HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   GIF version

Theorem hmopidmchi 30509
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmchi ran 𝑇C

Proof of Theorem hmopidmchi
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4 𝑇 ∈ HrmOp
2 hmoplin 30300 . . . 4 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43rnelshi 30417 . 2 ran 𝑇S
5 eqid 2740 . . . . . . . 8 (norm ∘ − ) = (norm ∘ − )
65hilxmet 29553 . . . . . . 7 (norm ∘ − ) ∈ (∞Met‘ ℋ)
7 eqid 2740 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
87methaus 23674 . . . . . . 7 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Haus)
96, 8mp1i 13 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ Haus)
10 eqid 2740 . . . . . . . . . . . 12 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1110, 5hhims 29530 . . . . . . . . . . . 12 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1210, 11, 7hhlm 29557 . . . . . . . . . . 11 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
13 resss 5915 . . . . . . . . . . 11 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1412, 13eqsstri 3960 . . . . . . . . . 10 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1514ssbri 5124 . . . . . . . . 9 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1615adantl 482 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
177mopntopon 23590 . . . . . . . . . 10 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
186, 17mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
193lnopfi 30327 . . . . . . . . . . . 12 𝑇: ℋ⟶ ℋ
2019a1i 11 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇: ℋ⟶ ℋ)
2120feqmptd 6834 . . . . . . . . . 10 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇𝑦)))
22 hmopbdoptHIL 30346 . . . . . . . . . . . . 13 (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp)
231, 22ax-mp 5 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
24 lnopcnbd 30394 . . . . . . . . . . . . 13 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp))
253, 24ax-mp 5 . . . . . . . . . . . 12 (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)
2623, 25mpbir 230 . . . . . . . . . . 11 𝑇 ∈ ContOp
275, 7hhcno 30262 . . . . . . . . . . 11 ContOp = ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2826, 27eleqtri 2839 . . . . . . . . . 10 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2921, 28eqeltrrdi 2850 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3018cnmptid 22810 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3110hhnv 29523 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3210hhvs 29528 . . . . . . . . . . 11 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3311, 7, 32vmcn 29057 . . . . . . . . . 10 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3431, 33mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3518, 29, 30, 34cnmpt12f 22815 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3616, 35lmcn 22454 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥))
37 simpl 483 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇)
384shssii 29571 . . . . . . . . . . . . . 14 ran 𝑇 ⊆ ℋ
39 fss 6615 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
4140ffvelrnda 6958 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
42 fveq2 6771 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
43 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → 𝑦 = (𝑓𝑘))
4442, 43oveq12d 7289 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) − 𝑦) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
45 eqid 2740 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))
46 ovex 7304 . . . . . . . . . . . . 13 ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) ∈ V
4744, 45, 46fvmpt 6872 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
4841, 47syl 17 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
49 ffn 6598 . . . . . . . . . . . . . . . 16 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15 𝑇 Fn ℋ
51 fveq2 6771 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → (𝑇𝑦) = (𝑇‘(𝑇𝑥)))
52 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → 𝑦 = (𝑇𝑥))
5351, 52eqeq12d 2756 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑇𝑥) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5453ralrn 6961 . . . . . . . . . . . . . . 15 (𝑇 Fn ℋ → (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5550, 54ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
5619, 19hocoi 30122 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑇𝑇)‘𝑥) = (𝑇‘(𝑇𝑥)))
57 hmopidmch.2 . . . . . . . . . . . . . . . 16 (𝑇𝑇) = 𝑇
5857fveq1i 6772 . . . . . . . . . . . . . . 15 ((𝑇𝑇)‘𝑥) = (𝑇𝑥)
5956, 58eqtr3di 2795 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
6055, 59mprgbir 3081 . . . . . . . . . . . . 13 𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦
61 ffvelrn 6956 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6261adantlr 712 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6342, 43eqeq12d 2756 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6463rspccv 3558 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 → ((𝑓𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6560, 62, 64mpsyl 68 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) = (𝑓𝑘))
6665, 41eqeltrd 2841 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) ∈ ℋ)
67 hvsubeq0 29426 . . . . . . . . . . . . 13 (((𝑇‘(𝑓𝑘)) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6866, 41, 67syl2anc 584 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6965, 68mpbird 256 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0)
7048, 69eqtrd 2780 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = 0)
71 fvco3 6864 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
7271adantlr 712 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
73 ax-hv0cl 29361 . . . . . . . . . . . . 13 0 ∈ ℋ
7473elexi 3450 . . . . . . . . . . . 12 0 ∈ V
7574fvconst2 7076 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
7675adantl 482 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
7770, 72, 763eqtr4d 2790 . . . . . . . . 9 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
7877ralrimiva 3110 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
79 ovex 7304 . . . . . . . . . . 11 ((𝑇𝑦) − 𝑦) ∈ V
8079, 45fnmpti 6574 . . . . . . . . . 10 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ
81 fnfco 6637 . . . . . . . . . 10 (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8280, 40, 81sylancr 587 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8374fconst 6658 . . . . . . . . . 10 (ℕ × {0}):ℕ⟶{0}
84 ffn 6598 . . . . . . . . . 10 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
8583, 84ax-mp 5 . . . . . . . . 9 (ℕ × {0}) Fn ℕ
86 eqfnfv 6906 . . . . . . . . 9 ((((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8782, 85, 86sylancl 586 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8878, 87mpbird 256 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}))
89 vex 3435 . . . . . . . . . 10 𝑥 ∈ V
9089hlimveci 29548 . . . . . . . . 9 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
9190adantl 482 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
92 fveq2 6771 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑇𝑦) = (𝑇𝑥))
93 id 22 . . . . . . . . . 10 (𝑦 = 𝑥𝑦 = 𝑥)
9492, 93oveq12d 7289 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑇𝑦) − 𝑦) = ((𝑇𝑥) − 𝑥))
95 ovex 7304 . . . . . . . . 9 ((𝑇𝑥) − 𝑥) ∈ V
9694, 45, 95fvmpt 6872 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9791, 96syl 17 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9836, 88, 973brtr3d 5110 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑇𝑥) − 𝑥))
9973a1i 11 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 0 ∈ ℋ)
100 1zzd 12351 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 1 ∈ ℤ)
101 nnuz 12620 . . . . . . . 8 ℕ = (ℤ‘1)
102101lmconst 22410 . . . . . . 7 (((MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
10318, 99, 100, 102syl3anc 1370 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
1049, 98, 103lmmo 22529 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑇𝑥) − 𝑥) = 0)
10519ffvelrni 6957 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10691, 105syl 17 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ℋ)
107 hvsubeq0 29426 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
108106, 91, 107syl2anc 584 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
109104, 108mpbid 231 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) = 𝑥)
110 fnfvelrn 6955 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
11150, 91, 110sylancr 587 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ran 𝑇)
112109, 111eqeltrrd 2842 . . 3 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
113112gen2 1803 . 2 𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
114 isch2 29581 . 2 (ran 𝑇C ↔ (ran 𝑇S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)))
1154, 113, 114mpbir2an 708 1 ran 𝑇C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 205  wa 396  wal 1540   = wceq 1542  wcel 2110  wral 3066  wss 3892  {csn 4567  cop 4573   class class class wbr 5079  cmpt 5162   × cxp 5588  ran crn 5591  cres 5592  ccom 5594   Fn wfn 6427  wf 6428  cfv 6432  (class class class)co 7271  m cmap 8598  1c1 10873  cn 11973  cz 12319  ∞Metcxmet 20580  MetOpencmopn 20585  TopOnctopon 22057   Cn ccn 22373  𝑡clm 22375  Hauscha 22457   ×t ctx 22709  NrmCVeccnv 28942  chba 29277   + cva 29278   · csm 29279  normcno 29281  0c0v 29282   cmv 29283  𝑣 chli 29285   S csh 29286   C cch 29287  ContOpccop 29304  LinOpclo 29305  BndLinOpcbo 29306  HrmOpcho 29308
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1802  ax-4 1816  ax-5 1917  ax-6 1975  ax-7 2015  ax-8 2112  ax-9 2120  ax-10 2141  ax-11 2158  ax-12 2175  ax-ext 2711  ax-rep 5214  ax-sep 5227  ax-nul 5234  ax-pow 5292  ax-pr 5356  ax-un 7582  ax-inf2 9377  ax-cc 10192  ax-dc 10203  ax-cnex 10928  ax-resscn 10929  ax-1cn 10930  ax-icn 10931  ax-addcl 10932  ax-addrcl 10933  ax-mulcl 10934  ax-mulrcl 10935  ax-mulcom 10936  ax-addass 10937  ax-mulass 10938  ax-distr 10939  ax-i2m1 10940  ax-1ne0 10941  ax-1rid 10942  ax-rnegex 10943  ax-rrecex 10944  ax-cnre 10945  ax-pre-lttri 10946  ax-pre-lttrn 10947  ax-pre-ltadd 10948  ax-pre-mulgt0 10949  ax-pre-sup 10950  ax-addf 10951  ax-mulf 10952  ax-hilex 29357  ax-hfvadd 29358  ax-hvcom 29359  ax-hvass 29360  ax-hv0cl 29361  ax-hvaddid 29362  ax-hfvmul 29363  ax-hvmulid 29364  ax-hvmulass 29365  ax-hvdistr1 29366  ax-hvdistr2 29367  ax-hvmul0 29368  ax-hfi 29437  ax-his1 29440  ax-his2 29441  ax-his3 29442  ax-his4 29443  ax-hcompl 29560
This theorem depends on definitions:  df-bi 206  df-an 397  df-or 845  df-3or 1087  df-3an 1088  df-tru 1545  df-fal 1555  df-ex 1787  df-nf 1791  df-sb 2072  df-mo 2542  df-eu 2571  df-clab 2718  df-cleq 2732  df-clel 2818  df-nfc 2891  df-ne 2946  df-nel 3052  df-ral 3071  df-rex 3072  df-reu 3073  df-rmo 3074  df-rab 3075  df-v 3433  df-sbc 3721  df-csb 3838  df-dif 3895  df-un 3897  df-in 3899  df-ss 3909  df-pss 3911  df-nul 4263  df-if 4466  df-pw 4541  df-sn 4568  df-pr 4570  df-tp 4572  df-op 4574  df-uni 4846  df-int 4886  df-iun 4932  df-iin 4933  df-br 5080  df-opab 5142  df-mpt 5163  df-tr 5197  df-id 5490  df-eprel 5496  df-po 5504  df-so 5505  df-fr 5545  df-se 5546  df-we 5547  df-xp 5596  df-rel 5597  df-cnv 5598  df-co 5599  df-dm 5600  df-rn 5601  df-res 5602  df-ima 5603  df-pred 6201  df-ord 6268  df-on 6269  df-lim 6270  df-suc 6271  df-iota 6390  df-fun 6434  df-fn 6435  df-f 6436  df-f1 6437  df-fo 6438  df-f1o 6439  df-fv 6440  df-isom 6441  df-riota 7228  df-ov 7274  df-oprab 7275  df-mpo 7276  df-of 7527  df-om 7707  df-1st 7824  df-2nd 7825  df-supp 7969  df-frecs 8088  df-wrecs 8119  df-recs 8193  df-rdg 8232  df-1o 8288  df-2o 8289  df-oadd 8292  df-omul 8293  df-er 8481  df-map 8600  df-pm 8601  df-ixp 8669  df-en 8717  df-dom 8718  df-sdom 8719  df-fin 8720  df-fsupp 9107  df-fi 9148  df-sup 9179  df-inf 9180  df-oi 9247  df-card 9698  df-acn 9701  df-pnf 11012  df-mnf 11013  df-xr 11014  df-ltxr 11015  df-le 11016  df-sub 11207  df-neg 11208  df-div 11633  df-nn 11974  df-2 12036  df-3 12037  df-4 12038  df-5 12039  df-6 12040  df-7 12041  df-8 12042  df-9 12043  df-n0 12234  df-z 12320  df-dec 12437  df-uz 12582  df-q 12688  df-rp 12730  df-xneg 12847  df-xadd 12848  df-xmul 12849  df-ioo 13082  df-ico 13084  df-icc 13085  df-fz 13239  df-fzo 13382  df-fl 13510  df-seq 13720  df-exp 13781  df-hash 14043  df-cj 14808  df-re 14809  df-im 14810  df-sqrt 14944  df-abs 14945  df-clim 15195  df-rlim 15196  df-sum 15396  df-struct 16846  df-sets 16863  df-slot 16881  df-ndx 16893  df-base 16911  df-ress 16940  df-plusg 16973  df-mulr 16974  df-starv 16975  df-sca 16976  df-vsca 16977  df-ip 16978  df-tset 16979  df-ple 16980  df-ds 16982  df-unif 16983  df-hom 16984  df-cco 16985  df-rest 17131  df-topn 17132  df-0g 17150  df-gsum 17151  df-topgen 17152  df-pt 17153  df-prds 17156  df-xrs 17211  df-qtop 17216  df-imas 17217  df-xps 17219  df-mre 17293  df-mrc 17294  df-acs 17296  df-mgm 18324  df-sgrp 18373  df-mnd 18384  df-submnd 18429  df-mulg 18699  df-cntz 18921  df-cmn 19386  df-psmet 20587  df-xmet 20588  df-met 20589  df-bl 20590  df-mopn 20591  df-fbas 20592  df-fg 20593  df-cnfld 20596  df-top 22041  df-topon 22058  df-topsp 22080  df-bases 22094  df-cld 22168  df-ntr 22169  df-cls 22170  df-nei 22247  df-cn 22376  df-cnp 22377  df-lm 22378  df-t1 22463  df-haus 22464  df-cmp 22536  df-tx 22711  df-hmeo 22904  df-fil 22995  df-fm 23087  df-flim 23088  df-flf 23089  df-fcls 23090  df-xms 23471  df-ms 23472  df-tms 23473  df-cncf 24039  df-cfil 24417  df-cau 24418  df-cmet 24419  df-grpo 28851  df-gid 28852  df-ginv 28853  df-gdiv 28854  df-ablo 28903  df-vc 28917  df-nv 28950  df-va 28953  df-ba 28954  df-sm 28955  df-0v 28956  df-vs 28957  df-nmcv 28958  df-ims 28959  df-dip 29059  df-ssp 29080  df-lno 29102  df-nmoo 29103  df-blo 29104  df-0o 29105  df-ph 29171  df-cbn 29221  df-hlo 29244  df-hnorm 29326  df-hba 29327  df-hvsub 29329  df-hlim 29330  df-hcau 29331  df-sh 29565  df-ch 29579  df-oc 29610  df-ch0 29611  df-shs 29666  df-pjh 29753  df-h0op 30106  df-nmop 30197  df-cnop 30198  df-lnop 30199  df-bdop 30200  df-unop 30201  df-hmop 30202
This theorem is referenced by:  hmopidmpji  30510  hmopidmch  30511
  Copyright terms: Public domain W3C validator