| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fulloppc | Structured version Visualization version GIF version | ||
| Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fulloppc.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulloppc | ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | fulloppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 4 | fullfunc 17817 | . . . . 5 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 5 | 4 | ssbri 5138 | . . . 4 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 7 | 1, 2, 6 | funcoppc 17784 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
| 8 | eqid 2733 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2733 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2733 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Full 𝐷)𝐺) |
| 12 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 13 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 14 | 8, 9, 10, 11, 12, 13 | fullfo 17823 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 15 | forn 6743 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 17 | ovtpos 8177 | . . . . 5 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
| 18 | 17 | rneqi 5881 | . . . 4 ⊢ ran (𝑥tpos 𝐺𝑦) = ran (𝑦𝐺𝑥) |
| 19 | 9, 2 | oppchom 17623 | . . . 4 ⊢ ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) |
| 20 | 16, 18, 19 | 3eqtr4g 2793 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
| 21 | 20 | ralrimivva 3176 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
| 22 | 1, 8 | oppcbas 17626 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 23 | eqid 2733 | . . 3 ⊢ (Hom ‘𝑃) = (Hom ‘𝑃) | |
| 24 | 22, 23 | isfull 17821 | . 2 ⊢ (𝐹(𝑂 Full 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)))) |
| 25 | 7, 21, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1541 ∈ wcel 2113 ∀wral 3048 class class class wbr 5093 ran crn 5620 –onto→wfo 6484 ‘cfv 6486 (class class class)co 7352 tpos ctpos 8161 Basecbs 17122 Hom chom 17174 oppCatcoppc 17619 Func cfunc 17763 Full cful 17813 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1796 ax-4 1810 ax-5 1911 ax-6 1968 ax-7 2009 ax-8 2115 ax-9 2123 ax-10 2146 ax-11 2162 ax-12 2182 ax-ext 2705 ax-rep 5219 ax-sep 5236 ax-nul 5246 ax-pow 5305 ax-pr 5372 ax-un 7674 ax-cnex 11069 ax-resscn 11070 ax-1cn 11071 ax-icn 11072 ax-addcl 11073 ax-addrcl 11074 ax-mulcl 11075 ax-mulrcl 11076 ax-mulcom 11077 ax-addass 11078 ax-mulass 11079 ax-distr 11080 ax-i2m1 11081 ax-1ne0 11082 ax-1rid 11083 ax-rnegex 11084 ax-rrecex 11085 ax-cnre 11086 ax-pre-lttri 11087 ax-pre-lttrn 11088 ax-pre-ltadd 11089 ax-pre-mulgt0 11090 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1544 df-fal 1554 df-ex 1781 df-nf 1785 df-sb 2068 df-mo 2537 df-eu 2566 df-clab 2712 df-cleq 2725 df-clel 2808 df-nfc 2882 df-ne 2930 df-nel 3034 df-ral 3049 df-rex 3058 df-rmo 3347 df-reu 3348 df-rab 3397 df-v 3439 df-sbc 3738 df-csb 3847 df-dif 3901 df-un 3903 df-in 3905 df-ss 3915 df-pss 3918 df-nul 4283 df-if 4475 df-pw 4551 df-sn 4576 df-pr 4578 df-op 4582 df-uni 4859 df-iun 4943 df-br 5094 df-opab 5156 df-mpt 5175 df-tr 5201 df-id 5514 df-eprel 5519 df-po 5527 df-so 5528 df-fr 5572 df-we 5574 df-xp 5625 df-rel 5626 df-cnv 5627 df-co 5628 df-dm 5629 df-rn 5630 df-res 5631 df-ima 5632 df-pred 6253 df-ord 6314 df-on 6315 df-lim 6316 df-suc 6317 df-iota 6442 df-fun 6488 df-fn 6489 df-f 6490 df-f1 6491 df-fo 6492 df-f1o 6493 df-fv 6494 df-riota 7309 df-ov 7355 df-oprab 7356 df-mpo 7357 df-om 7803 df-1st 7927 df-2nd 7928 df-tpos 8162 df-frecs 8217 df-wrecs 8248 df-recs 8297 df-rdg 8335 df-er 8628 df-map 8758 df-ixp 8828 df-en 8876 df-dom 8877 df-sdom 8878 df-pnf 11155 df-mnf 11156 df-xr 11157 df-ltxr 11158 df-le 11159 df-sub 11353 df-neg 11354 df-nn 12133 df-2 12195 df-3 12196 df-4 12197 df-5 12198 df-6 12199 df-7 12200 df-8 12201 df-9 12202 df-n0 12389 df-z 12476 df-dec 12595 df-sets 17077 df-slot 17095 df-ndx 17107 df-base 17123 df-hom 17187 df-cco 17188 df-cat 17576 df-cid 17577 df-oppc 17620 df-func 17767 df-full 17815 |
| This theorem is referenced by: ffthoppc 17835 fulloppf 49288 |
| Copyright terms: Public domain | W3C validator |