HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   GIF version

Theorem hmopidmchi 32113
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmchi ran 𝑇C

Proof of Theorem hmopidmchi
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4 𝑇 ∈ HrmOp
2 hmoplin 31904 . . . 4 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43rnelshi 32021 . 2 ran 𝑇S
5 eqid 2729 . . . . . . . 8 (norm ∘ − ) = (norm ∘ − )
65hilxmet 31157 . . . . . . 7 (norm ∘ − ) ∈ (∞Met‘ ℋ)
7 eqid 2729 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
87methaus 24424 . . . . . . 7 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Haus)
96, 8mp1i 13 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ Haus)
10 eqid 2729 . . . . . . . . . . . 12 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1110, 5hhims 31134 . . . . . . . . . . . 12 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1210, 11, 7hhlm 31161 . . . . . . . . . . 11 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
13 resss 5956 . . . . . . . . . . 11 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1412, 13eqsstri 3984 . . . . . . . . . 10 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1514ssbri 5140 . . . . . . . . 9 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1615adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
177mopntopon 24343 . . . . . . . . . 10 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
186, 17mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
193lnopfi 31931 . . . . . . . . . . . 12 𝑇: ℋ⟶ ℋ
2019a1i 11 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇: ℋ⟶ ℋ)
2120feqmptd 6895 . . . . . . . . . 10 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇𝑦)))
22 hmopbdoptHIL 31950 . . . . . . . . . . . . 13 (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp)
231, 22ax-mp 5 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
24 lnopcnbd 31998 . . . . . . . . . . . . 13 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp))
253, 24ax-mp 5 . . . . . . . . . . . 12 (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)
2623, 25mpbir 231 . . . . . . . . . . 11 𝑇 ∈ ContOp
275, 7hhcno 31866 . . . . . . . . . . 11 ContOp = ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2826, 27eleqtri 2826 . . . . . . . . . 10 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2921, 28eqeltrrdi 2837 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3018cnmptid 23564 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3110hhnv 31127 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3210hhvs 31132 . . . . . . . . . . 11 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3311, 7, 32vmcn 30661 . . . . . . . . . 10 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3431, 33mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3518, 29, 30, 34cnmpt12f 23569 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3616, 35lmcn 23208 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥))
37 simpl 482 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇)
384shssii 31175 . . . . . . . . . . . . . 14 ran 𝑇 ⊆ ℋ
39 fss 6672 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
4140ffvelcdmda 7022 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
42 fveq2 6826 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
43 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → 𝑦 = (𝑓𝑘))
4442, 43oveq12d 7371 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) − 𝑦) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
45 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))
46 ovex 7386 . . . . . . . . . . . . 13 ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) ∈ V
4744, 45, 46fvmpt 6934 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
4841, 47syl 17 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
49 ffn 6656 . . . . . . . . . . . . . . . 16 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15 𝑇 Fn ℋ
51 fveq2 6826 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → (𝑇𝑦) = (𝑇‘(𝑇𝑥)))
52 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → 𝑦 = (𝑇𝑥))
5351, 52eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑇𝑥) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5453ralrn 7026 . . . . . . . . . . . . . . 15 (𝑇 Fn ℋ → (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5550, 54ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
5619, 19hocoi 31726 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑇𝑇)‘𝑥) = (𝑇‘(𝑇𝑥)))
57 hmopidmch.2 . . . . . . . . . . . . . . . 16 (𝑇𝑇) = 𝑇
5857fveq1i 6827 . . . . . . . . . . . . . . 15 ((𝑇𝑇)‘𝑥) = (𝑇𝑥)
5956, 58eqtr3di 2779 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
6055, 59mprgbir 3051 . . . . . . . . . . . . 13 𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦
61 ffvelcdm 7019 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6261adantlr 715 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6342, 43eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6463rspccv 3576 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 → ((𝑓𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6560, 62, 64mpsyl 68 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) = (𝑓𝑘))
6665, 41eqeltrd 2828 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) ∈ ℋ)
67 hvsubeq0 31030 . . . . . . . . . . . . 13 (((𝑇‘(𝑓𝑘)) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6866, 41, 67syl2anc 584 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6965, 68mpbird 257 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0)
7048, 69eqtrd 2764 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = 0)
71 fvco3 6926 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
7271adantlr 715 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
73 ax-hv0cl 30965 . . . . . . . . . . . . 13 0 ∈ ℋ
7473elexi 3461 . . . . . . . . . . . 12 0 ∈ V
7574fvconst2 7144 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
7675adantl 481 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
7770, 72, 763eqtr4d 2774 . . . . . . . . 9 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
7877ralrimiva 3121 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
79 ovex 7386 . . . . . . . . . . 11 ((𝑇𝑦) − 𝑦) ∈ V
8079, 45fnmpti 6629 . . . . . . . . . 10 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ
81 fnfco 6693 . . . . . . . . . 10 (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8280, 40, 81sylancr 587 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8374fconst 6714 . . . . . . . . . 10 (ℕ × {0}):ℕ⟶{0}
84 ffn 6656 . . . . . . . . . 10 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
8583, 84ax-mp 5 . . . . . . . . 9 (ℕ × {0}) Fn ℕ
86 eqfnfv 6969 . . . . . . . . 9 ((((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8782, 85, 86sylancl 586 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8878, 87mpbird 257 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}))
89 vex 3442 . . . . . . . . . 10 𝑥 ∈ V
9089hlimveci 31152 . . . . . . . . 9 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
9190adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
92 fveq2 6826 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑇𝑦) = (𝑇𝑥))
93 id 22 . . . . . . . . . 10 (𝑦 = 𝑥𝑦 = 𝑥)
9492, 93oveq12d 7371 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑇𝑦) − 𝑦) = ((𝑇𝑥) − 𝑥))
95 ovex 7386 . . . . . . . . 9 ((𝑇𝑥) − 𝑥) ∈ V
9694, 45, 95fvmpt 6934 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9791, 96syl 17 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9836, 88, 973brtr3d 5126 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑇𝑥) − 𝑥))
9973a1i 11 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 0 ∈ ℋ)
100 1zzd 12524 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 1 ∈ ℤ)
101 nnuz 12796 . . . . . . . 8 ℕ = (ℤ‘1)
102101lmconst 23164 . . . . . . 7 (((MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
10318, 99, 100, 102syl3anc 1373 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
1049, 98, 103lmmo 23283 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑇𝑥) − 𝑥) = 0)
10519ffvelcdmi 7021 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10691, 105syl 17 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ℋ)
107 hvsubeq0 31030 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
108106, 91, 107syl2anc 584 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
109104, 108mpbid 232 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) = 𝑥)
110 fnfvelrn 7018 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
11150, 91, 110sylancr 587 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ran 𝑇)
112109, 111eqeltrrd 2829 . . 3 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
113112gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
114 isch2 31185 . 2 (ran 𝑇C ↔ (ran 𝑇S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)))
1154, 113, 114mpbir2an 711 1 ran 𝑇C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wss 3905  {csn 4579  cop 4585   class class class wbr 5095  cmpt 5176   × cxp 5621  ran crn 5624  cres 5625  ccom 5627   Fn wfn 6481  wf 6482  cfv 6486  (class class class)co 7353  m cmap 8760  1c1 11029  cn 12146  cz 12489  ∞Metcxmet 21264  MetOpencmopn 21269  TopOnctopon 22813   Cn ccn 23127  𝑡clm 23129  Hauscha 23211   ×t ctx 23463  NrmCVeccnv 30546  chba 30881   + cva 30882   · csm 30883  normcno 30885  0c0v 30886   cmv 30887  𝑣 chli 30889   S csh 30890   C cch 30891  ContOpccop 30908  LinOpclo 30909  BndLinOpcbo 30910  HrmOpcho 30912
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5221  ax-sep 5238  ax-nul 5248  ax-pow 5307  ax-pr 5374  ax-un 7675  ax-inf2 9556  ax-cc 10348  ax-dc 10359  ax-cnex 11084  ax-resscn 11085  ax-1cn 11086  ax-icn 11087  ax-addcl 11088  ax-addrcl 11089  ax-mulcl 11090  ax-mulrcl 11091  ax-mulcom 11092  ax-addass 11093  ax-mulass 11094  ax-distr 11095  ax-i2m1 11096  ax-1ne0 11097  ax-1rid 11098  ax-rnegex 11099  ax-rrecex 11100  ax-cnre 11101  ax-pre-lttri 11102  ax-pre-lttrn 11103  ax-pre-ltadd 11104  ax-pre-mulgt0 11105  ax-pre-sup 11106  ax-addf 11107  ax-mulf 11108  ax-hilex 30961  ax-hfvadd 30962  ax-hvcom 30963  ax-hvass 30964  ax-hv0cl 30965  ax-hvaddid 30966  ax-hfvmul 30967  ax-hvmulid 30968  ax-hvmulass 30969  ax-hvdistr1 30970  ax-hvdistr2 30971  ax-hvmul0 30972  ax-hfi 31041  ax-his1 31044  ax-his2 31045  ax-his3 31046  ax-his4 31047  ax-hcompl 31164
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3345  df-reu 3346  df-rab 3397  df-v 3440  df-sbc 3745  df-csb 3854  df-dif 3908  df-un 3910  df-in 3912  df-ss 3922  df-pss 3925  df-nul 4287  df-if 4479  df-pw 4555  df-sn 4580  df-pr 4582  df-tp 4584  df-op 4586  df-uni 4862  df-int 4900  df-iun 4946  df-iin 4947  df-br 5096  df-opab 5158  df-mpt 5177  df-tr 5203  df-id 5518  df-eprel 5523  df-po 5531  df-so 5532  df-fr 5576  df-se 5577  df-we 5578  df-xp 5629  df-rel 5630  df-cnv 5631  df-co 5632  df-dm 5633  df-rn 5634  df-res 5635  df-ima 5636  df-pred 6253  df-ord 6314  df-on 6315  df-lim 6316  df-suc 6317  df-iota 6442  df-fun 6488  df-fn 6489  df-f 6490  df-f1 6491  df-fo 6492  df-f1o 6493  df-fv 6494  df-isom 6495  df-riota 7310  df-ov 7356  df-oprab 7357  df-mpo 7358  df-of 7617  df-om 7807  df-1st 7931  df-2nd 7932  df-supp 8101  df-frecs 8221  df-wrecs 8252  df-recs 8301  df-rdg 8339  df-1o 8395  df-2o 8396  df-oadd 8399  df-omul 8400  df-er 8632  df-map 8762  df-pm 8763  df-ixp 8832  df-en 8880  df-dom 8881  df-sdom 8882  df-fin 8883  df-fsupp 9271  df-fi 9320  df-sup 9351  df-inf 9352  df-oi 9421  df-card 9854  df-acn 9857  df-pnf 11170  df-mnf 11171  df-xr 11172  df-ltxr 11173  df-le 11174  df-sub 11367  df-neg 11368  df-div 11796  df-nn 12147  df-2 12209  df-3 12210  df-4 12211  df-5 12212  df-6 12213  df-7 12214  df-8 12215  df-9 12216  df-n0 12403  df-z 12490  df-dec 12610  df-uz 12754  df-q 12868  df-rp 12912  df-xneg 13032  df-xadd 13033  df-xmul 13034  df-ioo 13270  df-ico 13272  df-icc 13273  df-fz 13429  df-fzo 13576  df-fl 13714  df-seq 13927  df-exp 13987  df-hash 14256  df-cj 15024  df-re 15025  df-im 15026  df-sqrt 15160  df-abs 15161  df-clim 15413  df-rlim 15414  df-sum 15612  df-struct 17076  df-sets 17093  df-slot 17111  df-ndx 17123  df-base 17139  df-ress 17160  df-plusg 17192  df-mulr 17193  df-starv 17194  df-sca 17195  df-vsca 17196  df-ip 17197  df-tset 17198  df-ple 17199  df-ds 17201  df-unif 17202  df-hom 17203  df-cco 17204  df-rest 17344  df-topn 17345  df-0g 17363  df-gsum 17364  df-topgen 17365  df-pt 17366  df-prds 17369  df-xrs 17424  df-qtop 17429  df-imas 17430  df-xps 17432  df-mre 17506  df-mrc 17507  df-acs 17509  df-mgm 18532  df-sgrp 18611  df-mnd 18627  df-submnd 18676  df-mulg 18965  df-cntz 19214  df-cmn 19679  df-psmet 21271  df-xmet 21272  df-met 21273  df-bl 21274  df-mopn 21275  df-fbas 21276  df-fg 21277  df-cnfld 21280  df-top 22797  df-topon 22814  df-topsp 22836  df-bases 22849  df-cld 22922  df-ntr 22923  df-cls 22924  df-nei 23001  df-cn 23130  df-cnp 23131  df-lm 23132  df-t1 23217  df-haus 23218  df-cmp 23290  df-tx 23465  df-hmeo 23658  df-fil 23749  df-fm 23841  df-flim 23842  df-flf 23843  df-fcls 23844  df-xms 24224  df-ms 24225  df-tms 24226  df-cncf 24787  df-cfil 25171  df-cau 25172  df-cmet 25173  df-grpo 30455  df-gid 30456  df-ginv 30457  df-gdiv 30458  df-ablo 30507  df-vc 30521  df-nv 30554  df-va 30557  df-ba 30558  df-sm 30559  df-0v 30560  df-vs 30561  df-nmcv 30562  df-ims 30563  df-dip 30663  df-ssp 30684  df-lno 30706  df-nmoo 30707  df-blo 30708  df-0o 30709  df-ph 30775  df-cbn 30825  df-hlo 30848  df-hnorm 30930  df-hba 30931  df-hvsub 30933  df-hlim 30934  df-hcau 30935  df-sh 31169  df-ch 31183  df-oc 31214  df-ch0 31215  df-shs 31270  df-pjh 31357  df-h0op 31710  df-nmop 31801  df-cnop 31802  df-lnop 31803  df-bdop 31804  df-unop 31805  df-hmop 31806
This theorem is referenced by:  hmopidmpji  32114  hmopidmch  32115
  Copyright terms: Public domain W3C validator