![]() |
Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > MPE Home > Th. List > fulloppc | Structured version Visualization version GIF version |
Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
Ref | Expression |
---|---|
fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
fulloppc.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
Ref | Expression |
---|---|
fulloppc | ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
3 | fulloppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
4 | fullfunc 17923 | . . . . 5 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
5 | 4 | ssbri 5197 | . . . 4 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
7 | 1, 2, 6 | funcoppc 17889 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
8 | eqid 2725 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
9 | eqid 2725 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
10 | eqid 2725 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
11 | 3 | adantr 479 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Full 𝐷)𝐺) |
12 | simprr 771 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
13 | simprl 769 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
14 | 8, 9, 10, 11, 12, 13 | fullfo 17929 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
15 | forn 6817 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) | |
16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
17 | ovtpos 8255 | . . . . 5 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
18 | 17 | rneqi 5942 | . . . 4 ⊢ ran (𝑥tpos 𝐺𝑦) = ran (𝑦𝐺𝑥) |
19 | 9, 2 | oppchom 17724 | . . . 4 ⊢ ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) |
20 | 16, 18, 19 | 3eqtr4g 2790 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
21 | 20 | ralrimivva 3190 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
22 | 1, 8 | oppcbas 17727 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
23 | eqid 2725 | . . 3 ⊢ (Hom ‘𝑃) = (Hom ‘𝑃) | |
24 | 22, 23 | isfull 17927 | . 2 ⊢ (𝐹(𝑂 Full 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)))) |
25 | 7, 21, 24 | sylanbrc 581 | 1 ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
Colors of variables: wff setvar class |
Syntax hints: → wi 4 ∧ wa 394 = wceq 1533 ∈ wcel 2098 ∀wral 3050 class class class wbr 5152 ran crn 5682 –onto→wfo 6551 ‘cfv 6553 (class class class)co 7423 tpos ctpos 8239 Basecbs 17208 Hom chom 17272 oppCatcoppc 17719 Func cfunc 17868 Full cful 17919 |
This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1789 ax-4 1803 ax-5 1905 ax-6 1963 ax-7 2003 ax-8 2100 ax-9 2108 ax-10 2129 ax-11 2146 ax-12 2166 ax-ext 2696 ax-rep 5289 ax-sep 5303 ax-nul 5310 ax-pow 5368 ax-pr 5432 ax-un 7745 ax-cnex 11210 ax-resscn 11211 ax-1cn 11212 ax-icn 11213 ax-addcl 11214 ax-addrcl 11215 ax-mulcl 11216 ax-mulrcl 11217 ax-mulcom 11218 ax-addass 11219 ax-mulass 11220 ax-distr 11221 ax-i2m1 11222 ax-1ne0 11223 ax-1rid 11224 ax-rnegex 11225 ax-rrecex 11226 ax-cnre 11227 ax-pre-lttri 11228 ax-pre-lttrn 11229 ax-pre-ltadd 11230 ax-pre-mulgt0 11231 |
This theorem depends on definitions: df-bi 206 df-an 395 df-or 846 df-3or 1085 df-3an 1086 df-tru 1536 df-fal 1546 df-ex 1774 df-nf 1778 df-sb 2060 df-mo 2528 df-eu 2557 df-clab 2703 df-cleq 2717 df-clel 2802 df-nfc 2877 df-ne 2930 df-nel 3036 df-ral 3051 df-rex 3060 df-rmo 3363 df-reu 3364 df-rab 3419 df-v 3463 df-sbc 3776 df-csb 3892 df-dif 3949 df-un 3951 df-in 3953 df-ss 3963 df-pss 3966 df-nul 4325 df-if 4533 df-pw 4608 df-sn 4633 df-pr 4635 df-op 4639 df-uni 4913 df-iun 5002 df-br 5153 df-opab 5215 df-mpt 5236 df-tr 5270 df-id 5579 df-eprel 5585 df-po 5593 df-so 5594 df-fr 5636 df-we 5638 df-xp 5687 df-rel 5688 df-cnv 5689 df-co 5690 df-dm 5691 df-rn 5692 df-res 5693 df-ima 5694 df-pred 6311 df-ord 6378 df-on 6379 df-lim 6380 df-suc 6381 df-iota 6505 df-fun 6555 df-fn 6556 df-f 6557 df-f1 6558 df-fo 6559 df-f1o 6560 df-fv 6561 df-riota 7379 df-ov 7426 df-oprab 7427 df-mpo 7428 df-om 7876 df-1st 8002 df-2nd 8003 df-tpos 8240 df-frecs 8295 df-wrecs 8326 df-recs 8400 df-rdg 8439 df-er 8733 df-map 8856 df-ixp 8926 df-en 8974 df-dom 8975 df-sdom 8976 df-pnf 11296 df-mnf 11297 df-xr 11298 df-ltxr 11299 df-le 11300 df-sub 11492 df-neg 11493 df-nn 12260 df-2 12322 df-3 12323 df-4 12324 df-5 12325 df-6 12326 df-7 12327 df-8 12328 df-9 12329 df-n0 12520 df-z 12606 df-dec 12725 df-sets 17161 df-slot 17179 df-ndx 17191 df-base 17209 df-hom 17285 df-cco 17286 df-cat 17676 df-cid 17677 df-oppc 17720 df-func 17872 df-full 17921 |
This theorem is referenced by: ffthoppc 17941 |
Copyright terms: Public domain | W3C validator |