| Metamath Proof Explorer |
< Previous
Next >
Nearby theorems |
||
| Mirrors > Home > MPE Home > Th. List > fulloppc | Structured version Visualization version GIF version | ||
| Description: The opposite functor of a full functor is also full. Proposition 3.43(d) in [Adamek] p. 39. (Contributed by Mario Carneiro, 27-Jan-2017.) |
| Ref | Expression |
|---|---|
| fulloppc.o | ⊢ 𝑂 = (oppCat‘𝐶) |
| fulloppc.p | ⊢ 𝑃 = (oppCat‘𝐷) |
| fulloppc.f | ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) |
| Ref | Expression |
|---|---|
| fulloppc | ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fulloppc.o | . . 3 ⊢ 𝑂 = (oppCat‘𝐶) | |
| 2 | fulloppc.p | . . 3 ⊢ 𝑃 = (oppCat‘𝐷) | |
| 3 | fulloppc.f | . . . 4 ⊢ (𝜑 → 𝐹(𝐶 Full 𝐷)𝐺) | |
| 4 | fullfunc 17877 | . . . . 5 ⊢ (𝐶 Full 𝐷) ⊆ (𝐶 Func 𝐷) | |
| 5 | 4 | ssbri 5155 | . . . 4 ⊢ (𝐹(𝐶 Full 𝐷)𝐺 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 6 | 3, 5 | syl 17 | . . 3 ⊢ (𝜑 → 𝐹(𝐶 Func 𝐷)𝐺) |
| 7 | 1, 2, 6 | funcoppc 17844 | . 2 ⊢ (𝜑 → 𝐹(𝑂 Func 𝑃)tpos 𝐺) |
| 8 | eqid 2730 | . . . . . 6 ⊢ (Base‘𝐶) = (Base‘𝐶) | |
| 9 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘𝐷) = (Hom ‘𝐷) | |
| 10 | eqid 2730 | . . . . . 6 ⊢ (Hom ‘𝐶) = (Hom ‘𝐶) | |
| 11 | 3 | adantr 480 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝐹(𝐶 Full 𝐷)𝐺) |
| 12 | simprr 772 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑦 ∈ (Base‘𝐶)) | |
| 13 | simprl 770 | . . . . . 6 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → 𝑥 ∈ (Base‘𝐶)) | |
| 14 | 8, 9, 10, 11, 12, 13 | fullfo 17883 | . . . . 5 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → (𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 15 | forn 6778 | . . . . 5 ⊢ ((𝑦𝐺𝑥):(𝑦(Hom ‘𝐶)𝑥)–onto→((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) | |
| 16 | 14, 15 | syl 17 | . . . 4 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑦𝐺𝑥) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥))) |
| 17 | ovtpos 8223 | . . . . 5 ⊢ (𝑥tpos 𝐺𝑦) = (𝑦𝐺𝑥) | |
| 18 | 17 | rneqi 5904 | . . . 4 ⊢ ran (𝑥tpos 𝐺𝑦) = ran (𝑦𝐺𝑥) |
| 19 | 9, 2 | oppchom 17683 | . . . 4 ⊢ ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)) = ((𝐹‘𝑦)(Hom ‘𝐷)(𝐹‘𝑥)) |
| 20 | 16, 18, 19 | 3eqtr4g 2790 | . . 3 ⊢ ((𝜑 ∧ (𝑥 ∈ (Base‘𝐶) ∧ 𝑦 ∈ (Base‘𝐶))) → ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
| 21 | 20 | ralrimivva 3181 | . 2 ⊢ (𝜑 → ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦))) |
| 22 | 1, 8 | oppcbas 17686 | . . 3 ⊢ (Base‘𝐶) = (Base‘𝑂) |
| 23 | eqid 2730 | . . 3 ⊢ (Hom ‘𝑃) = (Hom ‘𝑃) | |
| 24 | 22, 23 | isfull 17881 | . 2 ⊢ (𝐹(𝑂 Full 𝑃)tpos 𝐺 ↔ (𝐹(𝑂 Func 𝑃)tpos 𝐺 ∧ ∀𝑥 ∈ (Base‘𝐶)∀𝑦 ∈ (Base‘𝐶)ran (𝑥tpos 𝐺𝑦) = ((𝐹‘𝑥)(Hom ‘𝑃)(𝐹‘𝑦)))) |
| 25 | 7, 21, 24 | sylanbrc 583 | 1 ⊢ (𝜑 → 𝐹(𝑂 Full 𝑃)tpos 𝐺) |
| Colors of variables: wff setvar class |
| Syntax hints: → wi 4 ∧ wa 395 = wceq 1540 ∈ wcel 2109 ∀wral 3045 class class class wbr 5110 ran crn 5642 –onto→wfo 6512 ‘cfv 6514 (class class class)co 7390 tpos ctpos 8207 Basecbs 17186 Hom chom 17238 oppCatcoppc 17679 Func cfunc 17823 Full cful 17873 |
| This theorem was proved from axioms: ax-mp 5 ax-1 6 ax-2 7 ax-3 8 ax-gen 1795 ax-4 1809 ax-5 1910 ax-6 1967 ax-7 2008 ax-8 2111 ax-9 2119 ax-10 2142 ax-11 2158 ax-12 2178 ax-ext 2702 ax-rep 5237 ax-sep 5254 ax-nul 5264 ax-pow 5323 ax-pr 5390 ax-un 7714 ax-cnex 11131 ax-resscn 11132 ax-1cn 11133 ax-icn 11134 ax-addcl 11135 ax-addrcl 11136 ax-mulcl 11137 ax-mulrcl 11138 ax-mulcom 11139 ax-addass 11140 ax-mulass 11141 ax-distr 11142 ax-i2m1 11143 ax-1ne0 11144 ax-1rid 11145 ax-rnegex 11146 ax-rrecex 11147 ax-cnre 11148 ax-pre-lttri 11149 ax-pre-lttrn 11150 ax-pre-ltadd 11151 ax-pre-mulgt0 11152 |
| This theorem depends on definitions: df-bi 207 df-an 396 df-or 848 df-3or 1087 df-3an 1088 df-tru 1543 df-fal 1553 df-ex 1780 df-nf 1784 df-sb 2066 df-mo 2534 df-eu 2563 df-clab 2709 df-cleq 2722 df-clel 2804 df-nfc 2879 df-ne 2927 df-nel 3031 df-ral 3046 df-rex 3055 df-rmo 3356 df-reu 3357 df-rab 3409 df-v 3452 df-sbc 3757 df-csb 3866 df-dif 3920 df-un 3922 df-in 3924 df-ss 3934 df-pss 3937 df-nul 4300 df-if 4492 df-pw 4568 df-sn 4593 df-pr 4595 df-op 4599 df-uni 4875 df-iun 4960 df-br 5111 df-opab 5173 df-mpt 5192 df-tr 5218 df-id 5536 df-eprel 5541 df-po 5549 df-so 5550 df-fr 5594 df-we 5596 df-xp 5647 df-rel 5648 df-cnv 5649 df-co 5650 df-dm 5651 df-rn 5652 df-res 5653 df-ima 5654 df-pred 6277 df-ord 6338 df-on 6339 df-lim 6340 df-suc 6341 df-iota 6467 df-fun 6516 df-fn 6517 df-f 6518 df-f1 6519 df-fo 6520 df-f1o 6521 df-fv 6522 df-riota 7347 df-ov 7393 df-oprab 7394 df-mpo 7395 df-om 7846 df-1st 7971 df-2nd 7972 df-tpos 8208 df-frecs 8263 df-wrecs 8294 df-recs 8343 df-rdg 8381 df-er 8674 df-map 8804 df-ixp 8874 df-en 8922 df-dom 8923 df-sdom 8924 df-pnf 11217 df-mnf 11218 df-xr 11219 df-ltxr 11220 df-le 11221 df-sub 11414 df-neg 11415 df-nn 12194 df-2 12256 df-3 12257 df-4 12258 df-5 12259 df-6 12260 df-7 12261 df-8 12262 df-9 12263 df-n0 12450 df-z 12537 df-dec 12657 df-sets 17141 df-slot 17159 df-ndx 17171 df-base 17187 df-hom 17251 df-cco 17252 df-cat 17636 df-cid 17637 df-oppc 17680 df-func 17827 df-full 17875 |
| This theorem is referenced by: ffthoppc 17895 fulloppf 49156 |
| Copyright terms: Public domain | W3C validator |