HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   GIF version

Theorem hmopidmchi 29401
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmchi ran 𝑇C

Proof of Theorem hmopidmchi
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4 𝑇 ∈ HrmOp
2 hmoplin 29192 . . . 4 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43rnelshi 29309 . 2 ran 𝑇S
5 eqid 2765 . . . . . . . 8 (norm ∘ − ) = (norm ∘ − )
65hilxmet 28443 . . . . . . 7 (norm ∘ − ) ∈ (∞Met‘ ℋ)
7 eqid 2765 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
87methaus 22604 . . . . . . 7 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Haus)
96, 8mp1i 13 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ Haus)
10 eqid 2765 . . . . . . . . . . . 12 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1110, 5hhims 28420 . . . . . . . . . . . 12 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1210, 11, 7hhlm 28447 . . . . . . . . . . 11 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ))
13 resss 5597 . . . . . . . . . . 11 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑𝑚 ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1412, 13eqsstri 3795 . . . . . . . . . 10 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1514ssbri 4854 . . . . . . . . 9 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1615adantl 473 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
177mopntopon 22523 . . . . . . . . . 10 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
186, 17mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
193lnopfi 29219 . . . . . . . . . . . 12 𝑇: ℋ⟶ ℋ
2019a1i 11 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇: ℋ⟶ ℋ)
2120feqmptd 6438 . . . . . . . . . 10 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇𝑦)))
22 hmopbdoptHIL 29238 . . . . . . . . . . . . 13 (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp)
231, 22ax-mp 5 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
24 lnopcnbd 29286 . . . . . . . . . . . . 13 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp))
253, 24ax-mp 5 . . . . . . . . . . . 12 (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)
2623, 25mpbir 222 . . . . . . . . . . 11 𝑇 ∈ ContOp
275, 7hhcno 29154 . . . . . . . . . . 11 ContOp = ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2826, 27eleqtri 2842 . . . . . . . . . 10 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2921, 28syl6eqelr 2853 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3018cnmptid 21744 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3110hhnv 28413 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3210hhvs 28418 . . . . . . . . . . 11 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3311, 7, 32vmcn 27945 . . . . . . . . . 10 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3431, 33mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3518, 29, 30, 34cnmpt12f 21749 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3616, 35lmcn 21389 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥))
37 simpl 474 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇)
384shssii 28461 . . . . . . . . . . . . . 14 ran 𝑇 ⊆ ℋ
39 fss 6236 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 580 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
4140ffvelrnda 6549 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
42 fveq2 6375 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
43 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → 𝑦 = (𝑓𝑘))
4442, 43oveq12d 6860 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) − 𝑦) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
45 eqid 2765 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))
46 ovex 6874 . . . . . . . . . . . . 13 ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) ∈ V
4744, 45, 46fvmpt 6471 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
4841, 47syl 17 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
49 ffn 6223 . . . . . . . . . . . . . . . 16 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15 𝑇 Fn ℋ
51 fveq2 6375 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → (𝑇𝑦) = (𝑇‘(𝑇𝑥)))
52 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → 𝑦 = (𝑇𝑥))
5351, 52eqeq12d 2780 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑇𝑥) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5453ralrn 6552 . . . . . . . . . . . . . . 15 (𝑇 Fn ℋ → (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5550, 54ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
56 hmopidmch.2 . . . . . . . . . . . . . . . 16 (𝑇𝑇) = 𝑇
5756fveq1i 6376 . . . . . . . . . . . . . . 15 ((𝑇𝑇)‘𝑥) = (𝑇𝑥)
5819, 19hocoi 29014 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑇𝑇)‘𝑥) = (𝑇‘(𝑇𝑥)))
5957, 58syl5reqr 2814 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
6055, 59mprgbir 3074 . . . . . . . . . . . . 13 𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦
61 ffvelrn 6547 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6261adantlr 706 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6342, 43eqeq12d 2780 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6463rspccv 3458 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 → ((𝑓𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6560, 62, 64mpsyl 68 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) = (𝑓𝑘))
6665, 41eqeltrd 2844 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) ∈ ℋ)
67 hvsubeq0 28316 . . . . . . . . . . . . 13 (((𝑇‘(𝑓𝑘)) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6866, 41, 67syl2anc 579 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6965, 68mpbird 248 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0)
7048, 69eqtrd 2799 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = 0)
71 fvco3 6464 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
7271adantlr 706 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
73 ax-hv0cl 28251 . . . . . . . . . . . . 13 0 ∈ ℋ
7473elexi 3366 . . . . . . . . . . . 12 0 ∈ V
7574fvconst2 6662 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
7675adantl 473 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
7770, 72, 763eqtr4d 2809 . . . . . . . . 9 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
7877ralrimiva 3113 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
79 ovex 6874 . . . . . . . . . . 11 ((𝑇𝑦) − 𝑦) ∈ V
8079, 45fnmpti 6200 . . . . . . . . . 10 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ
81 fnfco 6251 . . . . . . . . . 10 (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8280, 40, 81sylancr 581 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8374fconst 6273 . . . . . . . . . 10 (ℕ × {0}):ℕ⟶{0}
84 ffn 6223 . . . . . . . . . 10 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
8583, 84ax-mp 5 . . . . . . . . 9 (ℕ × {0}) Fn ℕ
86 eqfnfv 6501 . . . . . . . . 9 ((((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8782, 85, 86sylancl 580 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8878, 87mpbird 248 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}))
89 vex 3353 . . . . . . . . . 10 𝑥 ∈ V
9089hlimveci 28438 . . . . . . . . 9 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
9190adantl 473 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
92 fveq2 6375 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑇𝑦) = (𝑇𝑥))
93 id 22 . . . . . . . . . 10 (𝑦 = 𝑥𝑦 = 𝑥)
9492, 93oveq12d 6860 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑇𝑦) − 𝑦) = ((𝑇𝑥) − 𝑥))
95 ovex 6874 . . . . . . . . 9 ((𝑇𝑥) − 𝑥) ∈ V
9694, 45, 95fvmpt 6471 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9791, 96syl 17 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9836, 88, 973brtr3d 4840 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑇𝑥) − 𝑥))
9973a1i 11 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 0 ∈ ℋ)
100 1zzd 11655 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 1 ∈ ℤ)
101 nnuz 11923 . . . . . . . 8 ℕ = (ℤ‘1)
102101lmconst 21345 . . . . . . 7 (((MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
10318, 99, 100, 102syl3anc 1490 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
1049, 98, 103lmmo 21464 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑇𝑥) − 𝑥) = 0)
10519ffvelrni 6548 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10691, 105syl 17 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ℋ)
107 hvsubeq0 28316 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
108106, 91, 107syl2anc 579 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
109104, 108mpbid 223 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) = 𝑥)
110 fnfvelrn 6546 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
11150, 91, 110sylancr 581 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ran 𝑇)
112109, 111eqeltrrd 2845 . . 3 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
113112gen2 1891 . 2 𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
114 isch2 28471 . 2 (ran 𝑇C ↔ (ran 𝑇S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)))
1154, 113, 114mpbir2an 702 1 ran 𝑇C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 197  wa 384  wal 1650   = wceq 1652  wcel 2155  wral 3055  wss 3732  {csn 4334  cop 4340   class class class wbr 4809  cmpt 4888   × cxp 5275  ran crn 5278  cres 5279  ccom 5281   Fn wfn 6063  wf 6064  cfv 6068  (class class class)co 6842  𝑚 cmap 8060  1c1 10190  cn 11274  cz 11624  ∞Metcxmet 20004  MetOpencmopn 20009  TopOnctopon 20994   Cn ccn 21308  𝑡clm 21310  Hauscha 21392   ×t ctx 21643  NrmCVeccnv 27830  chba 28167   + cva 28168   · csm 28169  normcno 28171  0c0v 28172   cmv 28173  𝑣 chli 28175   S csh 28176   C cch 28177  ContOpccop 28194  LinOpclo 28195  BndLinOpcbo 28196  HrmOpcho 28198
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1890  ax-4 1904  ax-5 2005  ax-6 2070  ax-7 2105  ax-8 2157  ax-9 2164  ax-10 2183  ax-11 2198  ax-12 2211  ax-13 2352  ax-ext 2743  ax-rep 4930  ax-sep 4941  ax-nul 4949  ax-pow 5001  ax-pr 5062  ax-un 7147  ax-inf2 8753  ax-cc 9510  ax-dc 9521  ax-cnex 10245  ax-resscn 10246  ax-1cn 10247  ax-icn 10248  ax-addcl 10249  ax-addrcl 10250  ax-mulcl 10251  ax-mulrcl 10252  ax-mulcom 10253  ax-addass 10254  ax-mulass 10255  ax-distr 10256  ax-i2m1 10257  ax-1ne0 10258  ax-1rid 10259  ax-rnegex 10260  ax-rrecex 10261  ax-cnre 10262  ax-pre-lttri 10263  ax-pre-lttrn 10264  ax-pre-ltadd 10265  ax-pre-mulgt0 10266  ax-pre-sup 10267  ax-addf 10268  ax-mulf 10269  ax-hilex 28247  ax-hfvadd 28248  ax-hvcom 28249  ax-hvass 28250  ax-hv0cl 28251  ax-hvaddid 28252  ax-hfvmul 28253  ax-hvmulid 28254  ax-hvmulass 28255  ax-hvdistr1 28256  ax-hvdistr2 28257  ax-hvmul0 28258  ax-hfi 28327  ax-his1 28330  ax-his2 28331  ax-his3 28332  ax-his4 28333  ax-hcompl 28450
This theorem depends on definitions:  df-bi 198  df-an 385  df-or 874  df-3or 1108  df-3an 1109  df-tru 1656  df-fal 1666  df-ex 1875  df-nf 1879  df-sb 2063  df-mo 2565  df-eu 2582  df-clab 2752  df-cleq 2758  df-clel 2761  df-nfc 2896  df-ne 2938  df-nel 3041  df-ral 3060  df-rex 3061  df-reu 3062  df-rmo 3063  df-rab 3064  df-v 3352  df-sbc 3597  df-csb 3692  df-dif 3735  df-un 3737  df-in 3739  df-ss 3746  df-pss 3748  df-nul 4080  df-if 4244  df-pw 4317  df-sn 4335  df-pr 4337  df-tp 4339  df-op 4341  df-uni 4595  df-int 4634  df-iun 4678  df-iin 4679  df-br 4810  df-opab 4872  df-mpt 4889  df-tr 4912  df-id 5185  df-eprel 5190  df-po 5198  df-so 5199  df-fr 5236  df-se 5237  df-we 5238  df-xp 5283  df-rel 5284  df-cnv 5285  df-co 5286  df-dm 5287  df-rn 5288  df-res 5289  df-ima 5290  df-pred 5865  df-ord 5911  df-on 5912  df-lim 5913  df-suc 5914  df-iota 6031  df-fun 6070  df-fn 6071  df-f 6072  df-f1 6073  df-fo 6074  df-f1o 6075  df-fv 6076  df-isom 6077  df-riota 6803  df-ov 6845  df-oprab 6846  df-mpt2 6847  df-of 7095  df-om 7264  df-1st 7366  df-2nd 7367  df-supp 7498  df-wrecs 7610  df-recs 7672  df-rdg 7710  df-1o 7764  df-2o 7765  df-oadd 7768  df-omul 7769  df-er 7947  df-map 8062  df-pm 8063  df-ixp 8114  df-en 8161  df-dom 8162  df-sdom 8163  df-fin 8164  df-fsupp 8483  df-fi 8524  df-sup 8555  df-inf 8556  df-oi 8622  df-card 9016  df-acn 9019  df-cda 9243  df-pnf 10330  df-mnf 10331  df-xr 10332  df-ltxr 10333  df-le 10334  df-sub 10522  df-neg 10523  df-div 10939  df-nn 11275  df-2 11335  df-3 11336  df-4 11337  df-5 11338  df-6 11339  df-7 11340  df-8 11341  df-9 11342  df-n0 11539  df-z 11625  df-dec 11741  df-uz 11887  df-q 11990  df-rp 12029  df-xneg 12146  df-xadd 12147  df-xmul 12148  df-ioo 12381  df-ico 12383  df-icc 12384  df-fz 12534  df-fzo 12674  df-fl 12801  df-seq 13009  df-exp 13068  df-hash 13322  df-cj 14126  df-re 14127  df-im 14128  df-sqrt 14262  df-abs 14263  df-clim 14506  df-rlim 14507  df-sum 14704  df-struct 16134  df-ndx 16135  df-slot 16136  df-base 16138  df-sets 16139  df-ress 16140  df-plusg 16229  df-mulr 16230  df-starv 16231  df-sca 16232  df-vsca 16233  df-ip 16234  df-tset 16235  df-ple 16236  df-ds 16238  df-unif 16239  df-hom 16240  df-cco 16241  df-rest 16351  df-topn 16352  df-0g 16370  df-gsum 16371  df-topgen 16372  df-pt 16373  df-prds 16376  df-xrs 16430  df-qtop 16435  df-imas 16436  df-xps 16438  df-mre 16514  df-mrc 16515  df-acs 16517  df-mgm 17510  df-sgrp 17552  df-mnd 17563  df-submnd 17604  df-mulg 17810  df-cntz 18015  df-cmn 18461  df-psmet 20011  df-xmet 20012  df-met 20013  df-bl 20014  df-mopn 20015  df-fbas 20016  df-fg 20017  df-cnfld 20020  df-top 20978  df-topon 20995  df-topsp 21017  df-bases 21030  df-cld 21103  df-ntr 21104  df-cls 21105  df-nei 21182  df-cn 21311  df-cnp 21312  df-lm 21313  df-t1 21398  df-haus 21399  df-cmp 21470  df-tx 21645  df-hmeo 21838  df-fil 21929  df-fm 22021  df-flim 22022  df-flf 22023  df-fcls 22024  df-xms 22404  df-ms 22405  df-tms 22406  df-cncf 22960  df-cfil 23332  df-cau 23333  df-cmet 23334  df-grpo 27739  df-gid 27740  df-ginv 27741  df-gdiv 27742  df-ablo 27791  df-vc 27805  df-nv 27838  df-va 27841  df-ba 27842  df-sm 27843  df-0v 27844  df-vs 27845  df-nmcv 27846  df-ims 27847  df-dip 27947  df-ssp 27968  df-lno 27990  df-nmoo 27991  df-blo 27992  df-0o 27993  df-ph 28059  df-cbn 28110  df-hlo 28133  df-hnorm 28216  df-hba 28217  df-hvsub 28219  df-hlim 28220  df-hcau 28221  df-sh 28455  df-ch 28469  df-oc 28500  df-ch0 28501  df-shs 28558  df-pjh 28645  df-h0op 28998  df-nmop 29089  df-cnop 29090  df-lnop 29091  df-bdop 29092  df-unop 29093  df-hmop 29094
This theorem is referenced by:  hmopidmpji  29402  hmopidmch  29403
  Copyright terms: Public domain W3C validator