HSE Home Hilbert Space Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  HSE Home  >  Th. List  >  hmopidmchi Structured version   Visualization version   GIF version

Theorem hmopidmchi 32080
Description: An idempotent Hermitian operator generates a closed subspace. Part of proof of Theorem of [AkhiezerGlazman] p. 64. (Contributed by NM, 21-Apr-2006.) (Proof shortened by Mario Carneiro, 19-May-2014.) (New usage is discouraged.)
Hypotheses
Ref Expression
hmopidmch.1 𝑇 ∈ HrmOp
hmopidmch.2 (𝑇𝑇) = 𝑇
Assertion
Ref Expression
hmopidmchi ran 𝑇C

Proof of Theorem hmopidmchi
Dummy variables 𝑓 𝑘 𝑥 𝑦 are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 hmopidmch.1 . . . 4 𝑇 ∈ HrmOp
2 hmoplin 31871 . . . 4 (𝑇 ∈ HrmOp → 𝑇 ∈ LinOp)
31, 2ax-mp 5 . . 3 𝑇 ∈ LinOp
43rnelshi 31988 . 2 ran 𝑇S
5 eqid 2729 . . . . . . . 8 (norm ∘ − ) = (norm ∘ − )
65hilxmet 31124 . . . . . . 7 (norm ∘ − ) ∈ (∞Met‘ ℋ)
7 eqid 2729 . . . . . . . 8 (MetOpen‘(norm ∘ − )) = (MetOpen‘(norm ∘ − ))
87methaus 24408 . . . . . . 7 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ Haus)
96, 8mp1i 13 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ Haus)
10 eqid 2729 . . . . . . . . . . . 12 ⟨⟨ + , · ⟩, norm⟩ = ⟨⟨ + , · ⟩, norm
1110, 5hhims 31101 . . . . . . . . . . . 12 (norm ∘ − ) = (IndMet‘⟨⟨ + , · ⟩, norm⟩)
1210, 11, 7hhlm 31128 . . . . . . . . . . 11 𝑣 = ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ))
13 resss 5972 . . . . . . . . . . 11 ((⇝𝑡‘(MetOpen‘(norm ∘ − ))) ↾ ( ℋ ↑m ℕ)) ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1412, 13eqsstri 3993 . . . . . . . . . 10 𝑣 ⊆ (⇝𝑡‘(MetOpen‘(norm ∘ − )))
1514ssbri 5152 . . . . . . . . 9 (𝑓𝑣 𝑥𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
1615adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓(⇝𝑡‘(MetOpen‘(norm ∘ − )))𝑥)
177mopntopon 24327 . . . . . . . . . 10 ((norm ∘ − ) ∈ (∞Met‘ ℋ) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
186, 17mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ))
193lnopfi 31898 . . . . . . . . . . . 12 𝑇: ℋ⟶ ℋ
2019a1i 11 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇: ℋ⟶ ℋ)
2120feqmptd 6929 . . . . . . . . . 10 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑇 = (𝑦 ∈ ℋ ↦ (𝑇𝑦)))
22 hmopbdoptHIL 31917 . . . . . . . . . . . . 13 (𝑇 ∈ HrmOp → 𝑇 ∈ BndLinOp)
231, 22ax-mp 5 . . . . . . . . . . . 12 𝑇 ∈ BndLinOp
24 lnopcnbd 31965 . . . . . . . . . . . . 13 (𝑇 ∈ LinOp → (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp))
253, 24ax-mp 5 . . . . . . . . . . . 12 (𝑇 ∈ ContOp ↔ 𝑇 ∈ BndLinOp)
2623, 25mpbir 231 . . . . . . . . . . 11 𝑇 ∈ ContOp
275, 7hhcno 31833 . . . . . . . . . . 11 ContOp = ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2826, 27eleqtri 2826 . . . . . . . . . 10 𝑇 ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − )))
2921, 28eqeltrrdi 2837 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ (𝑇𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3018cnmptid 23548 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ 𝑦) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3110hhnv 31094 . . . . . . . . . 10 ⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec
3210hhvs 31099 . . . . . . . . . . 11 = ( −𝑣 ‘⟨⟨ + , · ⟩, norm⟩)
3311, 7, 32vmcn 30628 . . . . . . . . . 10 (⟨⟨ + , · ⟩, norm⟩ ∈ NrmCVec → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3431, 33mp1i 13 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → − ∈ (((MetOpen‘(norm ∘ − )) ×t (MetOpen‘(norm ∘ − ))) Cn (MetOpen‘(norm ∘ − ))))
3518, 29, 30, 34cnmpt12f 23553 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∈ ((MetOpen‘(norm ∘ − )) Cn (MetOpen‘(norm ∘ − ))))
3616, 35lmcn 23192 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥))
37 simpl 482 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ran 𝑇)
384shssii 31142 . . . . . . . . . . . . . 14 ran 𝑇 ⊆ ℋ
39 fss 6704 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇 ∧ ran 𝑇 ⊆ ℋ) → 𝑓:ℕ⟶ ℋ)
4037, 38, 39sylancl 586 . . . . . . . . . . . . 13 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑓:ℕ⟶ ℋ)
4140ffvelcdmda 7056 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ℋ)
42 fveq2 6858 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → (𝑇𝑦) = (𝑇‘(𝑓𝑘)))
43 id 22 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → 𝑦 = (𝑓𝑘))
4442, 43oveq12d 7405 . . . . . . . . . . . . 13 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) − 𝑦) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
45 eqid 2729 . . . . . . . . . . . . 13 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) = (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))
46 ovex 7420 . . . . . . . . . . . . 13 ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) ∈ V
4744, 45, 46fvmpt 6968 . . . . . . . . . . . 12 ((𝑓𝑘) ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
4841, 47syl 17 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)))
49 ffn 6688 . . . . . . . . . . . . . . . 16 (𝑇: ℋ⟶ ℋ → 𝑇 Fn ℋ)
5019, 49ax-mp 5 . . . . . . . . . . . . . . 15 𝑇 Fn ℋ
51 fveq2 6858 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → (𝑇𝑦) = (𝑇‘(𝑇𝑥)))
52 id 22 . . . . . . . . . . . . . . . . 17 (𝑦 = (𝑇𝑥) → 𝑦 = (𝑇𝑥))
5351, 52eqeq12d 2745 . . . . . . . . . . . . . . . 16 (𝑦 = (𝑇𝑥) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5453ralrn 7060 . . . . . . . . . . . . . . 15 (𝑇 Fn ℋ → (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥)))
5550, 54ax-mp 5 . . . . . . . . . . . . . 14 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 ↔ ∀𝑥 ∈ ℋ (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
5619, 19hocoi 31693 . . . . . . . . . . . . . . 15 (𝑥 ∈ ℋ → ((𝑇𝑇)‘𝑥) = (𝑇‘(𝑇𝑥)))
57 hmopidmch.2 . . . . . . . . . . . . . . . 16 (𝑇𝑇) = 𝑇
5857fveq1i 6859 . . . . . . . . . . . . . . 15 ((𝑇𝑇)‘𝑥) = (𝑇𝑥)
5956, 58eqtr3di 2779 . . . . . . . . . . . . . 14 (𝑥 ∈ ℋ → (𝑇‘(𝑇𝑥)) = (𝑇𝑥))
6055, 59mprgbir 3051 . . . . . . . . . . . . 13 𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦
61 ffvelcdm 7053 . . . . . . . . . . . . . 14 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6261adantlr 715 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑓𝑘) ∈ ran 𝑇)
6342, 43eqeq12d 2745 . . . . . . . . . . . . . 14 (𝑦 = (𝑓𝑘) → ((𝑇𝑦) = 𝑦 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6463rspccv 3585 . . . . . . . . . . . . 13 (∀𝑦 ∈ ran 𝑇(𝑇𝑦) = 𝑦 → ((𝑓𝑘) ∈ ran 𝑇 → (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6560, 62, 64mpsyl 68 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) = (𝑓𝑘))
6665, 41eqeltrd 2828 . . . . . . . . . . . . 13 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (𝑇‘(𝑓𝑘)) ∈ ℋ)
67 hvsubeq0 30997 . . . . . . . . . . . . 13 (((𝑇‘(𝑓𝑘)) ∈ ℋ ∧ (𝑓𝑘) ∈ ℋ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6866, 41, 67syl2anc 584 . . . . . . . . . . . 12 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0 ↔ (𝑇‘(𝑓𝑘)) = (𝑓𝑘)))
6965, 68mpbird 257 . . . . . . . . . . 11 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑇‘(𝑓𝑘)) − (𝑓𝑘)) = 0)
7048, 69eqtrd 2764 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)) = 0)
71 fvco3 6960 . . . . . . . . . . 11 ((𝑓:ℕ⟶ran 𝑇𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
7271adantlr 715 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘(𝑓𝑘)))
73 ax-hv0cl 30932 . . . . . . . . . . . . 13 0 ∈ ℋ
7473elexi 3470 . . . . . . . . . . . 12 0 ∈ V
7574fvconst2 7178 . . . . . . . . . . 11 (𝑘 ∈ ℕ → ((ℕ × {0})‘𝑘) = 0)
7675adantl 481 . . . . . . . . . 10 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → ((ℕ × {0})‘𝑘) = 0)
7770, 72, 763eqtr4d 2774 . . . . . . . . 9 (((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) ∧ 𝑘 ∈ ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
7877ralrimiva 3125 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘))
79 ovex 7420 . . . . . . . . . . 11 ((𝑇𝑦) − 𝑦) ∈ V
8079, 45fnmpti 6661 . . . . . . . . . 10 (𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ
81 fnfco 6725 . . . . . . . . . 10 (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) Fn ℋ ∧ 𝑓:ℕ⟶ ℋ) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8280, 40, 81sylancr 587 . . . . . . . . 9 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ)
8374fconst 6746 . . . . . . . . . 10 (ℕ × {0}):ℕ⟶{0}
84 ffn 6688 . . . . . . . . . 10 ((ℕ × {0}):ℕ⟶{0} → (ℕ × {0}) Fn ℕ)
8583, 84ax-mp 5 . . . . . . . . 9 (ℕ × {0}) Fn ℕ
86 eqfnfv 7003 . . . . . . . . 9 ((((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) Fn ℕ ∧ (ℕ × {0}) Fn ℕ) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8782, 85, 86sylancl 586 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}) ↔ ∀𝑘 ∈ ℕ (((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓)‘𝑘) = ((ℕ × {0})‘𝑘)))
8878, 87mpbird 257 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦)) ∘ 𝑓) = (ℕ × {0}))
89 vex 3451 . . . . . . . . . 10 𝑥 ∈ V
9089hlimveci 31119 . . . . . . . . 9 (𝑓𝑣 𝑥𝑥 ∈ ℋ)
9190adantl 481 . . . . . . . 8 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ℋ)
92 fveq2 6858 . . . . . . . . . 10 (𝑦 = 𝑥 → (𝑇𝑦) = (𝑇𝑥))
93 id 22 . . . . . . . . . 10 (𝑦 = 𝑥𝑦 = 𝑥)
9492, 93oveq12d 7405 . . . . . . . . 9 (𝑦 = 𝑥 → ((𝑇𝑦) − 𝑦) = ((𝑇𝑥) − 𝑥))
95 ovex 7420 . . . . . . . . 9 ((𝑇𝑥) − 𝑥) ∈ V
9694, 45, 95fvmpt 6968 . . . . . . . 8 (𝑥 ∈ ℋ → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9791, 96syl 17 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑦 ∈ ℋ ↦ ((𝑇𝑦) − 𝑦))‘𝑥) = ((𝑇𝑥) − 𝑥))
9836, 88, 973brtr3d 5138 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))((𝑇𝑥) − 𝑥))
9973a1i 11 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 0 ∈ ℋ)
100 1zzd 12564 . . . . . . 7 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 1 ∈ ℤ)
101 nnuz 12836 . . . . . . . 8 ℕ = (ℤ‘1)
102101lmconst 23148 . . . . . . 7 (((MetOpen‘(norm ∘ − )) ∈ (TopOn‘ ℋ) ∧ 0 ∈ ℋ ∧ 1 ∈ ℤ) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
10318, 99, 100, 102syl3anc 1373 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (ℕ × {0})(⇝𝑡‘(MetOpen‘(norm ∘ − )))0)
1049, 98, 103lmmo 23267 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → ((𝑇𝑥) − 𝑥) = 0)
10519ffvelcdmi 7055 . . . . . . 7 (𝑥 ∈ ℋ → (𝑇𝑥) ∈ ℋ)
10691, 105syl 17 . . . . . 6 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ℋ)
107 hvsubeq0 30997 . . . . . 6 (((𝑇𝑥) ∈ ℋ ∧ 𝑥 ∈ ℋ) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
108106, 91, 107syl2anc 584 . . . . 5 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (((𝑇𝑥) − 𝑥) = 0 ↔ (𝑇𝑥) = 𝑥))
109104, 108mpbid 232 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) = 𝑥)
110 fnfvelrn 7052 . . . . 5 ((𝑇 Fn ℋ ∧ 𝑥 ∈ ℋ) → (𝑇𝑥) ∈ ran 𝑇)
11150, 91, 110sylancr 587 . . . 4 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → (𝑇𝑥) ∈ ran 𝑇)
112109, 111eqeltrrd 2829 . . 3 ((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
113112gen2 1796 . 2 𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)
114 isch2 31152 . 2 (ran 𝑇C ↔ (ran 𝑇S ∧ ∀𝑓𝑥((𝑓:ℕ⟶ran 𝑇𝑓𝑣 𝑥) → 𝑥 ∈ ran 𝑇)))
1154, 113, 114mpbir2an 711 1 ran 𝑇C
Colors of variables: wff setvar class
Syntax hints:  wi 4  wb 206  wa 395  wal 1538   = wceq 1540  wcel 2109  wral 3044  wss 3914  {csn 4589  cop 4595   class class class wbr 5107  cmpt 5188   × cxp 5636  ran crn 5639  cres 5640  ccom 5642   Fn wfn 6506  wf 6507  cfv 6511  (class class class)co 7387  m cmap 8799  1c1 11069  cn 12186  cz 12529  ∞Metcxmet 21249  MetOpencmopn 21254  TopOnctopon 22797   Cn ccn 23111  𝑡clm 23113  Hauscha 23195   ×t ctx 23447  NrmCVeccnv 30513  chba 30848   + cva 30849   · csm 30850  normcno 30852  0c0v 30853   cmv 30854  𝑣 chli 30856   S csh 30857   C cch 30858  ContOpccop 30875  LinOpclo 30876  BndLinOpcbo 30877  HrmOpcho 30879
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-3 8  ax-gen 1795  ax-4 1809  ax-5 1910  ax-6 1967  ax-7 2008  ax-8 2111  ax-9 2119  ax-10 2142  ax-11 2158  ax-12 2178  ax-ext 2701  ax-rep 5234  ax-sep 5251  ax-nul 5261  ax-pow 5320  ax-pr 5387  ax-un 7711  ax-inf2 9594  ax-cc 10388  ax-dc 10399  ax-cnex 11124  ax-resscn 11125  ax-1cn 11126  ax-icn 11127  ax-addcl 11128  ax-addrcl 11129  ax-mulcl 11130  ax-mulrcl 11131  ax-mulcom 11132  ax-addass 11133  ax-mulass 11134  ax-distr 11135  ax-i2m1 11136  ax-1ne0 11137  ax-1rid 11138  ax-rnegex 11139  ax-rrecex 11140  ax-cnre 11141  ax-pre-lttri 11142  ax-pre-lttrn 11143  ax-pre-ltadd 11144  ax-pre-mulgt0 11145  ax-pre-sup 11146  ax-addf 11147  ax-mulf 11148  ax-hilex 30928  ax-hfvadd 30929  ax-hvcom 30930  ax-hvass 30931  ax-hv0cl 30932  ax-hvaddid 30933  ax-hfvmul 30934  ax-hvmulid 30935  ax-hvmulass 30936  ax-hvdistr1 30937  ax-hvdistr2 30938  ax-hvmul0 30939  ax-hfi 31008  ax-his1 31011  ax-his2 31012  ax-his3 31013  ax-his4 31014  ax-hcompl 31131
This theorem depends on definitions:  df-bi 207  df-an 396  df-or 848  df-3or 1087  df-3an 1088  df-tru 1543  df-fal 1553  df-ex 1780  df-nf 1784  df-sb 2066  df-mo 2533  df-eu 2562  df-clab 2708  df-cleq 2721  df-clel 2803  df-nfc 2878  df-ne 2926  df-nel 3030  df-ral 3045  df-rex 3054  df-rmo 3354  df-reu 3355  df-rab 3406  df-v 3449  df-sbc 3754  df-csb 3863  df-dif 3917  df-un 3919  df-in 3921  df-ss 3931  df-pss 3934  df-nul 4297  df-if 4489  df-pw 4565  df-sn 4590  df-pr 4592  df-tp 4594  df-op 4596  df-uni 4872  df-int 4911  df-iun 4957  df-iin 4958  df-br 5108  df-opab 5170  df-mpt 5189  df-tr 5215  df-id 5533  df-eprel 5538  df-po 5546  df-so 5547  df-fr 5591  df-se 5592  df-we 5593  df-xp 5644  df-rel 5645  df-cnv 5646  df-co 5647  df-dm 5648  df-rn 5649  df-res 5650  df-ima 5651  df-pred 6274  df-ord 6335  df-on 6336  df-lim 6337  df-suc 6338  df-iota 6464  df-fun 6513  df-fn 6514  df-f 6515  df-f1 6516  df-fo 6517  df-f1o 6518  df-fv 6519  df-isom 6520  df-riota 7344  df-ov 7390  df-oprab 7391  df-mpo 7392  df-of 7653  df-om 7843  df-1st 7968  df-2nd 7969  df-supp 8140  df-frecs 8260  df-wrecs 8291  df-recs 8340  df-rdg 8378  df-1o 8434  df-2o 8435  df-oadd 8438  df-omul 8439  df-er 8671  df-map 8801  df-pm 8802  df-ixp 8871  df-en 8919  df-dom 8920  df-sdom 8921  df-fin 8922  df-fsupp 9313  df-fi 9362  df-sup 9393  df-inf 9394  df-oi 9463  df-card 9892  df-acn 9895  df-pnf 11210  df-mnf 11211  df-xr 11212  df-ltxr 11213  df-le 11214  df-sub 11407  df-neg 11408  df-div 11836  df-nn 12187  df-2 12249  df-3 12250  df-4 12251  df-5 12252  df-6 12253  df-7 12254  df-8 12255  df-9 12256  df-n0 12443  df-z 12530  df-dec 12650  df-uz 12794  df-q 12908  df-rp 12952  df-xneg 13072  df-xadd 13073  df-xmul 13074  df-ioo 13310  df-ico 13312  df-icc 13313  df-fz 13469  df-fzo 13616  df-fl 13754  df-seq 13967  df-exp 14027  df-hash 14296  df-cj 15065  df-re 15066  df-im 15067  df-sqrt 15201  df-abs 15202  df-clim 15454  df-rlim 15455  df-sum 15653  df-struct 17117  df-sets 17134  df-slot 17152  df-ndx 17164  df-base 17180  df-ress 17201  df-plusg 17233  df-mulr 17234  df-starv 17235  df-sca 17236  df-vsca 17237  df-ip 17238  df-tset 17239  df-ple 17240  df-ds 17242  df-unif 17243  df-hom 17244  df-cco 17245  df-rest 17385  df-topn 17386  df-0g 17404  df-gsum 17405  df-topgen 17406  df-pt 17407  df-prds 17410  df-xrs 17465  df-qtop 17470  df-imas 17471  df-xps 17473  df-mre 17547  df-mrc 17548  df-acs 17550  df-mgm 18567  df-sgrp 18646  df-mnd 18662  df-submnd 18711  df-mulg 19000  df-cntz 19249  df-cmn 19712  df-psmet 21256  df-xmet 21257  df-met 21258  df-bl 21259  df-mopn 21260  df-fbas 21261  df-fg 21262  df-cnfld 21265  df-top 22781  df-topon 22798  df-topsp 22820  df-bases 22833  df-cld 22906  df-ntr 22907  df-cls 22908  df-nei 22985  df-cn 23114  df-cnp 23115  df-lm 23116  df-t1 23201  df-haus 23202  df-cmp 23274  df-tx 23449  df-hmeo 23642  df-fil 23733  df-fm 23825  df-flim 23826  df-flf 23827  df-fcls 23828  df-xms 24208  df-ms 24209  df-tms 24210  df-cncf 24771  df-cfil 25155  df-cau 25156  df-cmet 25157  df-grpo 30422  df-gid 30423  df-ginv 30424  df-gdiv 30425  df-ablo 30474  df-vc 30488  df-nv 30521  df-va 30524  df-ba 30525  df-sm 30526  df-0v 30527  df-vs 30528  df-nmcv 30529  df-ims 30530  df-dip 30630  df-ssp 30651  df-lno 30673  df-nmoo 30674  df-blo 30675  df-0o 30676  df-ph 30742  df-cbn 30792  df-hlo 30815  df-hnorm 30897  df-hba 30898  df-hvsub 30900  df-hlim 30901  df-hcau 30902  df-sh 31136  df-ch 31150  df-oc 31181  df-ch0 31182  df-shs 31237  df-pjh 31324  df-h0op 31677  df-nmop 31768  df-cnop 31769  df-lnop 31770  df-bdop 31771  df-unop 31772  df-hmop 31773
This theorem is referenced by:  hmopidmpji  32081  hmopidmch  32082
  Copyright terms: Public domain W3C validator