Step | Hyp | Ref
| Expression |
1 | | hmopidmch.1 |
. . . 4
⊢ 𝑇 ∈ HrmOp |
2 | | hmoplin 30300 |
. . . 4
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp) |
3 | 1, 2 | ax-mp 5 |
. . 3
⊢ 𝑇 ∈ LinOp |
4 | 3 | rnelshi 30417 |
. 2
⊢ ran 𝑇 ∈
Sℋ |
5 | | eqid 2740 |
. . . . . . . 8
⊢
(normℎ ∘ −ℎ ) =
(normℎ ∘ −ℎ ) |
6 | 5 | hilxmet 29553 |
. . . . . . 7
⊢
(normℎ ∘ −ℎ ) ∈
(∞Met‘ ℋ) |
7 | | eqid 2740 |
. . . . . . . 8
⊢
(MetOpen‘(normℎ ∘
−ℎ )) = (MetOpen‘(normℎ ∘
−ℎ )) |
8 | 7 | methaus 23674 |
. . . . . . 7
⊢
((normℎ ∘ −ℎ ) ∈
(∞Met‘ ℋ) → (MetOpen‘(normℎ
∘ −ℎ )) ∈ Haus) |
9 | 6, 8 | mp1i 13 |
. . . . . 6
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) →
(MetOpen‘(normℎ ∘ −ℎ ))
∈ Haus) |
10 | | eqid 2740 |
. . . . . . . . . . . 12
⊢
〈〈 +ℎ , ·ℎ
〉, normℎ〉 = 〈〈 +ℎ ,
·ℎ 〉,
normℎ〉 |
11 | 10, 5 | hhims 29530 |
. . . . . . . . . . . 12
⊢
(normℎ ∘ −ℎ ) =
(IndMet‘〈〈 +ℎ ,
·ℎ 〉,
normℎ〉) |
12 | 10, 11, 7 | hhlm 29557 |
. . . . . . . . . . 11
⊢
⇝𝑣 =
((⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ ))) ↾ ( ℋ ↑m
ℕ)) |
13 | | resss 5915 |
. . . . . . . . . . 11
⊢
((⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ ))) ↾ ( ℋ ↑m
ℕ)) ⊆
(⇝𝑡‘(MetOpen‘(normℎ ∘
−ℎ ))) |
14 | 12, 13 | eqsstri 3960 |
. . . . . . . . . 10
⊢
⇝𝑣 ⊆
(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ ))) |
15 | 14 | ssbri 5124 |
. . . . . . . . 9
⊢ (𝑓 ⇝𝑣
𝑥 → 𝑓(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))𝑥) |
16 | 15 | adantl 482 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))𝑥) |
17 | 7 | mopntopon 23590 |
. . . . . . . . . 10
⊢
((normℎ ∘ −ℎ ) ∈
(∞Met‘ ℋ) → (MetOpen‘(normℎ
∘ −ℎ )) ∈ (TopOn‘
ℋ)) |
18 | 6, 17 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) →
(MetOpen‘(normℎ ∘ −ℎ ))
∈ (TopOn‘ ℋ)) |
19 | 3 | lnopfi 30327 |
. . . . . . . . . . . 12
⊢ 𝑇: ℋ⟶
ℋ |
20 | 19 | a1i 11 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑇: ℋ⟶ ℋ) |
21 | 20 | feqmptd 6834 |
. . . . . . . . . 10
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇‘𝑦))) |
22 | | hmopbdoptHIL 30346 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ HrmOp → 𝑇 ∈
BndLinOp) |
23 | 1, 22 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ 𝑇 ∈
BndLinOp |
24 | | lnopcnbd 30394 |
. . . . . . . . . . . . 13
⊢ (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈
BndLinOp)) |
25 | 3, 24 | ax-mp 5 |
. . . . . . . . . . . 12
⊢ (𝑇 ∈ ContOp ↔ 𝑇 ∈
BndLinOp) |
26 | 23, 25 | mpbir 230 |
. . . . . . . . . . 11
⊢ 𝑇 ∈ ContOp |
27 | 5, 7 | hhcno 30262 |
. . . . . . . . . . 11
⊢ ContOp =
((MetOpen‘(normℎ ∘ −ℎ ))
Cn (MetOpen‘(normℎ ∘ −ℎ
))) |
28 | 26, 27 | eleqtri 2839 |
. . . . . . . . . 10
⊢ 𝑇 ∈
((MetOpen‘(normℎ ∘ −ℎ ))
Cn (MetOpen‘(normℎ ∘ −ℎ
))) |
29 | 21, 28 | eqeltrrdi 2850 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇‘𝑦)) ∈
((MetOpen‘(normℎ ∘ −ℎ ))
Cn (MetOpen‘(normℎ ∘ −ℎ
)))) |
30 | 18 | cnmptid 22810 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈
((MetOpen‘(normℎ ∘ −ℎ ))
Cn (MetOpen‘(normℎ ∘ −ℎ
)))) |
31 | 10 | hhnv 29523 |
. . . . . . . . . 10
⊢
〈〈 +ℎ , ·ℎ
〉, normℎ〉 ∈ NrmCVec |
32 | 10 | hhvs 29528 |
. . . . . . . . . . 11
⊢
−ℎ = ( −𝑣 ‘〈〈
+ℎ , ·ℎ 〉,
normℎ〉) |
33 | 11, 7, 32 | vmcn 29057 |
. . . . . . . . . 10
⊢
(〈〈 +ℎ , ·ℎ
〉, normℎ〉 ∈ NrmCVec →
−ℎ ∈ (((MetOpen‘(normℎ
∘ −ℎ )) ×t
(MetOpen‘(normℎ ∘ −ℎ )))
Cn (MetOpen‘(normℎ ∘ −ℎ
)))) |
34 | 31, 33 | mp1i 13 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) →
−ℎ ∈ (((MetOpen‘(normℎ
∘ −ℎ )) ×t
(MetOpen‘(normℎ ∘ −ℎ )))
Cn (MetOpen‘(normℎ ∘ −ℎ
)))) |
35 | 18, 29, 30, 34 | cnmpt12f 22815 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∈
((MetOpen‘(normℎ ∘ −ℎ ))
Cn (MetOpen‘(normℎ ∘ −ℎ
)))) |
36 | 16, 35 | lmcn 22454 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))((𝑦 ∈ ℋ
↦ ((𝑇‘𝑦) −ℎ 𝑦))‘𝑥)) |
37 | | simpl 483 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇) |
38 | 4 | shssii 29571 |
. . . . . . . . . . . . . 14
⊢ ran 𝑇 ⊆
ℋ |
39 | | fss 6615 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ) |
40 | 37, 38, 39 | sylancl 586 |
. . . . . . . . . . . . 13
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑓:ℕ⟶ ℋ) |
41 | 40 | ffvelrnda 6958 |
. . . . . . . . . . . 12
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ℋ) |
42 | | fveq2 6771 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑓‘𝑘) → (𝑇‘𝑦) = (𝑇‘(𝑓‘𝑘))) |
43 | | id 22 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑓‘𝑘) → 𝑦 = (𝑓‘𝑘)) |
44 | 42, 43 | oveq12d 7289 |
. . . . . . . . . . . . 13
⊢ (𝑦 = (𝑓‘𝑘) → ((𝑇‘𝑦) −ℎ 𝑦) = ((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘))) |
45 | | eqid 2740 |
. . . . . . . . . . . . 13
⊢ (𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) |
46 | | ovex 7304 |
. . . . . . . . . . . . 13
⊢ ((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘)) ∈ V |
47 | 44, 45, 46 | fvmpt 6872 |
. . . . . . . . . . . 12
⊢ ((𝑓‘𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘(𝑓‘𝑘)) = ((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘))) |
48 | 41, 47 | syl 17 |
. . . . . . . . . . 11
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘(𝑓‘𝑘)) = ((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘))) |
49 | | ffn 6598 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇: ℋ⟶ ℋ →
𝑇 Fn
ℋ) |
50 | 19, 49 | ax-mp 5 |
. . . . . . . . . . . . . . 15
⊢ 𝑇 Fn ℋ |
51 | | fveq2 6771 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑇‘𝑥) → (𝑇‘𝑦) = (𝑇‘(𝑇‘𝑥))) |
52 | | id 22 |
. . . . . . . . . . . . . . . . 17
⊢ (𝑦 = (𝑇‘𝑥) → 𝑦 = (𝑇‘𝑥)) |
53 | 51, 52 | eqeq12d 2756 |
. . . . . . . . . . . . . . . 16
⊢ (𝑦 = (𝑇‘𝑥) → ((𝑇‘𝑦) = 𝑦 ↔ (𝑇‘(𝑇‘𝑥)) = (𝑇‘𝑥))) |
54 | 53 | ralrn 6961 |
. . . . . . . . . . . . . . 15
⊢ (𝑇 Fn ℋ →
(∀𝑦 ∈ ran 𝑇(𝑇‘𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇‘𝑥)) = (𝑇‘𝑥))) |
55 | 50, 54 | ax-mp 5 |
. . . . . . . . . . . . . 14
⊢
(∀𝑦 ∈
ran 𝑇(𝑇‘𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇‘𝑥)) = (𝑇‘𝑥)) |
56 | 19, 19 | hocoi 30122 |
. . . . . . . . . . . . . . 15
⊢ (𝑥 ∈ ℋ → ((𝑇 ∘ 𝑇)‘𝑥) = (𝑇‘(𝑇‘𝑥))) |
57 | | hmopidmch.2 |
. . . . . . . . . . . . . . . 16
⊢ (𝑇 ∘ 𝑇) = 𝑇 |
58 | 57 | fveq1i 6772 |
. . . . . . . . . . . . . . 15
⊢ ((𝑇 ∘ 𝑇)‘𝑥) = (𝑇‘𝑥) |
59 | 56, 58 | eqtr3di 2795 |
. . . . . . . . . . . . . 14
⊢ (𝑥 ∈ ℋ → (𝑇‘(𝑇‘𝑥)) = (𝑇‘𝑥)) |
60 | 55, 59 | mprgbir 3081 |
. . . . . . . . . . . . 13
⊢
∀𝑦 ∈ ran
𝑇(𝑇‘𝑦) = 𝑦 |
61 | | ffvelrn 6956 |
. . . . . . . . . . . . . 14
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ran 𝑇) |
62 | 61 | adantlr 712 |
. . . . . . . . . . . . 13
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓‘𝑘) ∈ ran 𝑇) |
63 | 42, 43 | eqeq12d 2756 |
. . . . . . . . . . . . . 14
⊢ (𝑦 = (𝑓‘𝑘) → ((𝑇‘𝑦) = 𝑦 ↔ (𝑇‘(𝑓‘𝑘)) = (𝑓‘𝑘))) |
64 | 63 | rspccv 3558 |
. . . . . . . . . . . . 13
⊢
(∀𝑦 ∈
ran 𝑇(𝑇‘𝑦) = 𝑦 → ((𝑓‘𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓‘𝑘)) = (𝑓‘𝑘))) |
65 | 60, 62, 64 | mpsyl 68 |
. . . . . . . . . . . 12
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓‘𝑘)) = (𝑓‘𝑘)) |
66 | 65, 41 | eqeltrd 2841 |
. . . . . . . . . . . . 13
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓‘𝑘)) ∈ ℋ) |
67 | | hvsubeq0 29426 |
. . . . . . . . . . . . 13
⊢ (((𝑇‘(𝑓‘𝑘)) ∈ ℋ ∧ (𝑓‘𝑘) ∈ ℋ) → (((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘)) = 0ℎ ↔ (𝑇‘(𝑓‘𝑘)) = (𝑓‘𝑘))) |
68 | 66, 41, 67 | syl2anc 584 |
. . . . . . . . . . . 12
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘)) = 0ℎ ↔ (𝑇‘(𝑓‘𝑘)) = (𝑓‘𝑘))) |
69 | 65, 68 | mpbird 256 |
. . . . . . . . . . 11
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓‘𝑘)) −ℎ (𝑓‘𝑘)) = 0ℎ) |
70 | 48, 69 | eqtrd 2780 |
. . . . . . . . . 10
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘(𝑓‘𝑘)) = 0ℎ) |
71 | | fvco3 6864 |
. . . . . . . . . . 11
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘(𝑓‘𝑘))) |
72 | 71 | adantlr 712 |
. . . . . . . . . 10
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘(𝑓‘𝑘))) |
73 | | ax-hv0cl 29361 |
. . . . . . . . . . . . 13
⊢
0ℎ ∈ ℋ |
74 | 73 | elexi 3450 |
. . . . . . . . . . . 12
⊢
0ℎ ∈ V |
75 | 74 | fvconst2 7076 |
. . . . . . . . . . 11
⊢ (𝑘 ∈ ℕ → ((ℕ
× {0ℎ})‘𝑘) = 0ℎ) |
76 | 75 | adantl 482 |
. . . . . . . . . 10
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ ×
{0ℎ})‘𝑘) = 0ℎ) |
77 | 70, 72, 76 | 3eqtr4d 2790 |
. . . . . . . . 9
⊢ (((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ ×
{0ℎ})‘𝑘)) |
78 | 77 | ralrimiva 3110 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ ×
{0ℎ})‘𝑘)) |
79 | | ovex 7304 |
. . . . . . . . . . 11
⊢ ((𝑇‘𝑦) −ℎ 𝑦) ∈ V |
80 | 79, 45 | fnmpti 6574 |
. . . . . . . . . 10
⊢ (𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) Fn ℋ |
81 | | fnfco 6637 |
. . . . . . . . . 10
⊢ (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) →
((𝑦 ∈ ℋ ↦
((𝑇‘𝑦) −ℎ
𝑦)) ∘ 𝑓) Fn ℕ) |
82 | 80, 40, 81 | sylancr 587 |
. . . . . . . . 9
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓) Fn ℕ) |
83 | 74 | fconst 6658 |
. . . . . . . . . 10
⊢ (ℕ
×
{0ℎ}):ℕ⟶{0ℎ} |
84 | | ffn 6598 |
. . . . . . . . . 10
⊢ ((ℕ
× {0ℎ}):ℕ⟶{0ℎ} →
(ℕ × {0ℎ}) Fn ℕ) |
85 | 83, 84 | ax-mp 5 |
. . . . . . . . 9
⊢ (ℕ
× {0ℎ}) Fn ℕ |
86 | | eqfnfv 6906 |
. . . . . . . . 9
⊢ ((((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ ×
{0ℎ}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓) = (ℕ × {0ℎ})
↔ ∀𝑘 ∈
ℕ (((𝑦 ∈ ℋ
↦ ((𝑇‘𝑦) −ℎ
𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ ×
{0ℎ})‘𝑘))) |
87 | 82, 85, 86 | sylancl 586 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓) = (ℕ × {0ℎ})
↔ ∀𝑘 ∈
ℕ (((𝑦 ∈ ℋ
↦ ((𝑇‘𝑦) −ℎ
𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ ×
{0ℎ})‘𝑘))) |
88 | 78, 87 | mpbird 256 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦)) ∘ 𝑓) = (ℕ ×
{0ℎ})) |
89 | | vex 3435 |
. . . . . . . . . 10
⊢ 𝑥 ∈ V |
90 | 89 | hlimveci 29548 |
. . . . . . . . 9
⊢ (𝑓 ⇝𝑣
𝑥 → 𝑥 ∈ ℋ) |
91 | 90 | adantl 482 |
. . . . . . . 8
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ℋ) |
92 | | fveq2 6771 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → (𝑇‘𝑦) = (𝑇‘𝑥)) |
93 | | id 22 |
. . . . . . . . . 10
⊢ (𝑦 = 𝑥 → 𝑦 = 𝑥) |
94 | 92, 93 | oveq12d 7289 |
. . . . . . . . 9
⊢ (𝑦 = 𝑥 → ((𝑇‘𝑦) −ℎ 𝑦) = ((𝑇‘𝑥) −ℎ 𝑥)) |
95 | | ovex 7304 |
. . . . . . . . 9
⊢ ((𝑇‘𝑥) −ℎ 𝑥) ∈ V |
96 | 94, 45, 95 | fvmpt 6872 |
. . . . . . . 8
⊢ (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘𝑥) = ((𝑇‘𝑥) −ℎ 𝑥)) |
97 | 91, 96 | syl 17 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇‘𝑦) −ℎ 𝑦))‘𝑥) = ((𝑇‘𝑥) −ℎ 𝑥)) |
98 | 36, 88, 97 | 3brtr3d 5110 |
. . . . . 6
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (ℕ ×
{0ℎ})(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))((𝑇‘𝑥)
−ℎ 𝑥)) |
99 | 73 | a1i 11 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 0ℎ
∈ ℋ) |
100 | | 1zzd 12351 |
. . . . . . 7
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 1 ∈
ℤ) |
101 | | nnuz 12620 |
. . . . . . . 8
⊢ ℕ =
(ℤ≥‘1) |
102 | 101 | lmconst 22410 |
. . . . . . 7
⊢
(((MetOpen‘(normℎ ∘
−ℎ )) ∈ (TopOn‘ ℋ) ∧
0ℎ ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ
×
{0ℎ})(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))0ℎ) |
103 | 18, 99, 100, 102 | syl3anc 1370 |
. . . . . 6
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (ℕ ×
{0ℎ})(⇝𝑡‘(MetOpen‘(normℎ
∘ −ℎ )))0ℎ) |
104 | 9, 98, 103 | lmmo 22529 |
. . . . 5
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → ((𝑇‘𝑥) −ℎ 𝑥) =
0ℎ) |
105 | 19 | ffvelrni 6957 |
. . . . . . 7
⊢ (𝑥 ∈ ℋ → (𝑇‘𝑥) ∈ ℋ) |
106 | 91, 105 | syl 17 |
. . . . . 6
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑇‘𝑥) ∈ ℋ) |
107 | | hvsubeq0 29426 |
. . . . . 6
⊢ (((𝑇‘𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇‘𝑥) −ℎ 𝑥) = 0ℎ ↔
(𝑇‘𝑥) = 𝑥)) |
108 | 106, 91, 107 | syl2anc 584 |
. . . . 5
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (((𝑇‘𝑥) −ℎ 𝑥) = 0ℎ ↔
(𝑇‘𝑥) = 𝑥)) |
109 | 104, 108 | mpbid 231 |
. . . 4
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑇‘𝑥) = 𝑥) |
110 | | fnfvelrn 6955 |
. . . . 5
⊢ ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇‘𝑥) ∈ ran 𝑇) |
111 | 50, 91, 110 | sylancr 587 |
. . . 4
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → (𝑇‘𝑥) ∈ ran 𝑇) |
112 | 109, 111 | eqeltrrd 2842 |
. . 3
⊢ ((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ran 𝑇) |
113 | 112 | gen2 1803 |
. 2
⊢
∀𝑓∀𝑥((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ran 𝑇) |
114 | | isch2 29581 |
. 2
⊢ (ran
𝑇 ∈
Cℋ ↔ (ran 𝑇 ∈ Sℋ
∧ ∀𝑓∀𝑥((𝑓:ℕ⟶ran 𝑇 ∧ 𝑓 ⇝𝑣 𝑥) → 𝑥 ∈ ran 𝑇))) |
115 | 4, 113, 114 | mpbir2an 708 |
1
⊢ ran 𝑇 ∈
Cℋ |