑋𝐻𝑌)⟶((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
3736, 16ffvelcdmd 7059 . . 3 (𝜑 → ((𝑋𝐺𝑌)‘𝑀) ∈ ((𝐹𝑋)(Hom ‘𝐷)(𝐹𝑌)))
381, 2, 3, 9, 15, 5funcf2 17836 . . . 4 (𝜑 → (𝑌𝐺𝑋):(𝑌𝐻𝑋)⟶((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
3938, 17ffvelcdmd 7059 . . 3 (𝜑 → ((𝑌𝐺𝑋)‘𝑁) ∈ ((𝐹𝑌)(Hom ‘𝐷)(𝐹𝑋)))
4030, 3, 22, 24, 31, 32, 34, 35, 37, 39issect2 17722 . 2 (𝜑 → (((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁) ↔ (((𝑌𝐺𝑋)‘𝑁)(⟨(𝐹𝑋), (𝐹𝑌)⟩(comp‘𝐷)(𝐹𝑋))((𝑋𝐺𝑌)‘𝑀)) = ((Id‘𝐷)‘(𝐹𝑋))))
4127, 29, 403bitr4d 311 1 (𝜑 → (𝑀(𝑋𝑆𝑌)𝑁 ↔ ((𝑋𝐺𝑌)‘𝑀)((𝐹𝑋)𝑇(𝐹𝑌))((𝑌𝐺𝑋)‘𝑁)))
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395   = wceq 1540  wcel 2109  cop 4597   class class class wbr 5109  cfv 6513  (class class class)co 7389  Basecbs 17185  Hom chom 17237  compcco 17238  Catccat 17631  Idccid 17632  Sectcsect 17712   Func cfunc 17822   Faith cfth 17873
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2702  ax-rep 5236  ax-sep 5253  ax-nul 5263  ax-pow 5322  ax-pr 5389  ax-un 7713
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2534  df-eu 2563  df-clab 2709  df-cleq 2722  df-clel 2804  df-nfc 2879  df-ne 2927  df-ral 3046  df-rex 3055  df-rmo 3356  df-reu 3357  df-rab 3409  df-v 3452  df-sbc 3756  df-csb 3865  df-dif 3919  df-un 3921  df-in 3923  df-ss 3933  df-nul 4299  df-if 4491  df-pw 4567  df-sn 4592  df-pr 4594  df-op 4598  df-uni 4874  df-iun 4959  df-br 5110  df-opab 5172  df-mpt 5191  df-id 5535  df-xp 5646  df-rel 5647  df-cnv 5648  df-co 5649  df-dm 5650  df-rn 5651  df-res 5652  df-ima 5653  df-iota 6466  df-fun 6515  df-fn 6516  df-f 6517  df-f1 6518  df-fo 6519  df-f1o 6520  df-fv 6521  df-riota 7346  df-ov 7392  df-oprab 7393  df-mpo 7394  df-1st 7970  df-2nd 7971  df-map 8803  df-ixp 8873  df-cat 17635  df-cid 17636  df-sect 17715  df-func 17826  df-fth 17875
This theorem is referenced by:  fthinv  17896
  Copyright terms: Public domain W3C validator